1
|
Elez-Burnjaković N, Pojskić L, Haverić A, Lojo-Kadrić N, Hadžić Omanović M, Smajlović A, Kalaydjiev S, Maksimović M, Joksimović B, Haverić S. Halogenated Boroxine K 2[B 3O 3F 4OH] Modulates Metabolic Phenotype and Autophagy in Human Bladder Carcinoma 5637 Cell Line. Molecules 2024; 29:2919. [PMID: 38930984 PMCID: PMC11206502 DOI: 10.3390/molecules29122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Halogenated boroxine K2[B3O3F4OH] (HB), an inorganic derivative of cyclic anhydride of boronic acid, is patented as a boron-containing compound with potential for the treatment of both benign and malignant skin changes. HB has effectively inhibited the growth of several carcinoma cell lines. Because of the growing interest in autophagy induction as a therapeutic approach in bladder carcinoma (BC), we aimed to assess the effects of HB on metabolic phenotype and autophagy levels in 5637 human bladder carcinoma cells (BC). Cytotoxicity was evaluated using the alamar blue assay, and the degree of autophagy was determined microscopically. Mitochondrial respiration and glycolysis were measured simultaneously. The relative expression of autophagy-related genes BECN1, P62, BCL-2, and DRAM1 was determined by real-time PCR. HB affected cell growth, while starvation significantly increased the level of autophagy in the positive control compared to the basal level of autophagy in the untreated negative control. In HB-treated cultures, the degree of autophagy was higher compared to the basal level, and metabolic phenotypes were altered; both glycolysis and oxidative phosphorylation (OXPHOS) were decreased by HB at 0.2 and 0.4 mg/mL. Gene expression was deregulated towards autophagy induction and expansion. In conclusion, HB disrupted the bioenergetic metabolism and reduced the intracellular survival potential of BC cells. Further molecular studies are needed to confirm these findings and investigate their applicative potential.
Collapse
Affiliation(s)
- Nikolina Elez-Burnjaković
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina;
| | - Lejla Pojskić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (L.P.); (A.H.); (N.L.-K.); (M.H.O.); (A.S.); (S.H.)
| | - Anja Haverić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (L.P.); (A.H.); (N.L.-K.); (M.H.O.); (A.S.); (S.H.)
| | - Naida Lojo-Kadrić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (L.P.); (A.H.); (N.L.-K.); (M.H.O.); (A.S.); (S.H.)
| | - Maida Hadžić Omanović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (L.P.); (A.H.); (N.L.-K.); (M.H.O.); (A.S.); (S.H.)
| | - Ajla Smajlović
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (L.P.); (A.H.); (N.L.-K.); (M.H.O.); (A.S.); (S.H.)
| | | | - Milka Maksimović
- Faculty of Science, University of Sarajevo, Zmaja od Bosne 33, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Bojan Joksimović
- Faculty of Medicine Foča, University of East Sarajevo, Studentska 5, 73 300 Foča, Bosnia and Herzegovina;
| | - Sanin Haverić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina; (L.P.); (A.H.); (N.L.-K.); (M.H.O.); (A.S.); (S.H.)
| |
Collapse
|
2
|
Narciso M, Martínez Á, Júnior C, Díaz-Valdivia N, Ulldemolins A, Berardi M, Neal K, Navajas D, Farré R, Alcaraz J, Almendros I, Gavara N. Lung Micrometastases Display ECM Depletion and Softening While Macrometastases Are 30-Fold Stiffer and Enriched in Fibronectin. Cancers (Basel) 2023; 15:cancers15082404. [PMID: 37190331 DOI: 10.3390/cancers15082404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Mechanical changes in tumors have long been linked to increased malignancy and therapy resistance and attributed to mechanical changes in the tumor extracellular matrix (ECM). However, to the best of our knowledge, there have been no mechanical studies on decellularized tumors. Here, we studied the biochemical and mechanical progression of the tumor ECM in two models of lung metastases: lung carcinoma (CAR) and melanoma (MEL). We decellularized the metastatic lung sections, measured the micromechanics of the tumor ECM, and stained the sections for ECM proteins, proliferation, and cell death markers. The same methodology was applied to MEL mice treated with the clinically approved anti-fibrotic drug nintedanib. When compared to healthy ECM (~0.40 kPa), CAR and MEL lung macrometastases produced a highly dense and stiff ECM (1.79 ± 1.32 kPa, CAR and 6.39 ± 3.37 kPa, MEL). Fibronectin was overexpressed from the early stages (~118%) to developed macrometastases (~260%) in both models. Surprisingly, nintedanib caused a 4-fold increase in ECM-occupied tumor area (5.1 ± 1.6% to 18.6 ± 8.9%) and a 2-fold in-crease in ECM stiffness (6.39 ± 3.37 kPa to 12.35 ± 5.74 kPa). This increase in stiffness strongly correlated with an increase in necrosis, which reveals a potential link between tumor hypoxia and ECM deposition and stiffness. Our findings highlight fibronectin and tumor ECM mechanics as attractive targets in cancer therapy and support the need to identify new anti-fibrotic drugs to abrogate aberrant ECM mechanics in metastases.
Collapse
Affiliation(s)
- Maria Narciso
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - África Martínez
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Constança Júnior
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Natalia Díaz-Valdivia
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Optics11, Hettenheuvelweg 37-39, 1101 BM Amsterdam, The Netherlands
| | - Kate Neal
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Daniel Navajas
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08036 Madrid, Spain
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08036 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 08036 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Núria Gavara
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
3
|
Yao H, Gong X, Geng M, Duan S, Qiao P, Sun F, Zhu Z, Du B. Cascade nanozymes based on the "butterfly effect" for enhanced starvation therapy through the regulation of autophagy. Biomater Sci 2022; 10:4008-4022. [PMID: 35726640 DOI: 10.1039/d2bm00595f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although tumor starvation therapy has been proven to be an excellent method for tumor therapy, its efficiency may be weakened by autophagy, a self-protection mechanism exerted by tumors under starvation stress. Interestingly, over-activated autophagy not only improves the efficacy of starvation therapy, but also induces autophagic death. Herein, we report cascade nanozymes for enhanced starvation therapy by inducing over-activated autophagy. First, glucose oxidase (GOx) modified metal-organic frameworks (NH2-MIL88, MOF) were constructed (MOF-GOx). After loading with curcumin (Cur), Cur@MOF-GOx was further decorated with tumor-targeting hyaluronic acid (HA) to obtain Cur@MOF-GOx/HA nanozymes. GOx can catalyze glucose into H2O2 and gluconic acid, which not only leads to tumor starvation, but also provides reactants for the Fenton reaction mediated by the MOF to generate hydroxyl radicals (˙OH) for chemo-dynamic therapy. Most importantly, protective autophagy caused by tumor starvation can be over-activated by Cur to convert autophagy from pro-survival to pro-death, realizing augmented anticancer therapy efficacy. With these cascade reactions, the synergistic action of starvation, autophagy and chemo-dynamic therapy was realized. Generally, the introduction of Cur@MOF-GOx/HA into tumor cells leads to a "butterfly effect", which induces enhanced starvation therapy through subsequent autophagic cell death to completely break the self-protective mechanism of cancer cells, and generate ˙OH for chemo-dynamic therapy. Precise design allows for the use of cascade nanozymes to realize efficient cancer treatment and restrain metastasis.
