1
|
Khan H, Habib S, Siddiqui SA, Ahmad R, Husain A, Moinuddin. Elucidating the effect of levothyroxine and triiodothyronine on methylglyoxal derived stress. Endocrine 2025; 87:214-219. [PMID: 39102110 DOI: 10.1007/s12020-024-03972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Methylglyoxal (MG) is the most potent precursor during the formation of the advanced glycation end products (AGEs). MG-dependent glycative stress contributes to pathogenesis of diabetes, age-related disorders, and cancer. There is a great need to study the reduction process of glycative stress for effective management of metabolic disorders. From natural compounds to synthetic drugs, each element contributes to the reduction of glycative stress. Previously, it was established that the lowering of uric acid, low-density lipoprotein cholesterol, and urine albumin excretion rate, as well as reducing total oxidative stress, were all achieved more effectively with a levothyroxine regimen. Still, there is no such study found that supports the MG-dependent glycative stress reduction with thyroid hormone compound. Our study aims to investigate the effects of T3 and T4 on MG-dependent glycative stress. METHODS The antiglycation effect was assayed through NBT assay, DNPH assay, ELISA, and fluorescence spectrophotometer. The intracellular reduction in reactive oxygen species (ROS) has been estimated through confocal microscopy. RESULTS The results revealed an effective reduction in the formation of AGEs adducts and intracellular ROS formation. CONCLUSION The investigation concludes AGEs formation was suppressed using these compounds, although in vivo and rigorous clinical trials are required in order to verify these findings.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India.
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Shirjeel Ahmad Siddiqui
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Arbab Husain
- Department of Biotechnology and Life sciences, Mangalayatan University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Wen J, Zhang Q, Zhou L. Fluorescent probes for sensing and visualizing methylglyoxal: progress, challenges, and perspectives. RSC Adv 2024; 14:38757-38777. [PMID: 39659598 PMCID: PMC11629108 DOI: 10.1039/d4ra07512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Methylglyoxal (MGO) plays an important role not only in physiological processes but also in pathological conditions, including diabetes, hypertension, and Alzheimer's disease. Therefore, developing accurate quantitative tools for MGO is of great significance for studying pathogenesis. Among the various methods available, the fluorescent probe method has garnered considerable attention due to its noninvasive detection capability, exceptional optical properties, good biocompatibility, and high sensitivity. In this review, we provide a brief overview of recent research on fluorescent probes used for MGO biosensing and bioimaging in living cells, tissues, and animals. Additionally, we summarize the advantages and existing challenges and also discuss future directions for development in this field.
Collapse
Affiliation(s)
- Jing Wen
- School of Food Science and Technology, Hunan Agricultural University Changsha Hunan 410125 China
| | - Qingya Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology Changsha Hunan 410004 China
| |
Collapse
|
3
|
Romaldi B, Scirè A, Minnelli C, Frontini A, Casari G, Cianfruglia L, Mobbili G, de Bari L, Antognelli C, Pallardó FV, Armeni T. Overexpression of Glyoxalase 2 in Human Breast Cancer Cells: Implications for Cell Proliferation and Doxorubicin Resistance. Int J Mol Sci 2024; 25:10888. [PMID: 39456676 PMCID: PMC11507095 DOI: 10.3390/ijms252010888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Glyoxalase 2 (Glo2) is an enzyme of the glyoxalase system whose pathway parallels glycolysis and which aims to remove methylglyoxal (MGO). This study analyzed the possible additional roles of the Glo2 enzyme in breast cancer (MCF7) and non-cancer (HDF) cell lines, investigating its presence at the nuclear level and its potential involvement in cell proliferation and chemotherapy resistance. The results revealed that Glo2 is overexpressed in cancer cells, and its expression is higher during the proliferative (S and G2/M) phases of the cell cycle. The study also examined a post-translational modification (PTM) in which Glo2 could be involved, with S-glutathionylation revealing that Glo2 enhances this PTM in cancer cells both in the cytoplasm and nucleus. Inhibition of Glo2 by p-NCBG resulted in increased sensitivity to doxorubicin, a common chemotherapeutic agent. This suggests that Glo2 increases cancer cell resistance to chemotherapy, potentially through its role in regulating oxidative stress. These results highlight Glo2 as a potential therapeutic target to improve the efficacy of existing treatments.
Collapse
Affiliation(s)
- Brenda Romaldi
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Giulia Casari
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Laura Cianfruglia
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.); (A.F.); (G.M.)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), 70126 Bari, Italy;
| | - Cinzia Antognelli
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06129 Perugia, Italy;
| | - Federico V. Pallardó
- Department of Physiology, Medicine and Dentistry School, University of Valencia-INCLIVA, Center for Biomedical Network Research on Rare Diseases (CIBERER), 46010 Valencia, Spain;
| | - Tatiana Armeni
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (B.R.); (G.C.); (L.C.)
