1
|
Wu Q, Wang Q, Hu K, Luo T, Liu J, Xue Y, Li L, Yang C, Lin R, Pan H, Wang J, Guo Z. Proline/serine-rich coiled-coil protein 1 alleviates pyroptosis in murine bone marrow-derived macrophages. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39935324 DOI: 10.3724/abbs.2025012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Pyroptosis is a regulated inflammatory cell death process that plays an essential role in various diseases. This study investigates the role of proline/serine-rich coiled-coil protein 1 (PSRC1) in pyroptosis and inflammation in macrophages. This study reports that PSRC1 expression is decreased in pyroptotic macrophages and that knockout of PSRC1 exacerbates pyroptosis and inflammation. PSRC1 overexpression alleviates pyroptosis and inflammation in macrophages. RNA-seq analysis reveals that PSRC1 regulates the expression of genes involved in the extracellular matrix (ECM). Specifically, PSRC1 downregulates the expression of periostin (POSTN), an ECM component. Knockdown of POSTN suppresses macrophage pyroptosis mediated by low expression of PSRC1. These findings suggest that PSRC1 can alleviate pyroptosis and inflammation in bone marrow-derived macrophages (BMDMs) by regulating the ECM and negatively regulating POSTN. This study provides insights into the role of PSRC1 in macrophage pyroptosis and identifies a potential target for the treatment of inflammatory diseases. Further research is needed to confirm these findings in vivo and in various disease models.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Qianqian Wang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Kexin Hu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China; Chengdu 610014, China
| | - Jichen Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Yazhi Xue
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Ling Li
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Cuiqi Yang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Rongzhan Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Hangyu Pan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Jinhao Wang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
2
|
Deng Y, Shi M, Yi L, Naveed Khan M, Xia Z, Li X. Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment. Heliyon 2024; 10:e37060. [PMID: 39286218 PMCID: PMC11402941 DOI: 10.1016/j.heliyon.2024.e37060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by producing remarkable clinical outcomes for patients with various cancer types. However, only a subset of patients benefits from immunotherapeutic interventions due to the primary and acquired resistance to ICIs. Myeloid-derived suppressor cells (MDSCs) play a crucial role in creating an immunosuppressive tumor microenvironment (TME) and contribute to resistance to immunotherapy. V-domain Ig suppressor of T cell activation (VISTA), a negative immune checkpoint protein highly expressed on MDSCs, presents a promising target for overcoming resistance to current ICIs. This article provides an overview of the evidence supporting VISTA's role in regulating MDSCs in shaping the TME, thus offering insights into how to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yayuan Deng
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yi
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Western(Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| |
Collapse
|
3
|
Pérez HJ, Crombet T. Notable correlation between serum epidermal growth factor values and inflammatory status in patients with COVID-19. Immun Inflamm Dis 2024; 12:e1355. [PMID: 39110087 PMCID: PMC11304898 DOI: 10.1002/iid3.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Despite its crucial role in Epidermal Growth Factor Receptor (EGFR) activation, and the resulting impact on the health-disease process, epidermal growth factor (EGF) is an underexplored molecule in relation to how its serum concentrations relate to other analytes and clinical variables in pathological contexts. OBJECTIVE To clarify the possible correlation between EGF and clinical and analytical variables in the context of COVID-19. METHODS Cross-sectional observational and analytical study, in patients with virological and clinical diagnosis of COVID-19, selected by simple random sampling, admitted between August and September 2021. UMELISA-EGF commercial kits were used. RESULTS Differences in overall EGF values were observed between groups (566.04 vs. 910.53 pg/ml, p = .0430). In COVID-19 patients, no notable correlations were observed for neutrophil, platelet, triglyceride or liver enzyme values (p > .05). Significant correlations were observed with the neutrophil-lymphocyte indicator (r = 0.4711, p = .0128) as well as with the platelet-lymphocyte index (r = 0.4553, p = .0155). Statistical results of multivariate regression analysis suggest NLR (β = .2232, p = .0353) and PLR (β = .2117, p = .0411) are predictors of inflammation in patients with COVID-19. CONCLUSIONS Serum EGF concentrations in COVID-19 correlate positively with prognostic inflammatory markers of severity and could presumably act as an independent risk factor for the development of inflammation in response to new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Héctor José Pérez
- Critical Care DivisionSaturnino Lora Provincial HospitalSantiago de CubaCuba
| | - Tania Crombet
- Clinical Trials DivisionCentre for Molecular ImmunologyHavanaCuba
| |
Collapse
|
4
|
Wang B, Wang L, Shang R, Xie L. MDSC suppresses T cell antitumor immunity in CAC via GPNMB in a MyD88-dependent manner. Cancer Med 2024; 13:e6887. [PMID: 38140790 PMCID: PMC10807660 DOI: 10.1002/cam4.6887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) played an essential role in tumor microenvironment to suppress host antitumor immunity and help cancer cells escape immune surveillance. However, the molecular mechanism behind tumor evasion mediated by MDSCs is not fully understood. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is considered to associate with tumor initiation, metastasis and angiogenesis. Blocking GPNMB function is a potentially valuable therapy for cancer by eliminating GPNMB+MDSCs. Our previous study has proved that blockage the MyD88 signaling with the MyD88 inhibitor, TJ-M2010-5, may completely prevent the development of CAC in mice, accompanying with downregulation of GPNMB mRNA in the inhibitor-treated mice of CAC. METHODS We here focus on the underlying the relationship between GPNMB function and MyD88 signaling pathway activation in MDSCs' antitumor activity in CAC. RESULTS CAC development in the mouse model is associated with expanded GPNMB+MDSCs by a MyD88-dependent pathway. The GPNMB expression on MDSCs is associated with MyD88 signaling activation. The inhibitory effect of MDSCs on T cell proliferation, activation and antitumor cytotoxicity in CAC is mediated by GPNMB in a MyD8-dependent manner. CONCLUSION MyD88 signaling pathway plays an essential role in GPNMB+MDSC-mediated tumor immune escape during CAC development and is a promising focus for revealing the mechanisms of MDSC that facilitate immunosuppression and tumor progression.