Collapse
Affiliation(s)
- Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China.,Collaborative Innovation Center of Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China
| | - Xiaobao Gong
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Meilin Geng
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Songchao Duan
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Qiao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Zhu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China.,Collaborative Innovation Center of Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China
| |
Collapse
|
4
|
de Avelar Júnior JT, Lima-Batista E, Castro Junior CJ, Pimenta AMDC, Dos Santos RG, Souza-Fagundes EM, De Lima ME. LyeTxI-b, a Synthetic Peptide Derived From a Spider Venom, Is Highly Active in Triple-Negative Breast Cancer Cells and Acts Synergistically With Cisplatin. Front Mol Biosci 2022; 9:876833. [PMID: 35601827 PMCID: PMC9114809 DOI: 10.3389/fmolb.2022.876833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer that affects women globally and is among the leading cause of women’s death. Triple-negative breast cancer is more difficult to treat because hormone therapy is not available for this subset of cancer. The well-established therapy against triple-negative breast cancer is mainly based on surgery, chemotherapy, and immunotherapy. Among the drugs used in the therapy are cisplatin and carboplatin. However, they cause severe toxicity to the kidneys and brain and cause nausea. Therefore, it is urgent to propose new chemotherapy techniques that provide new treatment options to patients affected by this disease. Nowadays, peptide drugs are emerging as a class of promising new anticancer agents due to their lytic nature and, apparently, a minor drug resistance compared to other conventional drugs (reviewed in Jafari et al., 2022). We have recently reported the cytotoxic effect of the antimicrobial peptide LyeTx I-b against glioblastoma cells (Abdel-Salam et al., 2019). In this research, we demonstrated the cytotoxic effect of the peptide LyeTx I-b, alone and combined with cisplatin, against triple-negative cell lines (MDA-MD-231). LyeTx-I-b showed a selectivity index 70-fold higher than cisplatin. The peptide:cisplatin combination (P:C) 1:1 presented a synergistic effect on the cell death and a selective index value 16 times greater than the cisplatin alone treatment. Therefore, an equi-effective reduction of cisplatin can be reached in the presence of LyeTx I-b. Cells treated with P:C combinations were arrested in the G2/M cell cycle phase and showed positive staining for acridine orange, which was inhibited by bafilomycin A1, indicating autophagic cell death (ACD) as a probable cell death mechanism. Furthermore, Western blot experiments indicated a decrease in P21 expression and AKT phosphorylation. The decrease in AKT phosphorylation is indicative of ACD. However, other studies are still necessary to better elucidate the pathways involved in the cell death mechanism induced by the peptide and the drug combinations. These findings confirmed that the peptide LyeTx I-b seems to be a good candidate for combined chemotherapy to treat breast cancer. In addition, in vivo studies are essential to validate the use of LyeTx I-b as a therapeutic drug candidate, alone and/or combined with cisplatin.
Collapse
Affiliation(s)
- Joaquim Teixeira de Avelar Júnior
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Joaquim Teixeira de Avelar Júnior, ; Maria Elena De Lima,
| | - Edleusa Lima-Batista
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Célio José Castro Junior
- Programa de Pós-Graduação em Medicina e Biomedicina da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | - Elaine Maria Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Elena De Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- *Correspondence: Joaquim Teixeira de Avelar Júnior, ; Maria Elena De Lima,
| |
Collapse
|
5
|
|
6
|
CWHM-1008 Induces Apoptosis and Protective Autophagy through the Akt/mTOR Axis in LUAD Cells. JOURNAL OF ONCOLOGY 2022; 2021:5548128. [PMID: 35096055 PMCID: PMC8799368 DOI: 10.1155/2021/5548128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Recent studies have revealed that antiparasitic agents showed promising inhibitory effects on tumors, raising a possibility that repositioning this class of drugs may shed new light on clinical therapy against tumors. CWHM-1008 is a novel class of antimalarial drug; however, the inhibitory impact of CWHM-1008 on lung adenocarcinoma (LUAD) cells remains unclear. This study aimed to explore the anticancer effect and underlying mechanisms of CWHM-1008 on LUAD cells in vitro and in vivo. Human LUAD cells, H358 and A549, were treated with varying concentrations of CWHM-1008 at different lengths of time. Cell viability, colony formation, cell count, flow cytometry findings, microtubule-associated protein-1 light chain 3-green- (LC3-) GFP/RFP adenovirus infection status, and the expression of apoptosis and autophagy-related proteins were examined. Potential effects of an autophagy inhibitor (LY294002) and constitutively active Akt plasmid (CA-Akt) on CWHM-1008-induced apoptosis were also examined. Our results showed that CWHM-1008 significantly inhibited proliferation, induced apoptosis, and enhanced autophagy flux by blocking the RAC-alpha serine/threonine-protein kinase/the mammalian target of rapamycin (Akt/mTOR) axis in two LUAD cells. In addition, autophagy inhibited by LY294002 or CA-Akt transfection accelerated CWHM-1008-induced apoptosis in those LUAD cells. Moreover, CWHM-1008 significantly inhibited the growth and induced apoptosis of A549 cell in nude mice in vivo. The present findings provide new insights into anticancer properties of CWHM-1008, suggesting that it may be an adjuvant treatment for LUAD treatment, warranting further study.
Collapse
|
7
|
Zhao Q, Wang C, Wang K, He Y, Hu A, Tang M, Yang W, Cao J, Xu D, Wang H. Favorable prognostic role of IL-26 in HCC patients associated with JAK-STAT3-dependent autophagy. Genes Dis 2022; 9:9-11. [PMID: 35005104 PMCID: PMC8720686 DOI: 10.1016/j.gendis.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023] Open
Affiliation(s)
- Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Chen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Kexin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Yue He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Min Tang
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230002, PR China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Jiyu Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Dexiang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, PR China
| |
Collapse
|
8
|
Selvarajoo N, Stanslas J, Islam MK, Sagineedu SR, Lian HK, Lim JCW. Pharmacological Modulation of Apoptosis and Autophagy in Pancreatic Cancer Treatment. Mini Rev Med Chem 2022; 22:2581-2595. [PMID: 35331093 DOI: 10.2174/1389557522666220324123605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/02/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pancreatic cancer is a fatal malignant neoplasm with infrequent signs and symptoms until a progressive stage. In 2020, GLOBOCAN reported that pancreatic cancer accounts for 4.7% of all cancer deaths. Despite the availability of standard chemotherapy regimens for treatment, the survival benefits are not guaranteed because tumor cells become chemoresistant even due to the development of chemoresistance in tumor cells even with a short treatment course, where apoptosis and autophagy play critical roles. OBJECTIVE This review compiled essential information on the regulatory mechanisms and roles of apoptosis and autophagy in pancreatic cancer, as well as drug-like molecules that target different pathways in pancreatic cancer eradication, with an aim to provide ideas to the scientific communities in discovering novel and specific drugs to treat pancreatic cancer, specifically PDAC. METHOD Electronic databases that were searched for research articles for this review were Scopus, Science Direct, PubMed, Springer Link, and Google Scholar. The published studies were identified and retrieved using selected keywords. DISCUSSION/CONCLUSION Many small-molecule anticancer agents have been developed to regulate autophagy and apoptosis associated with pancreatic cancer treatment, where most of them target apoptosis directly through EGFR/Ras/Raf/MAPK and PI3K/Akt/mTOR pathways. The cancer drugs that regulate autophagy in treating cancer can be categorized into three groups: i) direct autophagy inducers (e.g., rapamycin), ii) indirect autophagy inducers (e.g., resveratrol), and iii) autophagy inhibitors. Resveratrol persuades both apoptosis and autophagy with a cytoprotective effect, while autophagy inhibitors (e.g., 3-methyladenine, chloroquine) can turn off the protective autophagic effect for therapeutic benefits. Several studies showed that autophagy inhibition resulted in a synergistic effect with chemotherapy (e.g., a combination of metformin with gemcitabine/ 5FU). Such drugs possess a unique clinical value in treating pancreatic cancer as well as other autophagy-dependent carcinomas.
Collapse
Affiliation(s)
- Nityaa Selvarajoo
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Kaisarul Islam
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sreenivasa Rao Sagineedu
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Ho Kok Lian
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Melatonin Induces Autophagy via Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress Pathway in Colorectal Cancer Cells. Molecules 2021; 26:molecules26165038. [PMID: 34443626 PMCID: PMC8400139 DOI: 10.3390/molecules26165038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5′–adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
Collapse
|
10
|
The Regulating Effect of Autophagy-Related MiRNAs in Kidney, Bladder, and Prostate Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5510318. [PMID: 33976697 PMCID: PMC8084683 DOI: 10.1155/2021/5510318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Autophagy is a treatment target for many disorders, including cancer, and its specific role is becoming increasingly well known. In tumors, researchers pay attention to microribonucleic acids (miRNAs) with regulatory effects to develop more effective therapeutic drugs for autophagy and find new therapeutic targets. Various studies have shown that autophagy-related miRNAs play an irreplaceable role in different tumors, such as miR-495, miR-30, and miR-101. These miRNAs are associated with autophagy resistance in gastric cancer, non-small cell lung cancer, and cervical cancer. In recent years, autophagy-related miRNAs have also been reported to play a role in autophagy in urinary system tumors. This article reviews the regulatory effects of autophagy-related miRNAs in kidney, bladder, and prostate cancer and provides new ideas for targeted therapy of the three major tumors of the urinary system.