| |
Collapse
|
4
|
Deng X, Wu Q, Liu Y. Eucommia ulmoidesOliv. leaves flavonoids attenuate methylglyoxal-induced endothelial cell apoptosis in vitro and in vivo by upregulating AKT-Nrf2 signaling and downregulating oxidative stress. Food Sci Nutr 2024; 12:7938-7953. [PMID: 39479661 PMCID: PMC11521679 DOI: 10.1002/fsn3.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 08/04/2024] [Indexed: 11/02/2024] Open
Abstract
Methylglyoxal (MGO) triggers oxidative stress responses in vascular endothelial cells, leading to apoptosis linked to diabetic vascular complications. Total flavonoids of Eucommia ulmoides leaves (TFEL) display antioxidant activity, yet its prevention of MGO-induced apoptosis and mechanisms are unclear. Our study used western blotting and ELISA to evaluate protein levels and enzyme activities. Cell viability and apoptosis were evaluated using CCK8 assay and PE Annexin V/7-AAD double staining. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured using fluorescence probes. Vascular pathological changes and apoptosis were analyzed through H&E and TUNEL staining. In vitro, MGO-stimulated human umbilical vein endothelial cells (HUVECs) were treated with varying TFEL concentrations. Our results demonstrated that TFEL significantly enhanced cell viability, reduced apoptosis, downregulated caspase-3 activity, and Bax/Bcl-2 ratio. Moreover, TFEL markedly suppressed MGO-induced ROS and malondialdehyde (MDA) production while restoring antioxidant enzyme activity and MMP. TFEL pretreatment promoted the expression of p-Akt, Nrf2, and HO-1 proteins. Pharmacological inhibition of p-Akt significantly suppressed the upregulation of Nrf2 and HO-1 protein levels mediated by TFEL. Consistently, pharmacological inhibition of Nrf2 or p-Akt partially abrogated the protective effects of TFEL against MGO-induced damage in HUVECs. In vivo studies revealed that TFEL (100 and 200 mg/kg) partially restored antioxidant capacity and reduced aortic thickness and apoptosis in MGO-injured mice. In conclusion, the findings indicate that TFEL mitigates MGO-induced apoptosis via activation of p-Akt/Nrf2/HO-1 and scavenging of oxidative stress, highlighting its potential in diabetic vascular complication management.
Collapse
Affiliation(s)
- Xin Deng
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Qianfeng Wu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Youping Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
5
|
Ruzic M, Hefferan AIA, Conaway A, Hogan DA. Pseudomonas aeruginosa LasR-deficient mutants have increased methylglyoxal and hydrogen peroxide sensitivity due to low intracellular glutathione. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615034. [PMID: 39386711 PMCID: PMC11463435 DOI: 10.1101/2024.09.25.615034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The electrophile methylglyoxal (MG) is produced by microorganisms and host cells through central metabolic pathways. MG is a highly reactive electrophile, so it must be rapidly detoxified to prevent damaging modifications to macromolecules. Pseudomonas aeruginosa, a pathogen of concern due to its ability develop multidrug resistance, causes many types of infections that have been associated with elevated MG levels, including cystic fibrosis (CF). P. aeruginosa isolates commonly have mutations that lead to LasR loss-of-function (LasR-) and we found that lasR mutations confer sensitivity to MG in multiple strain backgrounds. LasR- strains have increased activity of the CbrAB two-component system which represses Crc regulation of metabolism. Here, we show that higher CbrAB activity and low Crc activity renders cells sensitive to MG. We found that P. aeruginosa LasR- strains are more sensitive to MG and have lower intracellular reduced glutathione (GSH) compared to their LasR+ comparators. Consistent with published reports, mutants lacking gloA3, which encodes a MG-glyoxalase, and mutants lacking GSH biosynthesis enzymes (gshA or gshB) were sensitive to MG. Exogenous GSH rescued MG sensitivity in LasR- strains and gshA or gshB mutants, but not in a gloA3 mutant strain. We propose that low GSH levels in LasR- strains contribute to increased sensitivity to MG and H2O2.
Collapse
Affiliation(s)
- Marina Ruzic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
6
|
Selke P, Strauss C, Horstkorte R, Scheer M. Effect of Different Glucose Levels and Glycation on Meningioma Cell Migration and Invasion. Int J Mol Sci 2024; 25:10075. [PMID: 39337558 PMCID: PMC11432498 DOI: 10.3390/ijms251810075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Meningiomas are predominantly benign tumors, but there are also malignant forms that are associated with a poor prognosis. Like almost all tumors, meningiomas metabolize glucose as part of aerobic glycolysis (Warburg effect) for energy supply, so there are attempts to influence the prognosis of tumor diseases using a glucose-reduced diet. This altered metabolism leads to so called hallmarks of cancer, such as glycation and glycosylation. In this study, we investigated the influence of low (3 mM), normal (5.5 mM) and high glucose (15 mM) on a malignant meningioma cell line (IOMM-Lee, WHO grade 3). In addition, the influence of methylglyoxal, a by-product of glycolysis and a precursor for glycation, was investigated. Impedance-based methods (ECIS and RTCA) were used to study migration and invasion, and immunoblotting was used to analyze the expression of proteins relevant to these processes, such as focal adhesion kinase (FAK), merlin or integrin ß1. We were able to show that low glucose reduced the invasive potential of the cells, which was associated with a reduced amount of sialic acid. Under high glucose, barrier function was impaired and adhesion decreased, which correlated with a decreased expression of FAK.