Collapse
Affiliation(s)
- Bo Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| | - Runshi Shang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| | - Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
5
|
Jiang L, Qi Y, Yang L, Miao Y, Ren W, Liu H, Huang Y, Huang S, Chen S, Shi Y, Cai L. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci 2023; 18:100852. [PMID: 37920650 PMCID: PMC10618707 DOI: 10.1016/j.ajps.2023.100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
How to effectively transform the pro-oncogenic tumor microenvironments (TME) surrounding a tumor into an anti-tumoral never fails to attract people to study. Small interfering RNA (siRNA) is considered one of the most noteworthy research directions that can regulate gene expression following a process known as RNA interference (RNAi). The research about siRNA delivery targeting tumor cells and TME has been on the rise in recent years. Using siRNA drugs to silence critical proteins in TME was one of the most efficient solutions. However, the manufacture of a siRNA delivery system faces three major obstacles, i.e., appropriate cargo protection, accurately targeted delivery, and site-specific cargo release. In the following review, we summarized the pharmacological actions of siRNA drugs in remolding TME. In addition, the delivery strategies of siRNA drugs and combination therapy with siRNA drugs to remodel TME are thoroughly discussed. In the meanwhile, the most recent advancements in the development of all clinically investigated and commercialized siRNA delivery technologies are also presented. Ultimately, we propose that nanoparticle drug delivery siRNA may be the future research focus of oncogene therapy. This summary offers a thorough analysis and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yao Qi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Jianyang People's Hospital of Sichuan Province, Jianyang 641400, China
| | - Yangbao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
6
|
Torres W, Pérez JL, Díaz MP, D’Marco L, Checa-Ros A, Carrasquero R, Angarita L, Gómez Y, Chacín M, Ramírez P, Villasmil N, Durán-Agüero S, Cano C, Bermúdez V. The Role of Specialized Pro-Resolving Lipid Mediators in Inflammation-Induced Carcinogenesis. Int J Mol Sci 2023; 24:12623. [PMID: 37628804 PMCID: PMC10454572 DOI: 10.3390/ijms241612623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a process involving cell mutation, increased proliferation, invasion, and metastasis. Over the years, this condition has represented one of the most concerning health problems worldwide due to its significant morbidity and mortality. At present, the incidence of cancer continues to grow exponentially. Thus, it is imperative to open new avenues in cancer research to understand the molecular changes driving DNA transformation, cell-to-cell interaction derangements, and immune system surveillance decay. In this regard, evidence supports the relationship between chronic inflammation and cancer. In light of this, a group of bioactive lipids derived from polyunsaturated fatty acids (PUFAs) may have a position as novel anti-inflammatory molecules known as the specialized pro-resolving mediators (SPMs), a group of pro-resolutive inflammation agents that could improve the anti-tumor immunity. These molecules have the potential role of chemopreventive and therapeutic agents for various cancer types, and their effects have been documented in the scientific literature. Thus, this review objective centers around understanding the effect of SPMs on carcinogenesis and their potential therapeutic effect.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Luis D’Marco
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Ana Checa-Ros
- Grupo de Investigación en Enfermedades Cardiorrenales y Metabólicas, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Lissé Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Samuel Durán-Agüero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Los Leones 8420524, Chile
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080022, Colombia
| |
Collapse
|
7
|
Altıntop MD, Akalın Çiftçi G, Yılmaz Savaş N, Ertorun İ, Can B, Sever B, Temel HE, Alataş Ö, Özdemir A. Discovery of Small Molecule COX-1 and Akt Inhibitors as Anti-NSCLC Agents Endowed with Anti-Inflammatory Action. Int J Mol Sci 2023; 24:ijms24032648. [PMID: 36768971 PMCID: PMC9916685 DOI: 10.3390/ijms24032648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies have come into prominence in the ongoing battle against non-small cell lung cancer (NSCLC) because of the shortcomings of traditional chemotherapy. In this context, indole-based small molecules, which were synthesized efficiently, were subjected to an in vitro colorimetric assay to evaluate their cyclooxygenase (COX) inhibitory profiles. Compounds 3b and 4a were found to be the most selective COX-1 inhibitors in this series with IC50 values of 8.90 µM and 10.00 µM, respectively. In vitro and in vivo assays were performed to evaluate their anti-NSCLC and anti-inflammatory action, respectively. 2-(1H-Indol-3-yl)-N'-(4-morpholinobenzylidene)acetohydrazide (3b) showed selective cytotoxic activity against A549 human lung adenocarcinoma cells through apoptosis induction and Akt inhibition. The in vivo experimental data revealed that compound 3b decreased the serum myeloperoxidase and nitric oxide levels, pointing out its anti-inflammatory action. Moreover, compound 3b diminished the serum aminotransferase (particularly aspartate aminotransferase) levels. Based on the in vitro and in vivo experimental data, compound 3b stands out as a lead anti-NSCLC agent endowed with in vivo anti-inflammatory action, acting as a dual COX-1 and Akt inhibitor.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence: (M.D.A.); (A.Ö.); Tel.: +90-222-335-0580 (ext. 3772) (M.D.A); +90-222-335-0580 (ext. 3780) (A.Ö.)
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Nalan Yılmaz Savaş
- Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - İpek Ertorun
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Correspondence: (M.D.A.); (A.Ö.); Tel.: +90-222-335-0580 (ext. 3772) (M.D.A); +90-222-335-0580 (ext. 3780) (A.Ö.)
| |
Collapse
|
8
|
Guven-Maiorov E, Sakakibara N, Ponnamperuma RM, Dong K, Matar H, King KE, Weinberg WC. Delineating functional mechanisms of the p53/p63/p73 family of transcription factors through identification of protein-protein interactions using interface mimicry. Mol Carcinog 2022; 61:629-642. [PMID: 35560453 PMCID: PMC9949960 DOI: 10.1002/mc.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| | - Nozomi Sakakibara
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kun Dong
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States
| | - Hector Matar
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kathryn E. King
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Wendy C. Weinberg
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| |
Collapse
|
9
|
Jo WS, Kim SD, Jeong SK, Oh SJ, ParK MT, Lee CG, Kang YR, Jeong MH. Resveratrol analogue, HS-1793, inhibits inflammatory mediator release from macrophages by interfering with the TLR4 mediated NF-κB activation. Food Sci Biotechnol 2022; 31:433-441. [PMID: 35464242 PMCID: PMC8994813 DOI: 10.1007/s10068-022-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022] Open
Abstract
Resveratrol is known to have anti-inflammatory properties. However, high-dose resveratrol is required for optimal anti-inflammatory effects. HS-1793 is a derivative designed to be metabolically stable and more effective than resveratrol. We tested whether HS-1793 also has anti-inflammatory activity. HS-1793 effectively inhibited the mRNA and protein expression of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in macrophages. Therefore, the production of nitric oxide (NO) and prostaglandin E2 (PGE2) was significantly attenuated. In addition, HS-1793 completely suppressed the production of inflammatory cytokines enhanced by LPS treatment along with a decrease in Toll-like receptor 4 (TLR4) expression. At the same time, the expression of myeloid differentiation factor 88 (MyD88), IL-1 receptor-associated kinase 1 (IRAK1), and TNF receptor-associated factor 6 (TRAF6) signaling molecules and the nuclear translocation of nuclear factor kappa B (NF-κB)/p65 were also downregulated. We conclusively suggest that HS-1793 also exhibits anti-inflammatory properties by effectively inhibiting TLR4-mediated NF-κB activation.
Collapse
Affiliation(s)
- Wol Soon Jo
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Sung Dae Kim
- grid.258803.40000 0001 0661 1556Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea
| | - Soo Kyung Jeong
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
- grid.255166.30000 0001 2218 7142Department of Microbiology, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan, 49236 Republic of Korea
| | - Su Jung Oh
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Moon Taek ParK
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Chang Geun Lee
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Young- Rok Kang
- grid.464567.20000 0004 0492 2010Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Jwadong-gil 40, Jangan-eup, Gijang-gun, Busan, 46033 Republic of Korea
| | - Min Ho Jeong
- grid.255166.30000 0001 2218 7142Department of Microbiology, Dong-A University College of Medicine, Daeshingongwon-gil 32, Seo-gu, Busan, 49236 Republic of Korea
| |
Collapse
|
10
|
Joshi H, Lunz B, Peters A, Zölch M, Berberich I, Berberich-Siebelt F. The extreme C-terminus of IRAK2 assures full TRAF6 ubiquitination and optimal TLR signaling. Mol Immunol 2021; 134:172-182. [PMID: 33799071 DOI: 10.1016/j.molimm.2021.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/15/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Macrophages are fundamental for initiation, maintenance, and resolution of inflammation. They can be activated by 'Toll-like receptor' (TLR) engagement, which initiates critical pathways to fight infections. 'Interleukin receptor-associated kinase 2' (IRAK2) is part of the membrane-proximal Myddosome formed at IL-1R/TLRs, but utility and regulation of IRAK2 within is not completely understood. In this study, we addressed the importance of the evolutionary conserved extreme C-terminus of IRAK2 in TLR signaling. The last 55 amino acids lack any known functional domain. The C-terminus deletion mutant IRAK2Δ55 was hypofunctional and disabled to conduct TLR4-inducible NF-κB and ERK2 activation. Accordingly, it could neither fully support subsequent CD40 cell surface expression nor IL-6 and nitric oxide release. Interestingly, IRAK2Δ55 was still capable to bind to 'tumor necrosis factor receptor-associated factor 6' (TRAF6), which is requisite to activate TRAF6 as an E3-ubiquitin ligase for further downstream signaling. However, IRAK-dependent auto-ubiquitination of TRAF6 was impaired, when IRAK2Δ55 was bound. Thus, the conserved last 55 amino acids enable IRAK2 to sustain an optimal TLR response. This knowledge might spark ideas how overshooting inflammatory responses could be modified without blocking the entire immune response.