Collapse
|
11
|
Spirina LV, Avgustinovich AV, Afanas'ev SG, Cheremisina OV, Volkov MY, Choynzonov EL, Gorbunov AK, Usynin EA. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets 2021; 21:713-721. [PMID: 31775598 DOI: 10.2174/1389450120666191127113854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is biologically and genetically heterogeneous with complex carcinogenesis at the molecular level. Despite the application of multiple approaches in the GC treatment, its 5-year survival is poor. A major limitation of anti-cancer drugs application is intrinsic or acquired resistance, especially to chemotherapeutical agents. It is known that the effectiveness of chemotherapy remains debatable and varies according to the molecular type of GC. Chemotherapy has an established role in the management of GC. Perioperative chemotherapy or postoperative chemotherapy is applied for localized ones. Most of the advanced GC patients have a poor response to treatment and unfavorable outcomes with standard therapies. Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of MAPK, AKT/mTOR, and Wnt/β-catenin signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. We have summarized the mechanisms of resistance development to cisplatin, 5-fluorouracil, and multidrug resistance in the GC management. The complexity of molecular targets and components of signaling cascades altered in the resistance development results in the absence of significant benefits in GC treatment, and its efficacy remains low. The universal process responsible for the failure in the multimodal approach in GC treatment is autophagy. Its dual role in oncogenesis is the most unexplored issue. We have discussed the possible mechanism of autophagy regulation upon the action of endogenous factors and drugs. The experimental data obtained in the cultured GC cells need further verification. To overcome the cancer resistance and to prevent autophagy as the main reason of ineffective treatment, it is suggested the concept of the direct influence of autophagy molecular markers followed by the standard chemotherapy. Dozen of studies have focused on finding the rationale for the benefits of such complex therapy. The perspectives in the molecular-based management of GC are associated with the development of molecular markers predicting the protective autophagy initiation and search for novel targets of effective anticancer therapy.
Collapse
Affiliation(s)
- Liudmila V Spirina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexandra V Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Maxim Yu Volkov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny L Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Alexey K Gorbunov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation
| | - Evgeny A Usynin
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Koopertivny street, Tomsk, 634050, Russian Federation.,Siberian State Medical University, 2, Moskovsky trakt, Tomsk, 634050, Russian Federation
| |
Collapse
|
12
|
Wang N, Muhetaer G, Zhang X, Yang B, Wang C, Zhang Y, Wang X, Zhang J, Wang S, Zheng Y, Zhang F, Wang Z. Sanguisorba officinalis L. Suppresses Triple-Negative Breast Cancer Metastasis by Inhibiting Late-Phase Autophagy via Hif-1α/Caveolin-1 Signaling. Front Pharmacol 2020; 11:591400. [PMID: 33381039 PMCID: PMC7768086 DOI: 10.3389/fphar.2020.591400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sanguisorba officinalis L. (SA) is a common herb for cancer treatment in the clinic, particularly during the consolidation phase to prevent occurrence or metastasis. Nevertheless, there are limited studies reporting the molecular mechanisms about its anti-metastatic function. It is well demonstrated that autophagy is one of the critical mechanisms accounting for metastasis and anti-cancer pharmacological actions of Chinese herbs. On the threshold, the regulatory effects and molecular mechanisms of SA in suppressing autophagy-related breast cancer metastasis were investigated in this study. In vitro findings demonstrated that SA potently suppressed the proliferation, colony formations well as metastasis process in triple-negative breast cancer. Network and biological analyses predicted that SA mainly targeted caveolin-1 (Cav-1) to induce anti-metastatic effects, and one of the core mechanisms was via regulation of autophagy. Further experiments—including western blotting, transmission electron microscopy, GFP-mRFP-LC3 immunofluorescence, and lysosomal-activity detection—validated SA as a potent late-stage autophagic inhibitor by increasing microtubule-associated light chain 3-II (LC3-II) conversion, decreasing acidic vesicular-organelle formation, and inducing lysosomal dysfunction even under conditions of either starvation or hypoxia. Furthermore, the anti-autophagic and anti-metastatic activity of SA was Cav-1-dependent. Specifically, Cav-1 knockdown significantly facilitated SA-mediated inhibition of autophagy and metastasis. Furthermore, hypoxia inducible factor-1α (Hif-1α) overexpression attenuated the SA-induced inhibitory activities on Cav-1, autophagy, and metastasis, indicating that SA may have inhibited autophagy-related metastasis via Hif-1α/Cav-1 signaling. In both mouse breast cancer xenograft and zebrafish xenotransplantation models, SA inhibited breast cancer growth and inhibited late-phase autophagy in vivo, which was accompanied by suppression of Hif-1α/Cav-1 signaling and the epithelial-mesenchymal transition. Overall, our findings not only indicate that SA acts as a novel late-phase autophagic inhibitor with anti-metastatic activities in triple-negative breast cancer, but also highlight Cav-1 as a regulator in controlling late-phase autophagic activity.
Collapse
Affiliation(s)
- Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Gulizeba Muhetaer
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiaotong Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China.,Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Caiwei Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xuan Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Juping Zhang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Shengqi Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Yifeng Zheng
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhiyu Wang
- Integrative Research Laboratory of Breast Cancer, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, China
| |
Collapse
|
13
|
Muniraj N, Siddharth S, Shriver M, Nagalingam A, Parida S, Woo J, Elsey J, Gabrielson K, Gabrielson E, Arbiser JL, Saxena NK, Sharma D. Induction of STK11-dependent cytoprotective autophagy in breast cancer cells upon honokiol treatment. Cell Death Discov 2020; 6:81. [PMID: 32963809 PMCID: PMC7475061 DOI: 10.1038/s41420-020-00315-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells hijack autophagy pathway to evade anti-cancer therapeutics. Many molecular signaling pathways associated with drug-resistance converge on autophagy induction. Honokiol (HNK), a natural phenolic compound purified from Magnolia grandiflora, has recently been shown to impede breast tumorigenesis and, in the present study, we investigated whether breast cancer cells evoke autophagy to modulate therapeutic efficacy and functional networks of HNK. Indeed, breast cancer cells exhibit increased autophagosomes-accumulation, MAP1LC3B-II/LC3B-II-conversion, expression of ATG proteins as well as elevated fusion of autophagosomes and lysosomes upon HNK treatment. Breast cancer cells treated with HNK demonstrate significant growth inhibition and apoptotic induction, and these biological processes are blunted by macroautophagy/autophagy. Consequently, inhibiting autophagosome formation, abrogating autophagosome-lysosome fusion or genetic-knockout of BECN1 and ATG7 effectively increase HNK-mediated apoptotic induction and growth inhibition. Next, we explored the functional impact of tumor suppressor STK11 in autophagy induction in HNK-treated cells. STK11-silencing abrogates LC3B-II-conversion, and blocks autophagosome/lysosome fusion and lysosomal activity as illustrated by LC3B-Rab7 co-staining and DQ-BSA assay. Our results exemplify the cytoprotective nature of autophagy invoked in HNK-treated breast cancer cells and put forth the notion that a combined strategy of autophagy inhibition with HNK would be more effective. Indeed, HNK and chloroquine (CQ) show synergistic inhibition of breast cancer cells and HNK-CQ combination treatment effectively inhibits breast tumorigenesis and metastatic progression. Tumor-dissociated cells from HNK-CQ treated tumors exhibit abrogated invasion and migration potential. Together, these results implicate that breast cancer cells undergo cytoprotective autophagy to circumvent HNK and a combined treatment with HNK and CQ can be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Nethaji Muniraj
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Sumit Siddharth
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Marey Shriver
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Arumugam Nagalingam
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Sheetal Parida
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Juhyung Woo
- Department of Pathology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Justin Elsey
- Department of Dermatology, Emory School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA 30322 USA
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Edward Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
- Department of Pathology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| | - Jack L. Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, GA 30322 USA
| | - Neeraj K. Saxena
- Early Detection Research Group, National Cancer Institute, Rockville, MD USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231 USA