Collapse
Affiliation(s)
- Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Meng T, He D, Han Z, Shi R, Wang Y, Ren B, Zhang C, Mao Z, Luo G, Deng J. Nanomaterial-Based Repurposing of Macrophage Metabolism and Its Applications. NANO-MICRO LETTERS 2024; 16:246. [PMID: 39007981 PMCID: PMC11250772 DOI: 10.1007/s40820-024-01455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Macrophage immunotherapy represents an emerging therapeutic approach aimed at modulating the immune response to alleviate disease symptoms. Nanomaterials (NMs) have been engineered to monitor macrophage metabolism, enabling the evaluation of disease progression and the replication of intricate physiological signal patterns. They achieve this either directly or by delivering regulatory signals, thereby mapping phenotype to effector functions through metabolic repurposing to customize macrophage fate for therapy. However, a comprehensive summary regarding NM-mediated macrophage visualization and coordinated metabolic rewiring to maintain phenotypic equilibrium is currently lacking. This review aims to address this gap by outlining recent advancements in NM-based metabolic immunotherapy. We initially explore the relationship between metabolism, polarization, and disease, before delving into recent NM innovations that visualize macrophage activity to elucidate disease onset and fine-tune its fate through metabolic remodeling for macrophage-centered immunotherapy. Finally, we discuss the prospects and challenges of NM-mediated metabolic immunotherapy, aiming to accelerate clinical translation. We anticipate that this review will serve as a valuable reference for researchers seeking to leverage novel metabolic intervention-matched immunomodulators in macrophages or other fields of immune engineering.
Collapse
Affiliation(s)
- Tingting Meng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rong Shi
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
- Department of Breast Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, 730030, People's Republic of China
| | - Yuhan Wang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Bibo Ren
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Cheng Zhang
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
8
|
Vizuete AFK, Gonçalves CA. Is Methylglyoxal a Potential Biomarker for the Warburg Effect Induced by the Lipopolysaccharide Neuroinflammation Model? Neurochem Res 2024; 49:1823-1837. [PMID: 38727985 DOI: 10.1007/s11064-024-04142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1β, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil.
| | - Carlos-Alberto Gonçalves
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Ramio Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Pos Graduate Program in Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
10
|
Schildhauer P, Selke P, Staege MS, Harder A, Scheller C, Strauss C, Horstkorte R, Scheer M, Leisz S. Glycation Interferes with the Expression of Sialyltransferases and Leads to Increased Polysialylation in Glioblastoma Cells. Cells 2023; 12:2758. [PMID: 38067186 PMCID: PMC10706364 DOI: 10.3390/cells12232758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor that often utilizes aerobic glycolysis for energy production (Warburg effect), resulting in increased methylglyoxal (MGO) production. MGO, a reactive dicarbonyl compound, causes protein alterations and cellular dysfunction via glycation. In this study, we investigated the effect of glycation on sialylation, a common post-translational modification implicated in cancer. Our experiments using glioma cell lines, human astrocytes (hA), and primary glioma samples revealed different gene expressions of sialyltransferases among cells, highlighting the complexity of the system. Glycation has a differential effect on sialyltransferase expression, upregulating ST8SIA4 in the LN229 and U251 cell lines and decreasing the expression in normal hA. Subsequently, polysialylation increased in the LN229 and U251 cell lines and decreased in hA. This increase in polysialylation could lead to a more aggressive phenotype due to its involvement in cancer hallmark processes such as immune evasion, resistance to apoptosis, and enhancing invasion. Our findings provide insights into the mechanisms underlying GBM aggressiveness and suggest that targeting glycation and sialylation could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Martin S. Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- CURE-NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (P.S.); (M.S.)
| |
Collapse
|
11
|
Shehata SA, Toraih EA, Ismail EA, Hagras AM, Elmorsy E, Fawzy MS. Vaping, Environmental Toxicants Exposure, and Lung Cancer Risk. Cancers (Basel) 2023; 15:4525. [PMID: 37760496 PMCID: PMC10526315 DOI: 10.3390/cancers15184525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer (LC) is the second-most prevalent tumor worldwide. According to the most recent GLOBOCAN data, over 2.2 million LC cases were reported in 2020, with an estimated new death incident of 1,796,144 lung cancer cases. Genetic, lifestyle, and environmental exposure play an important role as risk factors for LC. E-cigarette, or vaping, products (EVPs) use has been dramatically increasing world-wide. There is growing concern that EVPs consumption may increase the risk of LC because EVPs contain several proven carcinogenic compounds. However, the relationship between EVPs and LC is not well established. E-cigarette contains nicotine derivatives (e.g., nitrosnornicotine, nitrosamine ketone), heavy metals (including organometal compounds), polycyclic aromatic hydrocarbons, and flavorings (aldehydes and complex organics). Several environmental toxicants have been proven to contribute to LC. Proven and plausible environmental carcinogens could be physical (ionizing and non-ionizing radiation), chemicals (such as asbestos, formaldehyde, and dioxins), and heavy metals (such as cobalt, arsenic, cadmium, chromium, and nickel). Air pollution, especially particulate matter (PM) emitted from vehicles and industrial exhausts, is linked with LC. Although extensive environmental exposure prevention policies and smoking reduction strategies have been adopted globally, the dangers remain. Combined, both EVPs and toxic environmental exposures may demonstrate significant synergistic oncogenicity. This review aims to analyze the current publications on the importance of the relationship between EVPs consumption and environmental toxicants in the pathogenesis of LC.
Collapse
Affiliation(s)
- Shaimaa A. Shehata
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (S.A.S.); (A.M.H.)
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ezzat A. Ismail
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Abeer M. Hagras
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (S.A.S.); (A.M.H.)
| | - Ekramy Elmorsy
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
12
|
Xu M, Zuo D, Wang Q, Lv L, Zhang Y, Jiao H, Zhang X, Yang Y, Song G, Cheng H. Identification and molecular evolution of the GLX genes in 21 plant species: a focus on the Gossypium hirsutum. BMC Genomics 2023; 24:474. [PMID: 37608304 PMCID: PMC10464159 DOI: 10.1186/s12864-023-09524-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.