Collapse
Affiliation(s)
- Hemant Joshi
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Benjamin Lunz
- Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Andrea Peters
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Zölch
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Ingolf Berberich
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
11
|
Tian S, Liao L, Zhou Q, Huang X, Zheng P, Guo Y, Deng T, Tian X. Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues. Oncol Lett 2021; 21:286. [PMID: 33732362 PMCID: PMC7905673 DOI: 10.3892/ol.2021.12547] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin, one of the active ingredients of Curcuma longa (Jianghuang), has been reported to exert multiple bioactivities, including pro-apoptotic and anti-inflammatory activities. In recent years, curcumin has been extensively studied, and it has been revealed that curcumin inhibits the growth of numerous types of cancer. However, to the best of our knowledge, the inhibitory effects of curcumin on the activation or expansion of myeloid-derived suppressor cells (MDSCs) in liver cancer and the underlying mechanism have not yet been determined. Therefore, the present study aimed to investigate the inhibitory effect of curcumin on MDSC activity and the associated anti-neoplastic mechanism in a HepG2 ×enograft mouse model. The effect of curcumin on the viability of Huh-7, MHCC-97H and HepG2 cells in vitro was analyzed using a Cell Counting Kit-8 assay. The effects of curcumin on tumor growth, numbers of MDSCs, expression levels of proteins involved in the toll-like receptor 4 (TLR4)/NF-κB signaling pathway, levels of related inflammatory factors and angiogenesis were determined in HepG2 ×enograft model mice, which were given different doses of curcumin via intragastrical administration. The results of the present study revealed that curcumin inhibited the viability of Huh-7, MHCC-97H and HepG2 cells and the growth of HepG2 ×enograft tumors in mice. Flow cytometric analysis indicated that curcumin reduced the number of MDSCs in mouse xenograft tumors. In addition, the results demonstrated that curcumin inhibited the TLR4/NF-κB signaling pathway and the expression of inflammatory factors, including IL-6, IL-1β, prostaglandin E2 and cyclooxygenase-2, in mouse xenograft tumors. Furthermore, curcumin suppressed the secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte-colony stimulating factor (G-CSF), which are essential factors for MDSCs modulation, in tumor tissues. Additionally, curcumin was revealed to inhibit angiogenesis, which was demonstrated by the downregulation of the expression levels of vascular endothelial growth factor, CD31 and α-smooth muscle actin in western blotting, immunohistochemistry and immunofluorescence experiments. In conclusion, the findings of the present study identified a novel mechanism via which curcumin may suppress the growth of liver cancer by reducing the numbers of MDSCs and subsequently disrupting the process of angiogenesis. These conclusions were supported by the observed inactivation of the TLR4/NF-κB signaling pathway-mediated inflammatory response and the downregulation of GM-CSF and G-CSF secretion in xenograft tissues.
Collapse
Affiliation(s)
- Sha Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Liu Liao
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xiaodi Huang
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Piao Zheng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yinmei Guo
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Tianhao Deng
- Department of Oncology, The Affiliated Hospital of Hunan Institute of Chinese Medicine, Changsha, Hunan 410006, P.R. China
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
12
|
Bai L, Li W, Zheng W, Xu D, Chen N, Cui J. Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res 2020; 159:105017. [DOI: 10.1016/j.phrs.2020.105017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
13
|
Halakou F, Gursoy A, Keskin O. Embedding Alternative Conformations of Proteins in Protein-Protein Interaction Networks. Methods Mol Biol 2020; 2074:113-124. [PMID: 31583634 DOI: 10.1007/978-1-4939-9873-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While many proteins act alone, the majority of them interact with others and form molecular complexes to undertake biological functions at both cellular and systems levels. Two proteins should have complementary shapes to physically connect to each other. As proteins are dynamic and changing their conformations, it is vital to track in which conformation a specific interaction can happen. Here, we present a step-by-step guide to embedding the protein alternative conformations in each protein-protein interaction in a systems level. All external tools/websites used in each step are explained, and some notes and suggestions are provided to clear any ambiguous point.
Collapse
Affiliation(s)
- Farideh Halakou
- Computer Science and Engineering Department, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Computer Science and Engineering Department, Koc University, Istanbul, Turkey.
| | - Ozlem Keskin
- Chemical and Biological Engineering Department, Koc University, Istanbul, Turkey
| |
Collapse
|
14
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Front Oncol 2019; 9:1236. [PMID: 31803618 PMCID: PMC6872517 DOI: 10.3389/fonc.2019.01236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023] Open
Abstract
Oncoviruses rewire host pathways to subvert host immunity and promote their survival and proliferation. However, exactly how is challenging to understand. Here, by employing the first and to date only interface-based host-microbe interaction (HMI) prediction method, we explore a pivotal strategy oncoviruses use to drive cancer: mimicking binding surfaces-interfaces-of human proteins. We show that oncoviruses can target key human network proteins and transform cells by acquisition of cancer hallmarks. Experimental large-scale mapping of HMIs is difficult and individual HMIs do not permit in-depth grasp of tumorigenic virulence mechanisms. Our computational approach is tractable and 3D structural HMI models can help elucidate pathogenesis mechanisms and facilitate drug design. We observe that many host proteins are unique targets for certain oncoviruses, whereas others are common to several, suggesting similar infectious strategies. A rough estimation of our false discovery rate based on the tissue expression of oncovirus-targeted human proteins is 25%.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Wang BJ, Chi KP, Shen RL, Zheng SW, Guo Y, Li JF, Fei J, He Y. TGFBI Promotes Tumor Growth and is Associated with Poor Prognosis in Oral Squamous Cell Carcinoma. J Cancer 2019; 10:4902-4912. [PMID: 31598162 PMCID: PMC6775518 DOI: 10.7150/jca.29958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: In a previous study, we found that transforming growth factor beta-induced (TGFBI) is a hub gene strongly associated with oral squamous cell carcinoma (OSCC), using gene chip meta-analysis and PPI network analysis. Thus, the present study was established to explore the role of TGFBI in the pathogenesis of OSCC and to define the underlying mechanisms. Methods: The correlations between TGFBI expression and the clinicopathological features and prognosis of OSCC were analyzed. Then, TGFBI-knockout HSC-3 cell lines were constructed using the CRISPR/Cas9 system. Cell proliferation, migration, and invasion in vitro were determined by cell counting, CCK-8, colony formation, and Transwell assays. Moreover, a xenograft animal study was implemented to determine the tumorigenicity and metastatic ability associated with TGFBI in vivo. The genes and pathways differentially expressed after TGFBI knockout were determined using transcriptional sequencing and bioinformatics. Results: TGFBI expression was significantly higher in OSCC than in normal tissue. Its high expression was also correlated with high stage and was predictive of poor prognosis, as we expected. Knockout of TGFBI inhibited cell proliferation and clone formation, and enhanced cell migration and invasion in vitro. Besides, the xenograft animal study showed that TGFBI knockout suppressed tumor growth and metastasis in vivo. Furthermore, transcriptome sequencing revealed that genes associated with cell proliferation, metastasis, and inflammatory responses exhibited a change of expression upon TGFBI knockout. GO and KEGG analyses indicated that the function of TGFBI is related to responses to bacteria and inflammatory responses. Conclusions: TGFBI overexpression can promote OSCC and is associated with poor prognosis in OSCC patients. TGFBI knockout can inhibit cell proliferation and metastasis in vivo. TGFBI may alter cell responses to bacteria, which causes an imbalance in the immune inflammatory response and promotes the development of OSCC.
Collapse
Affiliation(s)
- Bing-Jie Wang
- Department of Oral Medicine, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.,Department of Stomatology, Ningbo Yinzhou People's Hospital, Zhejiang 315040, China
| | - Kun-Ping Chi
- Department of Pathology, First people's Hospital of Yunnan Province, Yunnan, 650032, China
| | - Ru-Ling Shen
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China
| | - Sai-Wei Zheng
- Department of Oral Medicine, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yang Guo
- School of Life Science and Technology, Tongji University, Shanghai 200082, China
| | - Jian-Feng Li
- School of Life Science and Technology, Tongji University, Shanghai 200082, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200082, China
| | - Yuan He
- Department of Oral Medicine, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| |
Collapse
|
16
|
Abstract
Classically, phenotype is what is observed, and genotype is the genetic makeup. Statistical studies aim to project phenotypic likelihoods of genotypic patterns. The traditional genotype-to-phenotype theory embraces the view that the encoded protein shape together with gene expression level largely determines the resulting phenotypic trait. Here, we point out that the molecular biology revolution at the turn of the century explained that the gene encodes not one but ensembles of conformations, which in turn spell all possible gene-associated phenotypes. The significance of a dynamic ensemble view is in understanding the linkage between genetic change and the gained observable physical or biochemical characteristics. Thus, despite the transformative shift in our understanding of the basis of protein structure and function, the literature still commonly relates to the classical genotype-phenotype paradigm. This is important because an ensemble view clarifies how even seemingly small genetic alterations can lead to pleiotropic traits in adaptive evolution and in disease, why cellular pathways can be modified in monogenic and polygenic traits, and how the environment may tweak protein function.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
17
|
Alves ADF, Baldissera VD, Chiela ECF, Cerski CTS, Fontes PRO, Fernandes MDC, Porawski M, Giovenardi M. Altered expression of COX-2 and TNF-α in patients with hepatocellular carcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2019; 111:364-370. [PMID: 30810331 DOI: 10.17235/reed.2019.5898/2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM hepatocellular carcinoma is a type of cancer related with inflammation, as 90% of cases develop in a chronic inflammation condition. Excess inflammation can affect tissue homeostasis. Cytokines and inflammatory mediators are immunological components that can influence the functioning of cells and tissues. In addition, the estrogen receptor appears to play an important role in hepatocarcinogenesis. The aim of the study was to evaluate the expression of inflammatory markers and ER in patients with hepatocellular carcinoma. METHODS data from 143 patients of ISCMPA were analyzed. Immunohistochemistry was performed of cyclooxygenase-2 enzyme (COX-2), nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α) and ER in paraffin-embedded hepatic tissue. The percentage of the stained area, intensity of staining and of the number of ER positive nuclei were evaluated using the ImageJ 1.50 software. RESULTS AND CONCLUSION there was a significant difference between the groups in terms of the percentage of marked area (p = 0.040) for COX-2 and the intensity of staining of TNF-α (p = 0.030). No significant differences were observed in any of other parameters evaluated. In conclusion, COX-2 and TNF-α are possible markers that should be further studied to determine their immunohistochemical profile and role in HCC development.