| |
Collapse
|
14
|
Ge D, Tao HR, Fang L, Kong XQ, Han LN, Li N, Xu YX, Li LY, Yu M, Zhang H. 11-Methoxytabersonine Induces Necroptosis with Autophagy through AMPK/mTOR and JNK Pathways in Human Lung Cancer Cells. Chem Pharm Bull (Tokyo) 2020; 68:244-250. [DOI: 10.1248/cpb.c19-00851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Di Ge
- School of Biological Science and Technology, University of Jinan
| | - Hong-Rui Tao
- School of Biological Science and Technology, University of Jinan
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan
| | - Xiang-Qian Kong
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University
| | - Li-Na Han
- School of Biological Science and Technology, University of Jinan
| | - Ning Li
- School of Biological Science and Technology, University of Jinan
| | - Yan-Xin Xu
- School of Biological Science and Technology, University of Jinan
| | - Ling-Yu Li
- School of Biological Science and Technology, University of Jinan
| | - Mei Yu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan
| |
Collapse
|
15
|
Zhang H, Ren Y, Hou L, Chang J, Zhang Z, Zhang H. Positioning Remodeling Nanogels Mediated Codelivery of Antivascular Drug and Autophagy Inhibitor for Cooperative Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6978-6990. [PMID: 31951366 DOI: 10.1021/acsami.9b22412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor vasculature and enhanced autophagy collectively provide the source of nutrients for tumor growth, invasion, and metastasis. Blocking the source of nutrients will be a novel and promising antitumor approach. Herein, we exploited an intelligent nanogel (CA4-FeAlg/HCQ) with a positioning remodeling feature to precisely kill A549 cancer cells in all directions based on frontal and rear attack strategies. CA4-FeAlg/HCQ nanogels could remain stable during blood circulation. When they reached the tumor vascular site, the vascular blocker combretastatin A4 (CA4) would be released at first to exert an antiangiogenic effect. Thereafter, FeAlg/HCQ disintegrated into small nanogels (<30 nm) for tumor deep penetration. Once small nanogels entered tumor cells, FeAlg/HCQ would undergo phase remodeling (gel to sol) to release the autophagy inhibitor hydroxychloroquine (HCQ) quickly. The autophagy induced by CA4 can be effectively inhibited by HCQ to achieve synergistic treatment of tumors. In addition, after Fe3+ in FeAlg being reduced to Fe2+, it catalyzed intratumoral hydrogen peroxide (H2O2) to generate cytotoxic hydroxyl radicals (·OH), which further strengthened the antitumor effect. The in vivo pharmacodynamic result revealed that CA4-FeAlg/HCQ showed the greatest therapeutic effect, with the final V/V0 of 0.40 ± 0.10. Our study provided a hopeful platform for rational and precise tumor treatment, which may be of great significance in the combined pharmacotherapy.
Collapse
Affiliation(s)
- Hongling Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Yanping Ren
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Lin Hou
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
- School of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
| | - Huijuan Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Zhengzhou 450001 , Henan Province , China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Zhengzhou 450001 , Henan Province , China
- School of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| |
Collapse
|
16
|
Liao YX, Yu HY, Lv JY, Cai YR, Liu F, He ZM, He SS. Targeting autophagy is a promising therapeutic strategy to overcome chemoresistance and reduce metastasis in osteosarcoma. Int J Oncol 2019; 55:1213-1222. [PMID: 31638211 PMCID: PMC6831203 DOI: 10.3892/ijo.2019.4902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, mainly affecting children and adolescents. Currently, surgical resection combined with adjuvant chemotherapy has been standardized for OS treatment. Despite great advances in chemotherapy for OS, its clinical prognosis remains far from satisfactory; this is due to chemoresistance, which has become a major obstacle to improving OS treatment. Autophagy, a catabolic process through which cells eliminate and recycle their own damaged proteins and organelles to provide energy, can be activated by chemotherapeutic drugs. Accumulating evidence has indicated that autophagy plays the dual role in the regulation of OS chemoresistance by either promoting drug resistance or increasing drug sensitivity. The aim of the present review was to demonstrate thatautophagy has both a cytoprotective and an autophagic cell death function in OS chemoresistance. In addition, methods to detect autophagy, autophagy inducers and inhibitors, as well as autophagy‑mediated metastasis, immunotherapy and clinical prognosis are also discussed.
Collapse
Affiliation(s)
- Yu-Xin Liao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Hai-Yang Yu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Ji-Yang Lv
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan-Rong Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Fei Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhi-Min He
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Shi-Sheng He
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
17
|
Muniraj N, Siddharth S, Nagalingam A, Walker A, Woo J, Győrffy B, Gabrielson E, Saxena NK, Sharma D. Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cells. Carcinogenesis 2019; 40:1110-1120. [PMID: 30698683 PMCID: PMC10893887 DOI: 10.1093/carcin/bgz015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/02/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Withaferin A (WFA), a steroidal lactone, negatively regulates breast cancer growth however, its mechanisms of action remain largely elusive. We found that WFA blocks autophagy flux and lysosomal proteolytic activity in breast cancer cells. WFA increases accumulation of autophagosomes, LC3B-II conversion, expression of autophagy-related proteins and autophagosome/lysosome fusion. Autolysosomes display the characteristics of acidic compartments in WFA-treated cells; however, the protein degradation activity of lysosomes is inhibited. Blockade of autophagic flux reduces the recycling of cellular fuels leading to insufficient substrates for tricarboxylic acid (TCA) cycle and impaired oxidative phosphorylation. WFA decreases expression and phosphorylation of lactate dehydrogenase, the key enzyme that catalyzes pyruvate-to-lactate conversion, reduces adenosine triphosphate levels and increases AMP-activated protein kinase (AMPK) activation. AMPK inhibition abrogates while AMPK activation potentiates WFA's effect. WFA and 2-deoxy-d-glucose combination elicits synergistic inhibition of breast cancer cells. Genetic knockout of BECN1 and ATG7 fails to rescue cells from WFA treatment; in contrast, addition of methyl pyruvate to supplement TCA cycle protects WFA-treated cells. Together, these results implicate that WFA is a potent lysosomal inhibitor; energetic impairment is required for WFA-induced apoptosis and growth inhibition and combining WFA and 2-DG is a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Nethaji Muniraj
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sumit Siddharth
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arumugam Nagalingam
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa Walker
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juhyung Woo
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balázs Győrffy
- MTA TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Ed Gabrielson
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neeraj K Saxena
- Early Detection Research Group, National Cancer Institute, Rockville, MD, USA
| | - Dipali Sharma
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Bishop E, Bradshaw TD. Autophagy modulation: a prudent approach in cancer treatment? Cancer Chemother Pharmacol 2018; 82:913-922. [PMID: 30182146 PMCID: PMC6267659 DOI: 10.1007/s00280-018-3669-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/12/2018] [Indexed: 01/07/2023]
Abstract
Autophagy is a tightly controlled process comprising lysosomal degradation and recycling of cellular proteins and organelles. In cancer, its paradoxical dual role of cytoprotection and cytotoxicity is context-dependent and controversial. Autophagy primarily acts as a mechanism of tumour suppression, by maintenance of genomic integrity and prevention of proliferation and inflammation. This, combined with immune-surveillance capabilities and autophagy's implicated role in cell death, acts to prevent tumour initiation. However, established tumours exploit autophagy to survive cellular stresses in the hostile tumour microenvironment. This can lead to therapy resistance, one of the biggest challenges facing current anti-cancer approaches. Autophagy modulation is an exciting area of clinical development, attempting to harness this fundamental process as an anti-cancer strategy. Autophagy induction could potentially prevent tumour formation and enhance anti-cancer immune responses. In addition, drug-induced autophagy could be used to kill cancer cells, particularly those in which the apoptotic machinery is defective. Conversely, autophagy inhibition may help to sensitise resistant cancer cells to conventional chemotherapies and specifically target autophagy-addicted tumours. Currently, hydroxychloroquine is in phase I and II clinical trials in combination with several standard chemotherapies, whereas direct, deliberate autophagy induction remains to be tested clinically. More comprehensive understanding of the roles of autophagy throughout different stages of carcinogenesis has potential to guide development of novel therapeutic strategies to eradicate cancer cells.