Collapse
Affiliation(s)
- Menglin Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huixin Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiang Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yi Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoli Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Hailiang Cheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
13
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales MA. Association between diabetes and cancer. Current mechanistic insights into the association and future challenges. Mol Cell Biochem 2023; 478:1743-1758. [PMID: 36565361 DOI: 10.1007/s11010-022-04630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Compelling pieces of epidemiological, clinical, and experimental research have demonstrated that Diabetes mellitus (DM) is a major risk factor associated with increased cancer incidence and mortality in many human neoplasms. In the pathophysiology context of DM, many of the main classical actors are relevant elements that can fuel the different steps of the carcinogenesis process. Hyperglycemia, hyperinsulinemia, metabolic inflammation, and dyslipidemia are among the classic contributors to this association. Furthermore, new emerging actors have received particular attention in the last few years, and compelling data support that the microbiome, the epigenetic changes, the reticulum endoplasmic stress, and the increased glycolytic influx also play important roles in promoting the development of many cancer types. The arsenal of glucose-lowering therapeutic agents used for treating diabetes is wide and diverse, and a growing body of data raised during the last two decades has tried to clarify the contribution of therapeutic agents to this association. However, this research area remains controversial, because some anti-diabetic drugs are now considered as either promotors or protecting elements. In the present review, we intend to highlight the compelling epidemiological shreds of evidence that support this association, as well as the mechanistic contributions of many of these potential pathological mechanisms, some controversial points as well as future challenges.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Ivan Schneider
- Medicine Faculty, Catholic University of Maule, Talca, Chile
| | | | - Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel A Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
15
|
Iacobini C, Vitale M, Pugliese G, Menini S. The "sweet" path to cancer: focus on cellular glucose metabolism. Front Oncol 2023; 13:1202093. [PMID: 37305566 PMCID: PMC10248238 DOI: 10.3389/fonc.2023.1202093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α), a key player in the adaptive regulation of energy metabolism, and the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), a critical regulator of glucose consumption, are the main drivers of the metabolic rewiring in cancer cells. The use of glycolysis rather than oxidative phosphorylation, even in the presence of oxygen (i.e., Warburg effect or aerobic glycolysis), is a major metabolic hallmark of cancer. Aerobic glycolysis is also important for the immune system, which is involved in both metabolic disorders development and tumorigenesis. More recently, metabolic changes resembling the Warburg effect have been described in diabetes mellitus (DM). Scientists from different disciplines are looking for ways to interfere with these cellular metabolic rearrangements and reverse the pathological processes underlying their disease of interest. As cancer is overtaking cardiovascular disease as the leading cause of excess death in DM, and biological links between DM and cancer are incompletely understood, cellular glucose metabolism may be a promising field to explore in search of connections between cardiometabolic and cancer diseases. In this mini-review, we present the state-of-the-art on the role of the Warburg effect, HIF-1α, and PKM2 in cancer, inflammation, and DM to encourage multidisciplinary research to advance fundamental understanding in biology and pathways implicated in the link between DM and cancer.
Collapse
|
16
|
Knörlein A, Xiao Y, David Y. Leveraging histone glycation for cancer diagnostics and therapeutics. Trends Cancer 2023; 9:410-420. [PMID: 36804508 PMCID: PMC10121827 DOI: 10.1016/j.trecan.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Cancer cells undergo metabolic reprogramming to rely mostly on aerobic glycolysis (the Warburg effect). The increased glycolytic intake enhances the intracellular levels of reactive sugars and sugar metabolites. These reactive species can covalently modify macromolecules in a process termed glycation. Histones are particularly susceptible to glycation, resulting in substantial alterations to chromatin structure, function, and transcriptional output. Growing evidence suggests a link between dysregulated metabolism of tumors and cancer proliferation through epigenetic changes. This review discusses recent advances in the understanding of histone glycation, its impact on the epigenetic landscape and cellular fate, and its role in cancer. In addition, we investigate the possibility of using histone glycation as biomarkers and targets for anticancer therapeutics.
Collapse
Affiliation(s)
- Anna Knörlein
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yang Xiao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Schildhauer P, Selke P, Scheller C, Strauss C, Horstkorte R, Leisz S, Scheer M. Glycation Leads to Increased Invasion of Glioblastoma Cells. Cells 2023; 12:cells12091219. [PMID: 37174618 PMCID: PMC10177211 DOI: 10.3390/cells12091219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGFβ, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Rong P, Yanchu L, Nianchun G, Qi L, Xianyong L. Glyoxal-induced disruption of tumor cell progression in breast cancer. Mol Clin Oncol 2023; 18:26. [PMID: 36908974 PMCID: PMC9993443 DOI: 10.3892/mco.2023.2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/08/2021] [Indexed: 02/17/2023] Open
Abstract
Breast cancer is the most common malignant tumor in women and remains a major global challenge, with ~1.4 million cases per year, worldwide. Numerous studies have shown that changes in cell metabolism are associated with the regulation of tumor progression. In the present study, the anti-cancer properties of glyoxal (GO), which is the smallest dialdehyde formed in the oxidation-reduction reaction and involved in electron transfer and energy metabolism, in breast cancer was investigated. The biological functions and molecular mechanisms of GO were investigated in breast cancer cell lines using MTT and crystal violet assays, flow cytometry, western blot analysis, 3D laser scanning confocal microscopy and transmission electron microscopy. The results showed that GO strongly inhibited cell proliferation, promoted cell apoptosis and cell cycle G2/M arrest, induced the disappearance of cellular microvilli, and enlarged mitochondria. In addition, the protein expression level of AKT, mTOR and p70-S6K decreased in the AKT-mTOR pathway, accompanied by an increase in p-ERK and p-MEK in the MAPK pathway. The results from the present study indicate that GO suppressed breast cancer progression via the MAPK and AKT-mTOR pathways. Taken together, these results provide the basis for a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Pu Rong
- Department of Oncology, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China.,Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| | - Li Yanchu
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guo Nianchun
- Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| | - Li Qi
- Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| | - Li Xianyong
- Department of Oncology, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China.,Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| |
Collapse
|
19
|
Dube G, Tiamiou A, Bizet M, Boumahd Y, Gasmi I, Crake R, Bellier J, Nokin MJ, Calonne E, Deplus R, Wissocq T, Peulen O, Castronovo V, Fuks F, Bellahcène A. Methylglyoxal: a novel upstream regulator of DNA methylation. J Exp Clin Cancer Res 2023; 42:78. [PMID: 36998085 PMCID: PMC10064647 DOI: 10.1186/s13046-023-02637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.