Collapse
|
18
|
Du J, Lu J. Circulating CEA-dNLR score predicts clinical outcome of metastatic gallbladder cancer patient. J Clin Lab Anal 2019; 33:e22684. [PMID: 30461064 PMCID: PMC6818570 DOI: 10.1002/jcla.22684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer-related inflammation promotes gallbladder tumorigenesis and metastasis of gallbladder cancer (mGBC). The levels of circulating inflammatory-related cell and protein as well as the ratios of them may imply the severity of chronic inflammation in GBC patients, and all of them are candidate prognostic biomarkers for mGBC. MATERIALS AND METHODS In our study, pre-treatment circulating immune cell, fibrinogen (Fib), albumin (Alb), and pre-albumin (pAlb) were detected in 220 mGBC patients, and we calculated neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), Alb-to-Fib ratio (AFR), and Fib-to-pAlb ratio (FPR) replying on the detection. Three years' follow-up was carried out in those patients, and we investigated the possible associations between those biomarkers and three years' overall survival (OS) of these patients using X-tile software, Kaplan-Meier curve, Cox regression, and time-dependent receiver operating characteristics (ROC). RESULTS Our results showed that OS of the patients with high pAlb and LMR was significantly superior to the cases with the low biomarkers, respectively. However, survival of the cases with high CEA, dNLR, and FPR was significantly inferior to the patients with low levels of those biomarkers. Area under the curve (AUC) of time-dependent ROC of CEA and dNLR was higher than pAlb, LMR, and FPR, respectively. Additionally, higher CEA-dNLR score (adjusted HR = 3.09, 95% CI = 1.01-4.51 for the score one; adjusted HR = 4.99, 95% CI = 2.32-7.21 for the score two) was significantly associated with reduced survival of the patients, and AUC of the score for predicting clinical outcome of mGBC patients was 0.756, and it was significantly higher than the single CEA and dNLR, respectively. CONCLUSION Our findings implied that pretreatment CEA-dNLR score was superior to the other biomarkers to predict OS of mGBC patients, and it was an independent prognostic factor for the disease.
Collapse
Affiliation(s)
- Jing‐Hui Du
- Department of Clinical LaboratoryThe First Teaching Hospital of Tianjin University of Traditional Chinese MedicineNankai, TianjinChina
| | - Jun Lu
- Department of Clinical LaboratoryLongyan People HospitalLongyanChina
| |
Collapse
|
19
|
Guven-Maiorov E, Tsai CJ, Ma B, Nussinov R. Interface-Based Structural Prediction of Novel Host-Pathogen Interactions. Methods Mol Biol 2019; 1851:317-335. [PMID: 30298406 PMCID: PMC8192064 DOI: 10.1007/978-1-4939-8736-8_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
About 20% of the cancer incidences worldwide have been estimated to be associated with infections. However, the molecular mechanisms of exactly how they contribute to host tumorigenesis are still unknown. To evade host defense, pathogens hijack host proteins at different levels: sequence, structure, motif, and binding surface, i.e., interface. Interface similarity allows pathogen proteins to compete with host counterparts to bind to a target protein, rewire physiological signaling, and result in persistent infections, as well as cancer. Identification of host-pathogen interactions (HPIs)-along with their structural details at atomic resolution-may provide mechanistic insight into pathogen-driven cancers and innovate therapeutic intervention. HPI data including structural details is scarce and large-scale experimental detection is challenging. Therefore, there is an urgent and mounting need for efficient and robust computational approaches to predict HPIs and their complex (bound) structures. In this chapter, we review the first and currently only interface-based computational approach to identify novel HPIs. The concept of interface mimicry promises to identify more HPIs than complete sequence or structural similarity. We illustrate this concept with a case study on Kaposi's sarcoma herpesvirus (KSHV) to elucidate how it subverts host immunity and helps contribute to malignant transformation of the host cells.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA.
- Department of Human Genetics and Molecular Medicine, Sackler Inst. of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
In vitro and in vivo evaluation of anti-inflammatory potency of Mesua ferrea, Saraca asoca, Viscum album & Anthocephalus cadamba in murine macrophages raw 264.7 cell lines and Wistar albino rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Abstract
Inflammation is recently recognized as one of the hallmarks of human cancer. Chronic inflammatory response plays a critical role in cancer development, progression, metastasis, and resistance to chemotherapy. Conversely, the oncogenic aberrations also generate an inflammatory microenvironment, enabling the development and progression of cancer. The molecular mechanisms of action that are responsible for inflammatory cancer and cancer-associated inflammation are not fully understood due to the complex crosstalk between oncogenic and pro-inflammatory genes. However, molecular mediators that regulate both inflammation and cancer, such as NF-κB and STAT have been considered as promising targets for preventing and treating these diseases. Recent works have further demonstrated an important role of oncogenes (e.g., NFAT1, MDM2) and tumor suppressor genes (e.g., p53) in cancer-related inflammation. Natural products that target these molecular mediators have shown anticancer and anti-inflammatory activities in preclinical and clinical studies. Sesquiterpenoids (STs), a class of novel plant-derived secondary metabolites have attracted great interest in recent years because of their diversity in chemical structures and pharmacological activities. At present, we and other investigators have found that dimeric sesquiterpenoids (DSTs) may exert enhanced activity and binding affinity to molecular targets due to the increased number of alkylating centers and improved conformational flexibility and lipophilicity. Here, we focus our discussion on the activities and mechanisms of action of STs and DSTs in treating inflammation and cancer as well as their structure-activity relationships.
Collapse
|
22
|
Rajendran P, Chen YF, Chen YF, Chung LC, Tamilselvi S, Shen CY, Day CH, Chen RJ, Viswanadha VP, Kuo WW, Huang CY. The multifaceted link between inflammation and human diseases. J Cell Physiol 2018; 233:6458-6471. [PMID: 29323719 DOI: 10.1002/jcp.26479] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Increasing reports on epidemiological, diagnostic, and clinical studies suggest that dysfunction of the inflammatory reaction results in chronic illnesses such as cancer, arthritis, arteriosclerosis, neurological disorders, liver diseases, and renal disorders. Chronic inflammation might progress if injurious agent persists; however, more typically than not, the response is chronic from the start. Distinct to most changes in acute inflammation, chronic inflammation is characterized by the infiltration of damaged tissue by mononuclear cells like macrophages, lymphocytes, and plasma cells, in addition to tissue destruction and attempts to repair. Phagocytes are the key players in the chronic inflammatory response. However, the important drawback is the activation of pathological phagocytes, which might result from continued tissue damage and lead to harmful diseases. The longer the inflammation persists, the greater the chance for the establishment of human diseases. The aim of this review was to focus on advances in the understanding of chronic inflammation and to summarize the impact and involvement of inflammatory agents in certain human diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ya-Fang Chen
- Department of Obstetrics and Gynecology, Taichung Veteran's General Hospital, Taichung, Taiwan.,Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Shanmugam Tamilselvi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Gleichenhagen J, Arndt C, Casjens S, Meinig C, Gerullis H, Raiko I, Brüning T, Ecke T, Johnen G. Evaluation of a New Survivin ELISA and UBC ® Rapid for the Detection of Bladder Cancer in Urine. Int J Mol Sci 2018; 19:ijms19010226. [PMID: 29324722 PMCID: PMC5796175 DOI: 10.3390/ijms19010226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Urine-based biomarkers for non-invasive diagnosis of bladder cancer are urgently needed. No single marker with sufficient sensitivity and specificity has been described so far. Thus, a combination of markers appears to be a promising approach. The aim of this case-control study was to evaluate the performance of an in-house developed enzyme-linked immunosorbent assay (ELISA) for survivin, the UBC®Rapid test, and the combination of both assays. A total of 290 patients were recruited. Due to prior bladder cancer, 46 patients were excluded. Urine samples were available from 111 patients with bladder cancer and 133 clinical controls without urologic diseases. Antibodies generated from recombinant survivin were utilized to develop a sandwich ELISA. The ELISA and the UBC®Rapid test were applied to all urine samples. Receiver operating characteristic (ROC) analysis was used to evaluate marker performance. The survivin ELISA exhibited a sensitivity of 35% with a specificity of 98%. The UBC®Rapid test showed a sensitivity of 56% and a specificity of 96%. Combination of both assays increased the sensitivity to 66% with a specificity of 95%. For high-grade tumors, the combination showed a sensitivity of 82% and a specificity of 95%. The new survivin ELISA and the UBC®Rapid test are both able to detect bladder cancer, especially high-grade tumors. However, the performance of each individual marker is moderate and efforts to improve the survivin assay should be pursued. A combination of both assays confirmed the benefit of using marker panels. The results need further testing in a prospective study and with a high-risk population.