Collapse
Affiliation(s)
- Eleanor Bishop
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Tracey D Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
19
|
Ren X, Chen Y, Peng H, Fang X, Zhang X, Chen Q, Wang X, Yang W, Sha X. Blocking Autophagic Flux Enhances Iron Oxide Nanoparticle Photothermal Therapeutic Efficiency in Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27701-27711. [PMID: 30048114 DOI: 10.1021/acsami.8b10167] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Autophagy is a conservative eukaryotic pathway which plays a crucial role in maintaining cellular homeostasis, and dysfunction of autophagy is usually associated with pathological conditions. Recently, emerging reports have stressed that various types of nanomaterials and therapeutic approaches interfere with cellular autophagy process, which has brought up concerns to their future biomedical applications. Here, we present a study elaborating the relationships between autophagy and iron oxide nanoparticle (IONP)-mediated photothermal therapy in cancer treatment. Our results reveal that IONP photothermal effect could lead to autophagy induction in cancerous MCF-7 cells in a laser dose-dependent manner, and the inhibition of autophagy would enhance the photothermal cell killing by increasing cell apoptosis. In an MCF-7 xenograft model, cotreatment of autophagy inhibitor and IONP under laser exposure could promote the tumor inhibition rate from 43.26 to 68.56%, and the tumor immunohistochemistry assay of microtubule-associated protein 1-light chain 3 (LC3) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling also demonstrate augmentation in both autophagosomes accumulation and apoptosis in vivo. This work helps us to better understand the regulation of autophagy during IONP-mediated photothermal therapy and provides us with a potential combination therapeutic approach of autophagy modulators and photothermal agents.
Collapse
Affiliation(s)
- Xiaoqing Ren
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
- Department of Pharmacy , Peking University Third Hospital , Beijing 100191 , PR China
| | - Yiting Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
| | - Haibao Peng
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , 220 Handan Road , Shanghai 200433 , PR China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
| | - Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
| | - Xiaofei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , 220 Handan Road , Shanghai 200433 , PR China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai 201203 , PR China
| |
Collapse
|
20
|
Le Y, Zhang S, Ni J, You Y, Luo K, Yu Y, Shen X. Sorting nexin 10 controls mTOR activation through regulating amino-acid metabolism in colorectal cancer. Cell Death Dis 2018; 9:666. [PMID: 29867114 PMCID: PMC5986761 DOI: 10.1038/s41419-018-0719-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
Amino-acid metabolism plays a vital role in mammalian target of rapamycin (mTOR) signaling, which is the pivot in colorectal cancer (CRC). Upregulated chaperone-mediated autophagy (CMA) activity contributes to the regulation of metabolism in cancer cells. Previously, we found that sorting nexin 10 (SNX10) is a critical regulator in CMA activation. Here we investigated the role of SNX10 in regulating amino-acid metabolism and mTOR signaling pathway activation, as well as the impact on the tumor progression of mouse CRC. Our results showed that SNX10 deficiency promoted colorectal tumorigenesis in male FVB mice and CRC cell proliferation and survival. Metabolic pathway analysis of gas chromatography–mass spectrometry (GC-MS) data revealed unique changes of amino-acid metabolism by SNX10 deficiency. In HCT116 cells, SNX10 knockout resulted in the increase of CMA and mTOR activation, which could be abolished by chloroquine treatment or reversed by SNX10 overexpression. By small RNA interference (siRNA), we found that the activation of mTOR was dependent on lysosomal-associated membrane protein type-2A (LAMP-2A), which is a limiting factor of CMA. Similar results were also found in Caco-2 and SW480 cells. Ultra-high-performance liquid chromatography–quadrupole time of flight (UHPLC-QTOF) and GC-MS-based untargeted metabolomics revealed that 10 amino-acid metabolism in SNX10-deficient cells were significantly upregulated, which could be restored by LAMP-2A siRNA. All of these amino acids were previously reported to be involved in mTOR activation. In conclusion, this work revealed that SNX10 controls mTOR activation through regulating CMA-dependent amino-acid metabolism, which provides potential target and strategy for treating CRC.
Collapse
Affiliation(s)
- Yunchen Le
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Sulin Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiahui Ni
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yan You
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kejing Luo
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yunqiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Xiaoyan Shen
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
21
|
Iron(III)-Tannic Molecular Nanoparticles Enhance Autophagy effect and T 1 MRI Contrast in Liver Cell Lines. Sci Rep 2018; 8:6647. [PMID: 29703912 PMCID: PMC5923259 DOI: 10.1038/s41598-018-25108-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Herein, a new molecular nanoparticle based on iron(III)-tannic complexes (Fe–TA NPs) is presented. The Fe–TA NPs were simply obtained by mixing the precursors in a buffered solution at room temperature, and they exhibited good physicochemical properties with capability of inducing autophagy in both hepatocellular carcinoma cells (HepG2.2.15) and normal rat hepatocytes (AML12). The Fe–TA NPs were found to induce HepG2.2.15 cell death via autophagic cell death but have no effect on cell viability in AML12 cells. This is possibly due to the much higher uptake of the Fe–TA NPs by the HepG2.2.15 cells via the receptor-mediated endocytosis pathway. As a consequence, enhancement of the T1 MRI contrast was clearly observed in the HepG2.2.15 cells. The results demonstrate that the Fe–TA NPs could provide a new strategy combining diagnostic and therapeutic functions for hepatocellular carcinoma. Additionally, because of their autophagy-inducing properties, they can be applied as autophagy enhancers for prevention and treatment of other diseases.
Collapse
|
22
|
Chen CT, Hsieh MJ, Hsieh YH, Hsin MC, Chuang YT, Yang SF, Yang JS, Lin CW. Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget 2018; 9:17564-17575. [PMID: 29707130 PMCID: PMC5915138 DOI: 10.18632/oncotarget.24786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2018] [Indexed: 12/30/2022] Open
Abstract
Sulforaphane has been demonstrated to exert numerous biological effects, such as neuroprotective, anti-inflammatory, and anticancer effects. However, the detailed effects of sulforaphane on human oral cancer cell migration and the underlying mechanisms remain unclear. In this study, we observed that sulforaphane attenuated SCC-9 and SCC-14 cell motility and invasiveness by reducing cathepsin S expression. Moreover, sulforaphane increased microtubule-associated protein 1 light chain 3 (LC3) conversion, and the knockdown of LC3 by siRNA increased cell migration ability. Regarding the mechanism, sulforaphane inhibited the cell motility of oral cancer cells through the extracellular signal-regulated kinase (ERK) pathway, which in turn reversed cell motility. In conclusion, sulforaphane suppress cathepsin S expression by inducing autophage through ERK signaling pathway. Thus, cathepsin S and LC3 may be new targets for oral cancer treatment.