Collapse
Affiliation(s)
- Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Wissocq
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO (Walloon Excellence in Lifesciences & Biotechnology), Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
20
|
KNSTRN, a Poor Prognostic Biomarker, Affects the Tumor Immune Microenvironment and Immunotherapy Outcomes in Pan-Cancer. DISEASE MARKERS 2023; 2023:6729717. [PMID: 36845017 PMCID: PMC9946745 DOI: 10.1155/2023/6729717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Kinetochore-localized astrin- (SPAG5-) binding protein (KNSTRN) is mainly involved in mitosis. Somatic mutations in KNSTRN are known to lead to the occurrence and development of certain tumors. However, the role of KNSTRN in the tumor immune microenvironment (TIME) as a tumor prognostic biomarker and potential therapeutic target has not been clarified. Accordingly, in this study, we aimed to investigate the role of KNSTRN in the TIME. mRNA expression, cancer patient prognosis, and correlations between KNSTRN expression and immune component infiltration were analyzed using Genotype-Tissue Expression, The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Human Protein Atlas, ImmuCellAI, TIMER2.0, and KM-Plotter. The Genomics of Drug Sensitivity in Cancer database was used to evaluate the relationship between KNSTRN expression and the half maximal inhibitory concentration (IC50) of several anticancer drugs, and gene set variation analysis was performed. Data were visualized using R version 4.1.1. KNSTRN expression was upregulated in the majority of cancers and was associated with a worse prognosis. Additionally, KNSTRN expression was highly correlated with the infiltration of multiple immune components in the TIME and was related to a poor prognosis in tumor patients receiving immunotherapy. KNSTRN expression was also positively correlated with the IC50 of various anticancer drugs. In conclusion, KNSTRN may be a significant prognostic biomarker and promising target for oncotherapy in numerous cancers.
Collapse
|
21
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
22
|
Xie N, Zhang R, Bi Z, Ren W, You K, Hu H, Xu Y, Yao H. H3K27 acetylation activated long noncoding RNA RP11-162G10.5 promotes breast cancer progression via the YBX1/GLO1 axis. Cell Oncol (Dordr) 2022; 46:375-390. [PMID: 36576700 DOI: 10.1007/s13402-022-00756-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) orchestrate critical roles in human tumorigenesis. However, the regulatory mechanism of lncRNAs in tissue-specific expressions in breast cancer (BC) remains poorly understood. This study aims to investigate lncRNA role and mechanisms in BC. METHODS RNA sequencing was used to explore differentially expressed lncRNAs in BC and adjacent tissues. H3K27 acetylation (H3K27ac) chromatin immune-precipitation sequencing (ChIP-seq) data of BC cells from the GEO dataset (GSE85158) was retrieved to identify the H3K27ac activated lncRNAs that were involved in tumorigenesis. RP11-162G10.5 was selected as the target lncRNA for further functional and mechanism study. RESULTS In this study, we identified a novel lncRNA RP11-162G10.5, whose overexpression was specifically driven by H3K27ac in luminal breast cancer. And increased RP11-162G10.5 in BC is correlated with poor patient outcomes. RP11-162G10.5 promotes tumor cell proliferation in vitro and in vivo. Mechanistically, RP11-162G10.5 recruits transcriptional factor YBX1 to the GLO1 promoter, consequently activating GLO1 transcription to modulate the progression of BC. CONCLUSIONS Our findings suggest that the histone modification-activated lncRNA contributes to the oncogenesis of BC. Also, our data reveal a role for RP11-162G10.5 in BC tumorigenesis and may supply a strategy for targeting the RP11-162G10.5 as a potential biomarker and a therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Ning Xie
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruihua Zhang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuofei Bi
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Ren
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kaiyun You
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Xu
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Herui Yao
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Abstract
The glyoxalase gene family consists of six structurally and functionally diverse enzymes with broad roles in metabolism. The common feature that defines this family is based on structural motifs that coordinate divalent cations which are required for activity. These family members have been implicated in a variety of physiological processes, including amino-acid metabolism (4-hydroxyphenylpyruvate dioxygenase; HPD), primary metabolism (methylmalonyl-CoA epimerase; MCEE), and aldehyde detoxication (glyoxalase 1; GLO1) and therefore have significant associations with disease. A central function of this family is the detoxification of reactive dicarbonyls (e.g., methylglyoxal), which react with cellular nucleophiles, resulting in the modification of lipids, proteins, and DNA. These damaging modifications activate canonical stress responses such as heat shock, unfolded protein, antioxidant, and DNA damage responses. Thus, glyoxalases serve an important role in homeostasis, preventing the pathogenesis of metabolic disease states, including obesity, diabetes, cardiovascular disease, renal failure, and aging. This review presents a thorough overview of the literature surrounding this diverse enzyme class. Although extensive literature exists for some members of this family (e.g., GLO1), little is known about the physiological role of glyoxalase domain-containing protein 4 (GLOD4) and 5 (GLOD5), paving the way for exciting avenues for future research.