Collapse
Affiliation(s)
- Jan Gleichenhagen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Christian Arndt
- Department of Urology, Lukaskrankenhaus Neuss, 41464 Neuss, Germany.
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Carmen Meinig
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Holger Gerullis
- University Hospital for Urology, Klinikum Oldenburg, 26133 Oldenburg, Germany.
| | - Irina Raiko
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| | - Thorsten Ecke
- Department of Urology, HELIOS Hospital, 15526 Bad Saarow, Germany.
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), 44789 Bochum, Germany.
| |
Collapse
|
25
|
Guven-Maiorov E, Tsai CJ, Ma B, Nussinov R. Prediction of Host-Pathogen Interactions for Helicobacter pylori by Interface Mimicry and Implications to Gastric Cancer. J Mol Biol 2017; 429:3925-3941. [PMID: 29106933 PMCID: PMC7906438 DOI: 10.1016/j.jmb.2017.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
Abstract
There is a strong correlation between some pathogens and certain cancer types. One example is Helicobacter pylori and gastric cancer. Exactly how they contribute to host tumorigenesis is, however, a mystery. Pathogens often interact with the host through proteins. To subvert defense, they may mimic host proteins at the sequence, structure, motif, or interface levels. Interface similarity permits pathogen proteins to compete with those of the host for a target protein and thereby alter the host signaling. Detection of host-pathogen interactions (HPIs) and mapping the re-wired superorganism HPI network-with structural details-can provide unprecedented clues to the underlying mechanisms and help therapeutics. Here, we describe the first computational approach exploiting solely interface mimicry to model potential HPIs. Interface mimicry can identify more HPIs than sequence or complete structural similarity since it appears more common than the other mimicry types. We illustrate the usefulness of this concept by modeling HPIs of H. pylori to understand how they modulate host immunity, persist lifelong, and contribute to tumorigenesis. H. pylori proteins interfere with multiple host pathways as they target several host hub proteins. Our results help illuminate the structural basis of resistance to apoptosis, immune evasion, and loss of cell junctions seen in H. pylori-infected host cells.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Buyong Ma
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
26
|
Abstract
Hundreds of different species colonize multicellular organisms making them "metaorganisms". A growing body of data supports the role of microbiota in health and in disease. Grasping the principles of host-microbiota interactions (HMIs) at the molecular level is important since it may provide insights into the mechanisms of infections. The crosstalk between the host and the microbiota may help resolve puzzling questions such as how a microorganism can contribute to both health and disease. Integrated superorganism networks that consider host and microbiota as a whole-may uncover their code, clarifying perhaps the most fundamental question: how they modulate immune surveillance. Within this framework, structural HMI networks can uniquely identify potential microbial effectors that target distinct host nodes or interfere with endogenous host interactions, as well as how mutations on either host or microbial proteins affect the interaction. Furthermore, structural HMIs can help identify master host cell regulator nodes and modules whose tweaking by the microbes promote aberrant activity. Collectively, these data can delineate pathogenic mechanisms and thereby help maximize beneficial therapeutics. To date, challenges in experimental techniques limit large-scale characterization of HMIs. Here we highlight an area in its infancy which we believe will increasingly engage the computational community: predicting interactions across kingdoms, and mapping these on the host cellular networks to figure out how commensal and pathogenic microbiota modulate the host signaling and broadly cross-species consequences.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Engin HB, Carlin D, Pratt D, Carter H. Modeling of RAS complexes supports roles in cancer for less studied partners. BMC BIOPHYSICS 2017; 10:5. [PMID: 28815022 PMCID: PMC5558186 DOI: 10.1186/s13628-017-0037-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background RAS protein interactions have predominantly been studied in the context of the RAF and PI3kinase oncogenic pathways. Structural modeling and X-ray crystallography have demonstrated that RAS isoforms bind to canonical downstream effector proteins in these pathways using the highly conserved switch I and II regions. Other non-canonical RAS protein interactions have been experimentally identified, however it is not clear whether these proteins also interact with RAS via the switch regions. Results To address this question we constructed a RAS isoform-specific protein-protein interaction network and predicted 3D complexes involving RAS isoforms and interaction partners to identify the most probable interaction interfaces. The resulting models correctly captured the binding interfaces for well-studied effectors, and additionally implicated residues in the allosteric and hyper-variable regions of RAS proteins as the predominant binding site for non-canonical effectors. Several partners binding to this new interface (SRC, LGALS1, RABGEF1, CALM and RARRES3) have been implicated as important regulators of oncogenic RAS signaling. We further used these models to investigate competitive binding and multi-protein complexes compatible with RAS surface occupancy and the putative effects of somatic mutations on RAS protein interactions. Conclusions We discuss our findings in the context of RAS localization to the plasma membrane versus within the cytoplasm and provide a list of RAS protein interactions with possible cancer-related consequences, which could help guide future therapeutic strategies to target RAS proteins. Electronic supplementary material The online version of this article (doi:10.1186/s13628-017-0037-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H Billur Engin
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Daniel Carlin
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Dexter Pratt
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Universsity of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| |
Collapse
|
28
|
Role of β-1,3-galactosyltransferase 2 in trigeminal neuronal sensitization induced by peripheral inflammation. Neuroscience 2017; 349:17-26. [DOI: 10.1016/j.neuroscience.2017.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/16/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
|
29
|
Geng F, Liu J, Guo Y, Li C, Wang H, Wang H, Zhao H, Pan Y. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells. Front Cell Infect Microbiol 2017; 7:57. [PMID: 28286742 PMCID: PMC5323389 DOI: 10.3389/fcimb.2017.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with chronic periodontal infection.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Yan Guo
- Key laboratory of Liaoning Province Oral Disease, School of Stomatology, China Medical UniversityShenyang, China; Department of Oral Biology, School of Stomatology, China Medical UniversityShenyang, China
| | - Chen Li
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Hongyang Wang
- Department of Medicine, the Center for Immunity, Inflammation & Regenerative Medicine, University of Virginia Charlottesville, VA, USA
| | - Hongyan Wang
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical UniversityShenyang, China; Department of Oral Biology, School of Stomatology, China Medical UniversityShenyang, China
| |
Collapse
|
30
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
31
|
Liu G, Zhang J, Frey L, Gang X, Wu K, Liu Q, Lilly M, Wu J. Prostate-specific IL-6 transgene autonomously induce prostate neoplasm through amplifying inflammation in the prostate and peri-prostatic adipose tissue. J Hematol Oncol 2017; 10:14. [PMID: 28077171 PMCID: PMC5225646 DOI: 10.1186/s13045-016-0386-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background The causative role of the pro-inflammatory cytokine IL-6 in prostate cancer progression has been well established at molecular level. However, whether and how IL-6 may play a role in prostate cancer risk and development is not well defined. One limitation factor to acquiring this knowledge is the lack of appropriate animal models. Methods We generated a novel line of prostate-specific IL-6 transgenic mouse model. We compared the prostate pathology, tumorigenic signaling components, and prostate tumor microenvironment of the IL-6 transgenic mice with wild type littermates. Results With this model, we demonstrate that IL-6 induces prostate neoplasm autonomously. We further demonstrate that transgenic expression of IL-6 in the prostate activates oncogenic pathways, induces autocrine IL-6 secretion and steadily-state of STAT3 activation in the prostate tissue, upregulates paracrine insulin-like growth factor (IGF) signaling axis, reprograms prostate oncogenic gene expression, and more intriguingly, amplifies inflammation in the prostate and peri-prostatic adipose tissue. Conclusions The pro-inflammatory IL-6 is autonomous oncogene for the prostate. IL-6 induces prostate oncogenesis through amplifying local inflammation. We also presented a valuable animal model to study inflammation and prostate cancer development. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0386-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Liu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lewis Frey