Collapse
Affiliation(s)
- Chang-Tai Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Chieh Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ting Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2018; 7:40800-40815. [PMID: 27027348 PMCID: PMC5130046 DOI: 10.18632/oncotarget.8315] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer is a disease caused by the abnormal proliferation and differentiation of cells governed by tumorigenic factors. Chemotherapy is one of the major cancer treatment strategies, and it functions by targeting the physiological capabilities of cancer cells, including sustained proliferation and angiogenesis, the evasion of programmed cell death, tissue invasion and metastasis. Remarkably, natural products have garnered increased attention in the chemotherapy drug discovery field because they are biologically friendly and have high therapeutic effects. Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Recently, the novel anti-tumor effects of tetrandrine have been widely investigated. More impressive is that tetrandrine affects multiple biological activities of cancer cells, including the inhibition of proliferation, angiogenesis, migration, and invasion; the induction of apoptosis and autophagy; the reversal of multidrug resistance (MDR); and the enhancement of radiation sensitization. This review focuses on introducing the latest information about the anti-tumor effects of tetrandrine on various cancers and its underlying mechanism. Moreover, we discuss the nanoparticle delivery system being developed for tetrandrine and the anti-tumor effects of other bisbenzylisoquinoline alkaloid derivatives on cancer cells. All current evidence demonstrates that tetrandrine is a promising candidate as a cancer chemotherapeutic.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
24
|
Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, Woo J, Győrffy B, Gabrielson E, Saxena NK, Sharma D. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy 2017; 13:1386-1403. [PMID: 28696138 DOI: 10.1080/15548627.2017.1332565] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ADIPOQ/adiponectin, an adipocytokine secreted by adipocytes in the breast tumor microenvironment, negatively regulates cancer cell growth hence increased levels of ADIPOQ/adiponectin are associated with decreased breast cancer growth. However, its mechanisms of action remain largely elusive. We report that ADIPOQ/adiponectin induces a robust accumulation of autophagosomes, increases MAP1LC3B-II/LC3B-II and decreases SQSTM1/p62 in breast cancer cells. ADIPOQ/adiponectin-treated cells and xenografts exhibit increased expression of autophagy-related proteins. LysoTracker Red-staining and tandem-mCherry-GFP-LC3B assay show that fusion of autophagosomes and lysosomes is augmented upon ADIPOQ/adiponectin treatment. ADIPOQ/adiponectin significantly inhibits breast cancer growth and induces apoptosis both in vitro and in vivo, and these events are preceded by macroautophagy/autophagy, which is integral for ADIPOQ/adiponectin-mediated cell death. Accordingly, blunting autophagosome formation, blocking autophagosome-lysosome fusion or genetic-knockout of BECN1/Beclin1 and ATG7 effectively impedes ADIPOQ/adiponectin induced growth-inhibition and apoptosis-induction. Mechanistic studies show that ADIPOQ/adiponectin reduces intracellular ATP levels and increases PRKAA1 phosphorylation leading to ULK1 activation. AMPK-inhibition abrogates ADIPOQ/adiponectin-induced ULK1-activation, LC3B-turnover and SQSTM1/p62-degradation while AMPK-activation potentiates ADIPOQ/adiponectin's effects. Further, ADIPOQ/adiponectin-mediated AMPK-activation and autophagy-induction are regulated by upstream master-kinase STK11/LKB1, which is a key node in antitumor function of ADIPOQ/adiponectin as STK11/LKB1-knockout abrogates ADIPOQ/adiponectin-mediated inhibition of breast tumorigenesis and molecular analyses of tumors corroborate in vitro mechanistic findings. ADIPOQ/adiponectin increases the efficacy of chemotherapeutic agents. Notably, high expression of ADIPOQ receptor ADIPOR2, ADIPOQ/adiponectin and BECN1 significantly correlates with increased overall survival in chemotherapy-treated breast cancer patients. Collectively, these data uncover that ADIPOQ/adiponectin induces autophagic cell death in breast cancer and provide in vitro and in vivo evidence for the integral role of STK11/LKB1-AMPK-ULK1 axis in ADIPOQ/adiponectin-mediated cytotoxic autophagy.
Collapse
Affiliation(s)
- Seung J Chung
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | | | - Arumugam Nagalingam
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Nethaji Muniraj
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Panjamurthy Kuppusamy
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Alyssa Walker
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Juhyung Woo
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Balázs Győrffy
- d MTA TTK Momentum Cancer Biomarker Research Group , Budapest , Hungary.,e Semmelweis University 2nd Dept. of Pediatrics , Budapest , Hungary
| | - Ed Gabrielson
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| | - Neeraj K Saxena
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Dipali Sharma
- a Department of Oncology , Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore , MD , USA
| |
Collapse
|
25
|
Ran X, Zhou P, Zhang K. Autophagy plays an important role in stemness mediation and the novel dual function of EIG121 in both autophagy and stemness regulation of endometrial carcinoma JEC cells. Int J Oncol 2017; 51:644-656. [PMID: 28656197 DOI: 10.3892/ijo.2017.4047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is the third most common gynecologic malignancy in the world, and is considered a chemotherapy poor responding cancer. There are two underlying mechanisms on chemoresistance: the stemness of cancer stem cells (CSCs) and activation of pro-survival autophagy. It was found that autophagy is one of the main factors of cancer stem cell survival, multidrug resistance and maintenance of the homeostasis of cancer stem cells and normal cancer cells. However, the relationship between CSCs and autophagy of EC cells is still unknown. In this study, higher autophagy level was found in endometrial cancer stem cells (ECSCs) and stemness kept in line with autophagy in successive cultured JEC spheres. Autophagy inhibition decreased the properties of CSCs in JEC spheres and enhanced sensitivity of ECSCs to paclitaxel. Besides, it was found that EIG121 exerted dual functions in the regulation of autophagy and stemness not only in normal JEC cells but also JEC obtained CSCs. These findings could be useful for developing targeted therapies for endometrial carcinoma.
Collapse
Affiliation(s)
- Xiaomin Ran
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ping Zhou
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Keqiang Zhang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
26
|
Gu YP, Yang XM, Luo P, Li YQ, Tao YX, Duan ZH, Xiao W, Zhang DY, Liu HZ. Inhibition of acrolein-induced autophagy and apoptosis by a glycosaminoglycan from Sepia esculenta ink in mouse Leydig cells. Carbohydr Polym 2017; 163:270-279. [DOI: 10.1016/j.carbpol.2017.01.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/06/2023]
|
27
|
Gil J, Pesz KA, Sąsiadek MM. May autophagy be a novel biomarker and antitumor target in colorectal cancer? Biomark Med 2016; 10:1081-1094. [PMID: 27626110 DOI: 10.2217/bmm-2016-0083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a catabolic process associated with intracellular self-digestion of damaged organelles or redundant proteins enabling maintenance of cell homeostasis. It is accepted that impaired autophagy is closely linked to cancer development and has been extensively studied in a variety of malignancies including colorectal cancer (CRC) to elucidate its influence on carcinogenesis, metastasis and antitumor therapy response. CRC remains a great epidemiological problem because of poor 5-year survival and treatment resistance. Many studies concerning autophagy in CRC gave inconsistent and contradictory results, illustrating a multifaceted nature of this process. In this review, we focus on current knowledge of autophagy in CRC development to determinate its role as a potential prognostic and predictive biomarker as well as target in antitumor therapy.
Collapse
Affiliation(s)
- Justyna Gil
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina A Pesz
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Maria M Sąsiadek
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
28
|
Liu HZ, Tao YX, Luo P, Deng CM, Gu YP, Yang L, Zhong JP. Preventive Effects of a Novel Polysaccharide from Sepia esculenta Ink on Ovarian Failure and Its Action Mechanisms in Cyclophosphamide-Treated Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5759-5766. [PMID: 27337058 DOI: 10.1021/acs.jafc.6b01854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
On the basis of our findings about chemo-preventive roles of squid ink polysaccharide and the well-known toxicity of cyclophosphamide (CP) on female gonad, this research investigated the protective effects of a novel polysaccharide from Sepia esculenta ink (SEP) on the ovarian failure resulting from CP, as well as the action mechanisms underpinning this. The results indicated that CP destroyed the ovaries of mice which caused depletion of various follicles, and led to a reduction in estradiol content, increases in FSH and LH contents in sera, decreases in ovary and uterus masses and their relative mass ratios, disruption of the ultrastructure of granulosa cells, as well as induction of apoptosis and autophagy via p38 MAPK and PI3K/Akt signaling pathways. The phenomenon resulted in ovarian failure. However, SEP exposure altered the negative effects completely. The data indicated that SEP can effectively prevent ovarian failure CP caused in mice by inhibiting the p38 MAPK signaling pathway and activating the PI3K/Akt signaling pathway as regulated by CP. SEP was a novel polysaccharide from Sepia esculenta ink with a unique primary structure mainly composed of GalN and Ara that accounted for almost half of all monosaccharides: their ratio was nearly one-to-one. Besides, the polysaccharide contained a small number of Fuc and tiny amounts of Man, GlcN, GlcA, and GalA.