Collapse
Affiliation(s)
- Dominique O Farrera
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - James J Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
24
|
Watanabe M, Toyomura T, Ikegami R, Suwaki Y, Sada M, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Nordihydroguaiaretic acid inhibits glyoxalase I, and causes the accumulation of methylglyoxal followed by cell-growth inhibition. Mol Biol Rep 2022; 49:10499-10507. [PMID: 36127524 DOI: 10.1007/s11033-022-07929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Methylglyoxal (MGO) is a known toxic byproduct of glycolysis, with MGO-induced cytotoxicity believed to contribute to the pathogenesis of several diseases. Glyoxalase I (GLO1) is a key enzyme for eliminating MGO in mammalian cells, therefore, compounds affecting GLO1 activity are potential therapeutic agents for MGO-induced disorders. Previously, we found nordihydroguaiaretic acid (NDGA) as a potent GLO1 inhibitor. METHODS The inhibitory characteristics of NDGA were determined spectrophotometrically with recombinant GLO1. NDGA-induced growth-inhibition and accumulation of MGO-derived advanced glycation end products (AGEs) were examined in EA.hy926 cells. RESULTS NDGA showed significant inhibition of GLO1 enzymatic activity in a dose-dependent manner. Its Ki value was estimated to be 146-fold lower than that of myricetin, a known GLO1 inhibitor. The co-addition of MGO with NDGA to the cells resulted in significant growth inhibition, suggesting that MGO accumulation, sufficient to affect cell growth, was caused by NDGA inhibiting GLO1. These findings were supported by the observations that the addition of aminoguanidine, a typical MGO scavenger, significantly reversed cell-growth inhibition by co-addition of MGO with NDGA, and that an increase in intracellular MGO-derived AGEs was observed during incubation with the co-addition of MGO with NDGA. CONCLUSION NDGA was found to be a novel and potent inhibitor of GLO1. The co-addition of NDGA with MGO to the cells resulted in increased intracellular MGO accumulation followed by enhanced cell-growth inhibition.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-Ku, 703-8516, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-Ku, 703-8516, Okayama, Japan
| | - Ryo Ikegami
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-Ku, 703-8516, Okayama, Japan
| | - Yui Suwaki
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-Ku, 703-8516, Okayama, Japan
| | - Minami Sada
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-Ku, 703-8516, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University, 589-8511, Osaka-Sayama, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, 589-8511, Osaka-Sayama, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, 589-8511, Osaka-Sayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, 589-8511, Osaka-Sayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 700-8558, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-Ku, 703-8516, Okayama, Japan.
| |
Collapse
|
25
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
26
|
Zhou X, Kandalai S, Hossain F, Zheng Q. Tumor microbiome metabolism: A game changer in cancer development and therapy. Front Oncol 2022; 12:933407. [PMID: 35936744 PMCID: PMC9351545 DOI: 10.3389/fonc.2022.933407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating recent evidence indicates that the human microbiome plays essential roles in pathophysiological states, including cancer. The tumor microbiome, an emerging concept that has not yet been clearly defined, has been proven to influence both cancer development and therapy through complex mechanisms. Small molecule metabolites produced by the tumor microbiome through unique biosynthetic pathways can easily diffuse into tissues and penetrate cell membranes through transporters or free diffusion, thus remodeling the signaling pathways of cancer and immune cells by interacting with biomacromolecules. Targeting tumor microbiome metabolism could offer a novel perspective for not only understanding cancer progression but also developing new strategies for the treatment of multiple cancer types. Here, we summarize recent advances regarding the role the tumor microbiome plays as a game changer in cancer biology. Specifically, the metabolites produced by the tumor microbiome and their potential effects on the cancer development therapy are discussed to understand the importance of the microbial metabolism in the tumor microenvironment. Finally, new anticancer therapeutic strategies that target tumor microbiome metabolism are reviewed and proposed to provide new insights in clinical applications.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
27
|
Wang J, Yang X, Wang Z, Wang J. Role of the Glyoxalase System in Breast Cancer and Gynecological Cancer-Implications for Therapeutic Intervention: a Review. Front Oncol 2022; 12:857746. [PMID: 35898868 PMCID: PMC9309216 DOI: 10.3389/fonc.2022.857746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Methyglyoxal (MGO), an essential endogenous dicarbonyl metabolite, can lead to multiple physiological problems including hyperglycemia, kidney diseases, malignant tumors, beyond its normal concentration range. The glyoxalase system, making MGO maintained at a low level, links glycation to carcinogenesis, growth, metastasis, and cancer chemotherapy. The glyoxalase system comprises glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), which is often overexpressed in various tumor tissues. However, very little is known about the glyoxalase system in breast cancer and gynecological cancer. In this review, we introduce the role of the glyoxalase system in breast cancer, endometrial cancer, ovarian cancer and cervical cancer, and highlight the potential of the glyoxalase system to be both as a marker for diagnosis and a novel target for antitumor therapy. However, the intrinsic molecular biology and mechanisms of the glyoxalase system in breast cancer and gynecological cancer need further exploration.