- Public Health Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiao Gang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.,Present address: Department of Laboratory Medicine, The Third Hospital of South Medical University, Guangzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Medical College, Huazhong University of Science and Technology and Tongji Hospital, Wuhan, China
| | - Qian Liu
- Department of Oncology, Tongji Medical College, Huazhong University of Science and Technology and Tongji Hospital, Wuhan, China
| | - Michael Lilly
- Department of Hematology and Oncology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer Wu
- Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
32
|
Dong R, Gong Y, Meng W, Yuan M, Zhu H, Ying M, He Q, Cao J, Yang B. The involvement of M2 macrophage polarization inhibition in fenretinide-mediated chemopreventive effects on colon cancer. Cancer Lett 2016; 388:43-53. [PMID: 27913199 DOI: 10.1016/j.canlet.2016.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Clinical studies have shown that fenretinide (4-HPR) is an attractive chemopreventive agent for cancer treatment. However, to date, few studies have demonstrated the mechanism of the preventive effect of 4-HPR. In our current study, we revealed that 4-HPR could significantly suppress IL-4/IL-13 induced M2-like polarization of macrophages, which was demonstrated by the reduced expression of M2 surface markers, the down-regulation of M2 marker genes, and the inhibition of M2-like macrophages promoted angiogenesis. Mechanistically, our study suggested that the inhibition of the phosphorylation of STAT6, rather than the generation of oxidative stress, is involved in the 4-HPR-driven inhibition of M2 polarization. More intriguingly, by utilizing adenomatous polyposis coli (APCmin/+) transgenic mice, we demonstrated that the tumorigenesis was dramatically decreased by 4-HPR treatment accompanied with fewer M2-like macrophages in the tumor tissues, thereby profoundly blocking tumor angiogenesis. These findings, for the first time, reveal the involvement of M2 polarization inhibition in 4-HPR-mediated chemoprevention, which provides a new point of insight and indicates the potential mechanism underlying the chemopreventive effect of 4-HPR.
Collapse
Affiliation(s)
- Rong Dong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanling Gong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wen Meng
- Hangzhou First People's Hospital, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
33
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Semin Cell Dev Biol 2016; 58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
34
|
Affiliation(s)
- Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
35
|
Allijn IE, Vaessen SFC, Quarles van Ufford LC, Beukelman KJ, de Winther MPJ, Storm G, Schiffelers RM. Head-to-Head Comparison of Anti-Inflammatory Performance of Known Natural Products In Vitro. PLoS One 2016; 11:e0155325. [PMID: 27163931 PMCID: PMC4862632 DOI: 10.1371/journal.pone.0155325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammation is an important therapeutic target. Due to their potency, steroidal drugs dominate the current treatment of inflammatory disorders. However, steroidal drugs can also exert a broad range of side effects and appear not always effective. This calls for the development of alternative drugs with a different mechanism of action, which are likely to be found in the field of natural products (NPs). For many NPs strong anti-inflammatory effects have been described, but usually investigating a single compound in a single assay. In this study, eight promising NPs were selected and tested against the strong anti-inflammatory drug prednisolone. For this head-to-head comparison, in vitro assays were used which represent different pathways of the inflammatory response: TNF-α and IL-6 expression by macrophages, IL-8 expression by colon epithelial cells, ROS production in polymorphonuclear leukocytes and platelet activation in whole blood. Performance profiles were established which allowed us to identify curcumin, berberine chloride and epigallocatechin gallate as potential alternatives for prednisolone or other glucocorticoids in inflammation.
Collapse
Affiliation(s)
- Iris E. Allijn
- Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Stefan F. C. Vaessen
- Technology & Innovation, Innovative testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Linda C. Quarles van Ufford
- Medicinal Chemistry & Chemical Biology – Biomolecular Analysis, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kees J. Beukelman
- Medicinal Chemistry & Chemical Biology – Biomolecular Analysis, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- PhytoGeniX BV, Bunnik, The Netherlands
| | | | - Gert Storm
- Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract. Methods Cell Biol 2016; 134:139-64. [PMID: 27312493 DOI: 10.1016/bs.mcb.2016.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The enteric nervous system (ENS) forms intimate connections with many other intestinal cell types, including immune cells and bacterial consortia resident in the intestinal lumen. In this review, we highlight contributions of the zebrafish model to understanding interactions among these cells. Zebrafish is a powerful model for forward genetic screens, several of which have uncovered genes previously unknown to be important for ENS development. More recently, zebrafish has emerged as a model for testing functions of genes identified in human patients or large-scale human susceptibility screens. In several cases, zebrafish studies have revealed mechanisms connecting intestinal symptoms with other, seemingly unrelated disease phenotypes. Importantly, chemical library screens in zebrafish have provided startling new insights into potential effects of common drugs on ENS development. A key feature of the zebrafish model is the ability to rear large numbers of animals germ free or in association with only specific bacterial species. Studies utilizing these approaches have demonstrated the importance of bacterial signals for normal intestinal development. These types of studies also show how luminal bacteria and the immune system can contribute to inflammatory processes that can feedback to influence ENS development. The excellent optical properties of zebrafish embryos and larvae, coupled with the ease of generating genetically marked cells of both the host and its resident bacteria, allow visualization of multiple intestinal cell types in living larvae and should promote a more in-depth understanding of intestinal cell interactions, especially interactions between other intestinal cell types and the ENS.
Collapse
|
37
|
Yun BH, Chon SJ, Choi YS, Cho S, Lee BS, Seo SK. Pathophysiology of Endometriosis: Role of High Mobility Group Box-1 and Toll-Like Receptor 4 Developing Inflammation in Endometrium. PLoS One 2016; 11:e0148165. [PMID: 26872033 PMCID: PMC4752230 DOI: 10.1371/journal.pone.0148165] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been proposed as a potential factor associated with the establishment and progression of endometriosis. Although a few studies have shown possible mechanisms which may play roles in development, progression of endometriosis, few are known in regards of initiation of the disease, especially in the relationship with endometrium. The aim of our study was to investigate whether normal endometrium may be changed by Damage-associated molecular patterns (DAMPs), which may contribute developing pathologic endometrium to induce endometriosis. Endometrial tissues were obtained from 10 patients with fibroids undergoing hysterectomy at a university hospital. High mobility group box-1 (HMGB-1), which is a representative DAMP, has been chosen that may induce alteration in endometrium. In preceding immunohistochemistry experiments using paraffin-block sections from endometriosis (N = 33) and control (N = 27) group, retrospectively, HMGB-1 expression was shown in both epithelial and stromal cell. HMGB-1 expression was significantly increased in secretory phase of endometriosis group, comparing to the controls. To examine the alteration of endometrial stromal cell (HESC) by oxidative stress in terms of HMGB-1, cell proliferation and expression of its receptor, TLR4 was measured according to recombinant HMGB-1 use. Cell proliferation was assessed by CCK-8 assay; real-time PCR and western blotting were used to quantify Toll like receptor 4 (TLR4) mRNA and protein expression respectively. A TLR4 antagonist (LPS-RS) and an inhibitor of the NF-κB pathway (TPCA-1, an IKK-2 inhibitor) were used to confirm the relationships between HMGB-1, TLR4, and the NF-κB pathway. Passive release of HMGB-1 was significantly proportional to the increase in cell death (P<0.05). HESCs showed significant proliferation following treatment with rHMGB-1 (P<0.05), and increased TLR4 expression was observed following rHMGB-1 treatment (P<0.05) in a concentration-dependent manner. Treatment with a TLR4 antagonist and an NF-κB inhibitor resulted in suppression of rHMGB-1-induced HESC proliferation (P<0.05). Levels of IL-6 were significantly decreased following treatment with an NF-κB inhibitor (P<0.05). Our results support the development of altered, pathological endometrium resulted from oxidative stress in normal endometrium. These findings may provide important insights into the changes in endometrium linking the development and progression of endometriosis.