Collapse
Affiliation(s)
- Hua-Zhong Liu
- College of Sciences, Guangdong Ocean University , Zhanjiang 524088, China
| | - Ye-Xing Tao
- Science Experiment Center, Guilin Medical University , Guilin 541004, China
| | - Ping Luo
- College of Sciences, Guangdong Ocean University , Zhanjiang 524088, China
| | - Chun-Mei Deng
- College of Sciences, Guangdong Ocean University , Zhanjiang 524088, China
| | - Yi-Peng Gu
- Institute of Food Science & Engineering Technology, Hezhou University , Hezhou 542899, China
| | - Lei Yang
- College of Sciences, Guangdong Ocean University , Zhanjiang 524088, China
| | - Jie-Ping Zhong
- College of Sciences, Guangdong Ocean University , Zhanjiang 524088, China
| |
Collapse
|
29
|
Birkenmeier K, Moll K, Newrzela S, Hartmann S, Dröse S, Hansmann ML. Basal autophagy is pivotal for Hodgkin and Reed-Sternberg cells' survival and growth revealing a new strategy for Hodgkin lymphoma treatment. Oncotarget 2016; 7:46579-46588. [PMID: 27366944 PMCID: PMC5216819 DOI: 10.18632/oncotarget.10300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022] Open
Abstract
As current classical Hodgkin lymphoma (cHL) treatment strategies have pronounced side-effects, specific inhibition of signaling pathways may offer novel strategies in cHL therapy. Basal autophagy, a regulated catabolic pathway to degrade cell's own components, is in cancer linked with both, tumor suppression or promotion. The finding that basal autophagy enhances tumor cell survival would thus lead to immediately testable strategies for novel therapies. Thus, we studied its contribution in cHL.We found constitutive activation of autophagy in cHL cell lines and primary tissue. The expression of key autophagy-relevant proteins (e.g. Beclin-1, ULK1) and LC3 processing was increased in cHL cells, even in lymphoma cases. Consistently, cHL cells exhibited elevated numbers of autophagic vacuoles and intact autophagic flux. Autophagy inhibition with chloroquine or inactivation of ATG5 induced apoptosis and reduced proliferation of cHL cells. Chloroquine-mediated inhibition of basal autophagy significantly impaired HL growth in-vivo in NOD SCID γc-/- (NSG) mice. We found that basal autophagy plays a pivotal role in sustaining mitochondrial function.We conclude that cHL cells require basal autophagy for growth, survival and sustained metabolism making them sensitive to autophagy inhibition. This suggests basal autophagy as useful target for new strategies in cHL treatment.
Collapse
Affiliation(s)
- Katrin Birkenmeier
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Katharina Moll
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sebastian Newrzela
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| | - Stefan Dröse
- Clinic of Anesthesiology, Intensive-Care Medicine and Pain Therapy, Goethe-University Hospital, 60596 Frankfurt am Main, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute of Pathology, University Hospital of Frankfurt, 60596 Frankfurt am Main, Germany
| |
Collapse
|
30
|
From eels to the importance of cancer biobanks. Future Sci OA 2015; 1:FSO65. [PMID: 28031917 PMCID: PMC5137906 DOI: 10.4155/fso.15.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Hubbi ME, Semenza GL. Regulation of cell proliferation by hypoxia-inducible factors. Am J Physiol Cell Physiol 2015; 309:C775-82. [PMID: 26491052 DOI: 10.1152/ajpcell.00279.2015] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a physiological cue that impacts diverse physiological processes, including energy metabolism, autophagy, cell motility, angiogenesis, and erythropoiesis. One of the key cell-autonomous effects of hypoxia is as a modulator of cell proliferation. For most cell types, hypoxia induces decreased cell proliferation, since an increased number of cells, with a consequent increase in O2 demand, would only exacerbate hypoxic stress. However, certain cell populations maintain cell proliferation in the face of hypoxia. This is a common pathological hallmark of cancers, but can also serve a physiological function, as in the maintenance of stem cell populations that reside in a hypoxic niche. This review will discuss major molecular mechanisms by which hypoxia regulates cell proliferation in different cell populations, with a particular focus on the role of hypoxia-inducible factors.
Collapse
Affiliation(s)
- Maimon E Hubbi
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Gregg L Semenza
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology and Biological Chemistry; Vascular Program, Institute for Cell Engineering; and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
The mechanical microenvironment in cancer: How physics affects tumours. Semin Cancer Biol 2015; 35:62-70. [PMID: 26343578 DOI: 10.1016/j.semcancer.2015.09.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
The tumour microenvironment contributes greatly to the response of tumour cells. It consists of chemical gradients, for example of oxygen and nutrients. However, a physical environment is also present. Apart from chemical input, cells also receive physical signals. Tumours display unique mechanical properties: they are a lot stiffer than normal tissue. This may be either a cause or a consequence of cancer, but literature suggests it has a major impact on tumour cells as will be described in this review. The mechanical microenvironment may cause malignant transformation, possibly through activation of oncogenic pathways and inhibition of tumour suppressor genes. In addition, the mechanical microenvironment may promote tumour progression by influencing processes such as epithelial-to-mesenchymal transition, enhancing cell survival through autophagy, but also affects sensitivity of tumour cells to therapeutics. Furthermore, multiple intracellular signalling pathways prove sensitive to the mechanical properties of the microenvironment. It appears the increased stiffness is unlikely to be caused by increased stiffness of the tumour cells themselves. However, there are indications that tumours display a higher cell density, making them more rigid. In addition, increased matrix deposition in the tumour, as well as increased interstitial fluid pressure may account for the increased stiffness of tumours. Overall, tumour mechanics are significantly different from normal tissue. Therefore, this feature should be further explored for use in cancer prevention, detection and treatment.
Collapse
|
33
|
Jin X, Li F, Zheng X, Liu Y, Hirayama R, Liu X, Li P, Zhao T, Dai Z, Li Q. Carbon ions induce autophagy effectively through stimulating the unfolded protein response and subsequent inhibiting Akt phosphorylation in tumor cells. Sci Rep 2015; 5:13815. [PMID: 26338671 PMCID: PMC4559768 DOI: 10.1038/srep13815] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/06/2015] [Indexed: 01/12/2023] Open
Abstract
Heavy ion beams have advantages over conventional radiation in radiotherapy due to their superb biological effectiveness and dose conformity. However, little information is currently available concerning the cellular and molecular basis for heavy ion radiation-induced autophagy. In this study, human glioblastoma SHG44 and cervical cancer HeLa cells were irradiated with carbon ions of different linear energy transfers (LETs) and X-rays. Our results revealed increased LC3-II and decreased p62 levels in SHG44 and HeLa cells post-irradiation, indicating marked induction of autophagy. The autophagic level of tumor cells after irradiation increased in a LET-dependent manner and was inversely correlated with the sensitivity to radiations of various qualities. Furthermore, we demonstrated that high-LET carbon ions stimulated the unfolded protein response (UPR) and mediated autophagy via the UPR-eIF2α-CHOP-Akt signaling axis. High-LET carbon ions more severely inhibited Akt-mTOR through UPR to effectively induce autophagy. Thus, the present data could serve as an important radiobiological basis to further understand the molecular mechanisms by which high-LET radiation induces cell death.
Collapse
Affiliation(s)
- Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ryoichi Hirayama
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhongying Dai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
34
|
Tilija Pun N, Subedi A, Kim MJ, Park PH. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis. PLoS One 2015; 10:e0124636. [PMID: 25961287 PMCID: PMC4427353 DOI: 10.1371/journal.pone.0124636] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A axis plays a crucial role in gAcrp-induced autophagy in macrophages.