Collapse
|
28
|
Liu J, Li M, Dang Y, Lou H, Xu Z, Zhang W. NIR-I fluorescence imaging tumorous methylglyoxal by an activatable nanoprobe based on peptide nanotubes by FRET process. Biosens Bioelectron 2022; 204:114068. [PMID: 35149453 DOI: 10.1016/j.bios.2022.114068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO), a glycolysis metabolite with high reactivity, can nonenzymatically modify proteins, lipids and nucleic acids etc., and it is closely related to the development of tumors. The accurate detection and high-performance optical imaging of MGO from deep tumor issues is of great significance for understanding their roles in tumor initiation and progression. Herein, we have presented a nanoprobe D/I-PNTs with emission in the first near infrared (NIR-I) region by employing a fluorescence resonance energy transfer (FRET) process between a far-red emission MGO probe and IR783 based on peptide nanotubes. The nanoplatform extended the emission range of MGO probe through FRET process and avoided complex molecular design and synthesis. The biocompatible peptide nanotubes improved the water solubility of MGO probe. D/I-PNTs was sensitive to MGO with a detection limit of 272 nM and enabled high-resolution NIR-I fluorescence imaging of MGO induced by glyoxalase I (GLO1) inhibitor in tumor with higher penetration depth (∼4 mm) than that in visible (Vis) region (∼3 mm). Most importantly, the FRET process based on the structure characteristics of peptide nanotubes can be a universal approach to realize the extension of emission wavelength and ratio detection of target analytes, which will be a promising strategy for bioimaging in deep tissue with high contrast.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haiming Lou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
29
|
Ma H, Ding Z, Xie Y, Li L, Li D, Lou K, Wang W, Xu H. Methylglyoxal produced by tumor cells through formaldehyde-enhanced Warburg effect potentiated polarization of tumor-associated macrophages. Toxicol Appl Pharmacol 2022; 438:115910. [DOI: 10.1016/j.taap.2022.115910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
|
30
|
Sruthi CR, Raghu KG. Methylglyoxal induces ambience for cancer promotion in HepG2 cells via Warburg effect and promotes glycation. J Cell Biochem 2022; 123:1532-1543. [PMID: 35043457 DOI: 10.1002/jcb.30215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Methylglyoxal (MGO) is a toxic, highly reactive metabolite derived mainly from glucose and amino acids degradation. MGO is also one of the prime precursors for advanced glycation end products formation. The present research was performed to check whether MGO has any role in the promotion of cancer in HepG2 cells. For this, cells were incubated with MGO (50 µM) for 24 h and subjected to various analyses. Aminoguanidine (200 µM) was positive control. The various biochemical and protein expression studies, relevant to the MGO detoxification system, oxidative stress, and glycolysis were performed. MGO caused the reduction of expression of GLO 1 (27%) and GLO 2 (11%) causing weakening of the innate detoxification system. This is followed by an increase of RAGE (95%), AGEs or methylglyoxal adducts. We also observed hypoxia via estimation of oxygen consumption rate and surplus reactive oxygen species (ROS) (24%). To investigate the off-target effect of MGO we checked its effect on glucose transport, and its associated proteins. Glucose uptake was found to increase (15%) significantly with overexpression of GLUT 1 (35%). We also found a significant increase of glycolytic enzymes such as hexokinase II, phosphofructokinase 1, and lactate dehydrogenase along with lactate production. Observation of surplus ROS and enhanced glycolysis led us to check the expression of HIF 1α which is their downstream signaling pathway. Interestingly HIF 1α was found to increase significantly (35%). It is known that enhanced glycolysis and oxidative stress are catalysts for the overexpression of HIF 1α which in turn creates an ambience for the promotion of cancer. Aminoguanidine was able to prevent the adverse effect of MGO partially. This is the first study to show the potential of MGO for the promotion of cancer in the non-tumorigenic HepG2 cells via the Warburg effect and glycation.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Dang Y, Lai Y, Chen F, Sun Q, Ding C, Zhang W, Xu Z. Activatable NIR-II Fluorescent Nanoprobe for Rapid Detection and Imaging of Methylglyoxal Facilitated by the Local Nonpolar Microenvironment. Anal Chem 2022; 94:1076-1084. [DOI: 10.1021/acs.analchem.1c04076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fengping Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qian Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunyong Ding
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
32
|
Hernandez-Castillo C, Shuck SC. Diet and Obesity-Induced Methylglyoxal Production and Links to Metabolic Disease. Chem Res Toxicol 2021; 34:2424-2440. [PMID: 34851609 DOI: 10.1021/acs.chemrestox.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The obesity rate in the United States is 42.4% and has become a national epidemic. Obesity is a complex condition that is influenced by socioeconomic status, ethnicity, genetics, age, and diet. Increased consumption of a Western diet, one that is high in processed foods, red meat, and sugar content, is associated with elevated obesity rates. Factors that increase obesity risk, such as socioeconomic status, also increase consumption of a Western diet because of a limited access to healthier options and greater affordability of processed foods. Obesity is a public health threat because it increases the risk of several pathologies, including atherosclerosis, diabetes, and cancer. The molecular mechanisms linking obesity to disease onset and progression are not well understood, but a proposed mechanism is physiological changes caused by altered lipid peroxidation, glycolysis, and protein metabolism. These metabolic pathways give rise to reactive molecules such as the abundant electrophile methylglyoxal (MG), which covalently modifies nucleic acids and proteins. MG-adducts are associated with obesity-linked pathologies and may have potential for biomonitoring to determine the risk of disease onset and progression. MG-adducts may also play a role in disease progression because they are mutagenic and directly impact protein stability and function. In this review, we discuss how obesity drives metabolic alterations, how these alterations lead to MG production, the association of MG-adducts with disease, and the potential impact of MG-adducts on cellular function.