Collapse
Affiliation(s)
- Bo Hyon Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Gil Hospital, Graduate School of Medicine, Gachon University of Medicine and Science, Inchon, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SiHyun Cho
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
38
|
Rigid-Docking Approaches to Explore Protein-Protein Interaction Space. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 160:33-55. [PMID: 27830312 DOI: 10.1007/10_2016_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein-protein interactions play core roles in living cells, especially in the regulatory systems. As information on proteins has rapidly accumulated on publicly available databases, much effort has been made to obtain a better picture of protein-protein interaction networks using protein tertiary structure data. Predicting relevant interacting partners from their tertiary structure is a challenging task and computer science methods have the potential to assist with this. Protein-protein rigid docking has been utilized by several projects, docking-based approaches having the advantages that they can suggest binding poses of predicted binding partners which would help in understanding the interaction mechanisms and that comparing docking results of both non-binders and binders can lead to understanding the specificity of protein-protein interactions from structural viewpoints. In this review we focus on explaining current computational prediction methods to predict pairwise direct protein-protein interactions that form protein complexes.
Collapse
|
39
|
Muratcioglu S, Guven-Maiorov E, Keskin Ö, Gursoy A. Advances in template-based protein docking by utilizing interfaces towards completing structural interactome. Curr Opin Struct Biol 2015; 35:87-92. [PMID: 26539658 DOI: 10.1016/j.sbi.2015.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
The increase in the number of structurally determined protein complexes strengthens template-based docking (TBD) methods for modelling protein-protein interactions (PPIs). These methods utilize the known structures of protein complexes as templates to predict the quaternary structure of the target proteins. The templates may be partial or complete structures. Interface based (partial) methods have recently gained interest due in part to the observation that the interface regions are reusable. We describe how available template interfaces can be used to obtain the structural models of protein interactions. Despite the agreement that a majority of the protein complexes can be modelled using the available Protein Data Bank (PDB) structures, a handful of studies argue that we need more template proteins to increase the structural coverage of PPIs. We also discuss the performance of the interface TBD methods at large scale, and the significance of capturing multiple conformations for improving accuracy.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Özlem Keskin
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450 Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, 34450 Istanbul, Turkey.
| |
Collapse
|
40
|
Wu C, Chen Y, Wang F, Chen C, Zhang S, Li C, Li W, Wu S, Xue L. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila. PLoS Genet 2015; 11:e1005589. [PMID: 26474173 PMCID: PMC4608839 DOI: 10.1371/journal.pgen.1005589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yujun Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Feng Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Changyan Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Shiping Zhang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chaojie Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Wenzhe Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
41
|
Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway. Biophys J 2015; 109:1214-26. [PMID: 26276688 PMCID: PMC4576153 DOI: 10.1016/j.bpj.2015.06.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Even though the Toll-like receptor (TLR) pathway is integral to inflammatory defense mechanisms, its excessive signaling may be devastating. Cells have acquired a cascade of strategies to regulate TLR signaling by targeting protein-protein interactions, or ubiquitin chains, but the details of the inhibition mechanisms are still unclear. Here, we provide the structural basis for the regulation of TLR signaling by constructing architectures of protein-protein interactions. Structural data suggest that 1) Toll/IL-1R (TIR) domain-containing regulators (BCAP, SIGIRR, and ST2) interfere with TIR domain signalosome formation; 2) major deubiquitinases such as A20, CYLD, and DUBA prevent association of TRAF6 and TRAF3 with their partners, in addition to removing K63-linked ubiquitin chains that serve as a docking platform for downstream effectors; 3) alternative downstream pathways of TLRs also restrict signaling by competing to bind common partners through shared binding sites. We also performed in silico mutagenesis analysis to characterize the effects of oncogenic mutations on the negative regulators and to observe the cellular outcome (whether there is/is not inflammation). Missense mutations that fall on interfaces and nonsense/frameshift mutations that result in truncated negative regulators disrupt the interactions with the targets, thereby enabling constitutive activation of the nuclear factor-kappa B, and contributing to chronic inflammation, autoimmune diseases, and oncogenesis.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey.
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey; Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
42
|
Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai CJ, Nussinov R. The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway. Sci Rep 2015; 5:13128. [PMID: 26293885 PMCID: PMC4544004 DOI: 10.1038/srep13128] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022] Open
Abstract
Activated Toll-like receptors (TLRs) cluster in lipid rafts and induce pro- and anti-tumor responses. The organization of the assembly is critical to the understanding of how these key receptors control major signaling pathways in the cell. Although several models for individual interactions were proposed, the entire TIR-domain signalosome architecture has not been worked out, possibly due to its complexity. We employ a powerful algorithm, crystal structures and experimental data to model the TLR4 and its cluster. The architecture that we obtain with 8 MyD88 molecules provides the structural basis for the MyD88-templated myddosome helical assembly and receptor clustering; it also provides clues to pro- and anti-inflammatory signaling pathways branching at the signalosome level to Mal/MyD88 and TRAM/TRIF pro- and anti-inflammatory pathways. The assembly of MyD88 death domain (DD) with TRAF3 (anti-viral/anti-inflammatory) and TRAF6 (pro-inflammatory) suggest that TRAF3/TRAF6 binding sites on MyD88 DD partially overlap, as do IRAK4 and FADD. Significantly, the organization illuminates mechanisms of oncogenic mutations, demonstrates that almost all TLR4 parallel pathways are competitive and clarifies decisions at pathway branching points. The architectures are compatible with the currently-available experimental data and provide compelling insights into signaling in cancer and inflammation pathways.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Carter VanWaes
- Clinical Genomic Unit, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Zhong Chen
- Clinical Genomic Unit, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Ray AL, Castillo EF, Morris KT, Nofchissey RA, Weston LL, Samedi VG, Hanson JA, Gaestel M, Pinchuk IV, Beswick EJ. Blockade of MK2 is protective in inflammation-associated colorectal cancer development. Int J Cancer 2015; 138:770-5. [PMID: 26238259 DOI: 10.1002/ijc.29716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Chronic inflammation is a risk factor for colorectal cancer. The MAPK-activated protein kinase 2 (MK2) pathway controls multiple cellular processes including p38-dependent inflammation. This is the first study to investigate the role of MK2 in development of colitis-associated colon cancer (CAC). Herein, we demonstrate that MK2(-/-) mice are highly resistant to neoplasm development when exposed to AOM/DSS, while wild type (WT) C57BL/6 develop multiple neoplasms with the same treatment. MK2-specific cytokines IL-1, IL-6 and TNF-α were substantially decreased in AOM/DSS treated MK2(-/-) mouse colon tissues compared with WT mice, which coincided with a marked decrease in macrophage influx. Restoring MK2-competent macrophages by injecting WT bone marrow derived macrophages into MK2(-/-) mice led to partial restoration of inflammatory cytokine production with AOM/DSS treatment; however, macrophages were not sufficient to induce neoplasm development. These results indicate that MK2 functions as an inflammatory regulator to promote colonic neoplasm development and may be a potential target for CAC.
Collapse
Affiliation(s)
- Anita L Ray
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | - Eliseo F Castillo
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | | | - Robert A Nofchissey
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | - Lea L Weston
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| | - Von G Samedi
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - Matthias Gaestel
- Department of Biochemistry, Hannover Medical University, Hannover, Germany
| | - Irina V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX
| | - Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
44
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
45
|
Petrey D, Chen TS, Deng L, Garzon JI, Hwang H, Lasso G, Lee H, Silkov A, Honig B. Template-based prediction of protein function. Curr Opin Struct Biol 2015; 32:33-8. [PMID: 25678152 DOI: 10.1016/j.sbi.2015.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
We discuss recent approaches for structure-based protein function annotation. We focus on template-based methods where the function of a query protein is deduced from that of a template for which both the structure and function are known. We describe the different ways of identifying a template. These are typically based on sequence analysis but new methods based on purely structural similarity are also being developed that allow function annotation based on structural relationships that cannot be recognized by sequence. The growing number of available structures of known function, improved homology modeling techniques and new developments in the use of structure allow template-based methods to be applied on a proteome-wide scale and in many different biological contexts. This progress significantly expands the range of applicability of structural information in function annotation to a level that previously was only achievable by sequence comparison.