Collapse
Affiliation(s)
- Nirmala Tilija Pun
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - Amit Subedi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - Mi Jin Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712–749, Republic of Korea
- * E-mail:
| |
Collapse
|
35
|
Kim H, Bhattacharya A, Qi L. Endoplasmic reticulum quality control in cancer: Friend or foe. Semin Cancer Biol 2015; 33:25-33. [PMID: 25794824 DOI: 10.1016/j.semcancer.2015.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
Abstract
Quality control systems in the endoplasmic reticulum (ER) mediated by unfolded protein response (UPR) and endoplasmic reticulum associated degradation (ERAD) ensure cellular function and organismal survival. Recent studies have suggested that ER quality-control systems in cancer cells may serve as a double-edged sword that aids progression as well as prevention of tumor growth in a context-dependent manner. Here we review recent advances in our understanding of the complex relationship between ER proteostasis and cancer pathology, with a focus on the two most conserved ER quality-control mechanisms--the IRE1α-XBP1 pathway of the UPR and SEL1L-HRD1 complex of the ERAD.
Collapse
Affiliation(s)
- Hana Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States
| | - Asmita Bhattacharya
- Graduate Program in Genetics Genomics and Development, Cornell University, Ithaca, NY 14853, United States
| | - Ling Qi
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, United States; Graduate Program in Genetics Genomics and Development, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
36
|
Zhou Y, Zhang Y, Zou H, Cai N, Chen X, Xu L, Kong X, Liu P. The multi-targeted tyrosine kinase inhibitor vandetanib plays a bifunctional role in non-small cell lung cancer cells. Sci Rep 2015; 5:8629. [PMID: 25720956 PMCID: PMC4342569 DOI: 10.1038/srep08629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 01/28/2015] [Indexed: 02/07/2023] Open
Abstract
Vandetanib, a multikinase inhibitor, is a target of drug treatments for non-small cell lung cancer (NSCLC). However, phase II and III clinical trials have not conclusively demonstrated the curative effects of vandetanib for NSCLC, and the reasons for this are unknown. In the present study, we use the NSCLC cell line Calu-6 as a model to determine the cellular and biological effects of vandetanib. Our results demonstrate that vandetanib impairs Calu-6 cell migration and invasion. We find that vandetanib can directly inhibit RET activity, which influences the Rho-JNK pathway. Overexpression of a constitutively active Rho GTPase antagonizes the inhibitory effects of vandetanib on Calu-6 cells invasion and JNK pathway activation. In addition, vandetanib induces autophagy by increasing the level of reactive oxygen species (ROS) in Calu-6 cells, and blockade of autophagy or ROS effectively enhances the cell death effect of vandetanib. In this study, we find vandetanib is of a double effect in some NSCLC cells, presenting new possibilities for the pharmacological treatment of NSCLC and introducing a novel role for vandetanib in treatment options.
Collapse
Affiliation(s)
- Yan Zhou
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China
| | - Yuanliang Zhang
- Shanghai Institute of Hematology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai. 200025, People's Republic of China
| | - Hanbing Zou
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China
| | - Ning Cai
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China
| | - Xiaojing Chen
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China
| | - Longmei Xu
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China
| | - Xianming Kong
- 1] Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China [2] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200032, People's Republic of China
| | - Peifeng Liu
- 1] Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200127, People's Republic of China [2] State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai. 200032, People's Republic of China
| |
Collapse
|
37
|
Montecucco A, Zanetta F, Biamonti G. Molecular mechanisms of etoposide. EXCLI JOURNAL 2015; 14:95-108. [PMID: 26600742 PMCID: PMC4652635 DOI: 10.17179/excli2015-561] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
Etoposide derives from podophyllotoxin, a toxin found in the American Mayapple. It was first synthesized in 1966 and approved for cancer therapy in 1983 by the U.S. Food and Drug Administration (Hande, 1998[25]). Starting from 1980s several studies demonstrated that etoposide targets DNA topoisomerase II activities thus leading to the production of DNA breaks and eliciting a response that affects several aspects of cell metabolisms. In this review we will focus on molecular mechanisms that account for the biological effect of etoposide.
Collapse
Affiliation(s)
| | - Francesca Zanetta
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, Pavia ; Dipartimento di Biologia e Biotecnologia, Università degli Studi di Pavia, via Ferrata 9, Pavia, Italy
| | | |
Collapse
|
38
|
Zhang FX, Wang BB, Wu CF, Zheng XF, Ma Q. Targeting autophagy for therapy of gastric cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:51-57. [DOI: 10.11569/wcjd.v23.i1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignant neoplasms. Surgery represents the main approach for this disease. Notwithstanding the advances in surgical techniques, there has been still a minimal improvement in overall survival with a significant increase in relapse rates. Although the development of new drugs has significantly improved the effectiveness of chemotherapy, the prognosis of patients with unresectable or metastatic gastric carcinoma remains poor. Therefore, it is necessary to find some new ways against gastric carcinogenesis. It has been shown that autophagy plays a dual role in the transformation and progression of gastric cancer; activation and induction of autophagy can lead to gastric carcinogenesis. Recently, several agents targeting autophagy molecules in gastric carcinogenesis have been investigated. This article reviews the regulation of autophagy with inhibitors or inducers to treat gastric cancer, and discusses how they regulate autophagy as a targeted therapy for gastric cancer.
Collapse
|
39
|
Skvortsova I. It is well established that affected intracellular signaling is associated with carcinogenesis, cancer progression and tumor sensitivity to currently existing therapeutic approaches. Semin Cancer Biol 2015; 31:1-2. [PMID: 25559282 DOI: 10.1016/j.semcancer.2014.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ira Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology, Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
40
|
Ojha R, Bhattacharyya S, Singh SK. Autophagy in Cancer Stem Cells: A Potential Link Between Chemoresistance, Recurrence, and Metastasis. Biores Open Access 2015; 4:97-108. [PMID: 26309786 PMCID: PMC4497670 DOI: 10.1089/biores.2014.0035] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells require an uninterrupted nutritional supply for maintaining their proliferative needs and this high demand in concurrence with inadequate supply of blood and nutrition induces stress in these cells. These cells utilize various strategies like high glycolytic flux, redox signaling, and modulation of autophagy to avoid cell death and overcome nutritional deficiency. Autophagy allows the cell to generate ATP and other essential biochemical building blocks necessary under such adverse conditions. It is emerging as a decisive process in the development and progression of pathophysiological conditions that are associated with increased cancer risk. However, the precise role of autophagy in tumorigenesis is still debatable. Autophagy is a novel cytoprotective process to augment tumor cell survival under nutrient or growth factor starvation, metabolic stress, and hypoxia. The tumor hypoxic environment may provide site for the enrichment/expansion of the cancer stem cells (CSCs) and successive rapid tumor progression. CSCs are characteristically resistant to conventional anticancer therapy, which may contribute to treatment failure and tumor relapse. CSCs have the potential to regenerate for an indefinite period, which can impel tumor metastatic invasion. From last decade, preclinical research has focused on the diversity in CSC content within tumors that could affect their chemo- or radio-sensitivity by impeding with mechanisms of DNA repair and cell cycle progression. The aim of this review is predominantly directed on the recent developments in the CSCs during cancer treatment, role of autophagy in maintenance of CSC populations and their implications in the development of promising new cancer treatment options in future.
Collapse
Affiliation(s)
- Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research, India
- Address correspondence to: Shalmoli Bhattacharyya, PhD, Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India, E-mail:
| | - Shrawan K. Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research, India
| |
Collapse
|
41
|
Jiang QL, Zhang S, Tian M, Zhang SY, Xie T, Chen DY, Chen YJ, He J, Liu J, Ouyang L, Jiang X. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Prolif 2014; 48:17-28. [PMID: 25488051 DOI: 10.1111/cpr.12155] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.
Collapse
Affiliation(s)
- Q-L Jiang
- State Key Laboratory of Biotherapy & Collaborative Innovation Center of Biotherapy, Department of Dermatology, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; School of Pharmacy and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, Sichuan, 610500, China; Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|