Collapse
Affiliation(s)
- Donald Petrey
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States.
| | - T Scott Chen
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Lei Deng
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Jose Ignacio Garzon
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Howook Hwang
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Gorka Lasso
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Hunjoong Lee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Antonina Silkov
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Barry Honig
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| |
Collapse
|
46
|
Allicin alleviates inflammation of trinitrobenzenesulfonic acid-induced rats and suppresses P38 and JNK pathways in Caco-2 cells. Mediators Inflamm 2015; 2015:434692. [PMID: 25729217 PMCID: PMC4333338 DOI: 10.1155/2015/434692] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/04/2015] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin.
Collapse
|
47
|
Crucitti A, Corbi M, Tomaiuolo PMC, Fanali C, Mazzari A, Lucchetti D, Migaldi M, Sgambato A. Laparoscopic surgery for colorectal cancer is not associated with an increase in the circulating levels of several inflammation-related factors. Cancer Biol Ther 2015; 16:671-7. [PMID: 25875151 PMCID: PMC4622611 DOI: 10.1080/15384047.2015.1026476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/05/2023] Open
Abstract
It has been hypothesized that inflammatory response triggered by surgery might induce the release of molecules that could promote proliferation, invasion and metastasis of surviving cancer cells. To test this hypothesis, the levels of multiple inflammation-related circulating factors were analyzed in patients undergoing surgery for colorectal cancer. A Luminex xMAP system was used to simultaneously assess levels of IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, RANTES, TNF-α and VEGF in 20 colorectal cancer patients and 10 age-matched non-neoplastic patients. In cancer patients analyses were performed at baseline (before surgery) and at different time points (up to 30 days) following laparoscopic surgery. Significantly higher levels of IL-1β, IL-7, IL-8, G-CSF, IFN-γ and TNF-α were detected in colorectal cancer patients compared to controls at baseline. In colorectal cancer patients, circulating levels decreased progressively following surgery and after day 30 post-surgery were no longer different from controls. These findings suggest that expression levels of several cytokines are higher in colorectal cancer patients compared to control subjects and no significant increase in several inflammation-related circulating factors is observed following laparoscopic surgery for cancer. Confirmation and validation in a different and larger cohort of patients are warranted.
Collapse
Key Words
- CRC, Colorectal Cancer.
- CSC, Cancer Stem Cells
- EMT, Epithelial Mesenchymal Transition
- FGF-b, Fibroblast Growth Factor-basic
- G-CSF, Granulocyte Colony Stimulating Factor
- HuMCP-1, Human Monocyte Chemoattractant Protein 1
- IFN-γ, Interferon γ
- IL, Interleukin
- IP-10, IFN-γ
- Inducible Protein 10
- Luminex xMAP
- MIP-1α
- Normal T-cell Expressed Secreted
- PDGF-BB, Platelet Derived Growth Factor-BB
- RANTES, Regulated upon Activation
- Ra, Receptor antagonist
- TNF-α, Tumor Necrosis Factor-α
- VEGF, Vascular Endotelial Growth Factor
- and 1β
- and 1β, Macrophage Inflammatory Protein 1α
- cancer biology
- colon cancer
- cytokines
- inflammation
- serum markers
- surgery
Collapse
Affiliation(s)
- Antonio Crucitti
- Department of Surgery; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Maddalena Corbi
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | | | - Caterina Fanali
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Andrea Mazzari
- Department of Surgery; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Donatella Lucchetti
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| | - Mario Migaldi
- Department of Pathology; Università di Modena e Reggio Emilia; Modena, Italy
| | - Alessandro Sgambato
- Institute of General Pathology; Università Cattolica del Sacro Cuore; Rome, Italy
| |
Collapse
|
48
|
Nussinov R, Jang H, Tsai CJ. The structural basis for cancer treatment decisions. Oncotarget 2014; 5:7285-302. [PMID: 25277176 PMCID: PMC4202123 DOI: 10.18632/oncotarget.2439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Cancer treatment decisions rely on genetics, large data screens and clinical pharmacology. Here we point out that genetic analysis and treatment decisions may overlook critical elements in cancer development, progression and drug resistance. Two critical structural elements are missing in genetics-based decision-making: the mechanisms of oncogenic mutations and the cellular network which is rewired in cancer. These lay the foundation for the structural basis for cancer treatment decisions, which is rooted in the physical principles of the molecular conformational behavior of single molecules and their interactions. Improved tumor mutational analysis platforms and knowledge of the redundant pathways which can take over in cancer, may not only supplement known actionable findings, but forecast possible cancer progression and resistance. Such forward-looking can be powerful, endowing the oncologist with mechanistic insight and cancer prognosis, and consequently more informed treatment options. Examples include redundant pathways taking over after inhibition of EGFR constitutive activation, mutations in PIK3CA p110α and p85, and the non-hotspot AKT1 mutants conferring constitutive membrane localization.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, U.S.A
| |
Collapse
|
49
|
Acuner-Ozbabacan ES, Engin BH, Guven-Maiorov E, Kuzu G, Muratcioglu S, Baspinar A, Chen Z, Van Waes C, Gursoy A, Keskin O, Nussinov R. The structural network of Interleukin-10 and its implications in inflammation and cancer. BMC Genomics 2014; 15 Suppl 4:S2. [PMID: 25056661 PMCID: PMC4083408 DOI: 10.1186/1471-2164-15-s4-s2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Inflammation has significant roles in all phases of tumor development, including initiation, progression and metastasis. Interleukin-10 (IL-10) is a well-known immuno-modulatory cytokine with an anti-inflammatory activity. Lack of IL-10 allows induction of pro-inflammatory cytokines and hinders anti-tumor immunity, thereby favoring tumor growth. The IL-10 network is among the most important paths linking cancer and inflammation. The simple node-and-edge network representation is useful, but limited, hampering the understanding of the mechanistic details of signaling pathways. Structural networks complete the missing parts, and provide details. The IL-10 structural network may shed light on the mechanisms through which disease-related mutations work and the pathogenesis of malignancies. Results Using PRISM (a PRotein Interactions by Structural Matching tool), we constructed the structural network of IL-10, which includes its first and second degree protein neighbor interactions. We predicted the structures of complexes involved in these interactions, thereby enriching the available structural data. In order to reveal the significance of the interactions, we exploited mutations identified in cancer patients, mapping them onto key proteins of this network. We analyzed the effect of these mutations on the interactions, and demonstrated a relation between these and inflammation and cancer. Our results suggest that mutations that disrupt the interactions of IL-10 with its receptors (IL-10RA and IL-10RB) and α2-macroglobulin (A2M) may enhance inflammation and modulate anti-tumor immunity. Likewise, mutations that weaken the A2M-APP (amyloid precursor protein) association may increase the proliferative effect of APP through preventing β-amyloid degradation by the A2M receptor, and mutations that abolish the A2M-Kallikrein-13 (KLK13) interaction may lead to cell proliferation and metastasis through the destructive effect of KLK13 on the extracellular matrix. Conclusions Prediction of protein-protein interactions through structural matching can enrich the available cellular pathways. In addition, the structural data of protein complexes suggest how oncogenic mutations influence the interactions and explain their potential impact on IL-10 signaling in cancer and inflammation.
Collapse
|
50
|
Paschos KA, Majeed AW, Bird NC. Natural history of hepatic metastases from colorectal cancer - pathobiological pathways with clinical significance. World J Gastroenterol 2014; 20:3719-3737. [PMID: 24744570 PMCID: PMC3983432 DOI: 10.3748/wjg.v20.i14.3719] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer hepatic metastases represent the final stage of a multi-step biological process. This process starts with a series of mutations in colonic epithelial cells, continues with their detachment from the large intestine, dissemination through the blood and/or lymphatic circulation, attachment to the hepatic sinusoids and interactions with the sinusoidal cells, such as sinusoidal endothelial cells, Kupffer cells, stellate cells and pit cells. The metastatic sequence terminates with colorectal cancer cell invasion, adaptation and colonisation of the hepatic parenchyma. All these events, termed the colorectal cancer invasion-metastasis cascade, include multiple molecular pathways, intercellular interactions and expression of a plethora of chemokines and growth factors, and adhesion molecules, such as the selectins, the integrins or the cadherins, as well as enzymes including matrix metalloproteinases. This review aims to present recent advances that provide insights into these cell-biological events and emphasizes those that may be amenable to therapeutic targeting.
Collapse
|