Collapse
Affiliation(s)
- Carlos Hernandez-Castillo
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| |
Collapse
|
33
|
Jacobs F, Cani M, Malapelle U, Novello S, Napoli VM, Bironzo P. Targeting KRAS in NSCLC: Old Failures and New Options for "Non-G12c" Patients. Cancers (Basel) 2021; 13:6332. [PMID: 34944952 PMCID: PMC8699276 DOI: 10.3390/cancers13246332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene mutations are among the most common driver alterations in non-small cell lung cancer (NSCLC). Despite their high frequency, valid treatment options are still lacking, mainly due to an intrinsic complexity of both the protein structure and the downstream pathway. The increasing knowledge about different mutation subtypes and co-mutations has paved the way to several promising therapeutic strategies. Despite the best results so far having been obtained in patients harbouring KRAS exon 2 p.G12C mutation, even the treatment landscape of non-p.G12C KRAS mutation positive patients is predicted to change soon. This review provides a comprehensive and critical overview of ongoing studies into NSCLC patients with KRAS mutations other than p.G12C and discusses future scenarios that will hopefully change the story of this disease.
Collapse
Affiliation(s)
- Francesca Jacobs
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Turin, Italy; (F.J.); (M.C.); (S.N.); (V.M.N.)
| | - Massimiliano Cani
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Turin, Italy; (F.J.); (M.C.); (S.N.); (V.M.N.)
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80138 Naples, Italy;
| | - Silvia Novello
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Turin, Italy; (F.J.); (M.C.); (S.N.); (V.M.N.)
| | - Valerio Maria Napoli
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Turin, Italy; (F.J.); (M.C.); (S.N.); (V.M.N.)
| | - Paolo Bironzo
- Department of Oncology, University of Turin, AOU San Luigi Gonzaga, 10043 Turin, Italy; (F.J.); (M.C.); (S.N.); (V.M.N.)
| |
Collapse
|
34
|
Methylglyoxal Levels in Human Colorectal Precancer and Cancer: Analysis of Tumor and Peritumor Tissue. Life (Basel) 2021; 11:life11121319. [PMID: 34947850 PMCID: PMC8708054 DOI: 10.3390/life11121319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and its incidence is increasing; therefore, an understanding of its oncogenic mechanisms is critical for improving its treatment and management. Methylglyoxal (MGO) has a highly reactive aldehyde group and has been suggested to play a role in oncogenesis. However, no standardized data are currently available on MGO levels in colorectal precancerous and cancerous lesions. We collected 40 matched colorectal tumor and peritumor tissues from patients with low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive cancer (IC). MGO levels increased between LGD, HGD, and IC tumor tissues (215.25 ± 39.69, 267.45 ± 100.61, and 587.36 ± 123.19 μg/g protein, respectively; p = 0.014). The MGO levels in peritumor tissue increased and were significantly higher than MGO levels in tumor tissue (197.99 ± 49.40, 738.09 ± 247.87, 933.41 ± 164.83 μg/g protein, respectively; p = 0.002). Tumor tissue MGO levels did not correlate with age, sex, underlying disease, or smoking status. These results suggest that MGO levels fluctuate in progression of CRC and warrants further research into its underlying mechanisms and function in tumor biology.
Collapse
|
35
|
Glycation Interferes with the Expression of Sialyltransferases in Meningiomas. Cells 2021; 10:cells10123298. [PMID: 34943806 PMCID: PMC8699175 DOI: 10.3390/cells10123298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.
Collapse
|
36
|
Suh EH, Geraldes CFGC, Chirayil S, Faubert B, Ayala R, DeBerardinis RJ, Sherry AD. Detection of glucose-derived D- and L-lactate in cancer cells by the use of a chiral NMR shift reagent. Cancer Metab 2021; 9:38. [PMID: 34742347 PMCID: PMC8571830 DOI: 10.1186/s40170-021-00267-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Excessive lactate production, a hallmark of cancer, is largely formed by the reduction of pyruvate via lactate dehydrogenase (LDH) to L-lactate. Although D-lactate can also be produced from glucose via the methylglyoxal pathway in small amounts, less is known about the amount of D-lactate produced in cancer cells. Since the stereoisomers of lactate cannot be distinguished by conventional 1H NMR spectroscopy, a chiral NMR shift reagent was used to fully resolve the 1H NMR resonances of D- and L-lactate. METHODS The production of L-lactate from glucose and D-lactate from methylglyoxal was first demonstrated in freshly isolated red blood cells using the chiral NMR shift reagent, YbDO3A-trisamide. Then, two different cell lines with high GLO1 expression (H1648 and H 1395) were selected from a panel of over 80 well-characterized human NSCLC cell lines, grown to confluence in standard tissue culture media, washed with phosphate-buffered saline, and exposed to glucose in a buffer for 4 h. After 4 h, a small volume of extracellular fluid was collected and mixed with YbDO3A-trisamide for analysis by 1H NMR spectroscopy. RESULTS A suspension of freshly isolated red blood cells exposed to 5mM glucose produced L-lactate as expected but very little D-lactate. To evaluate the utility of the chiral NMR shift reagent, methylglyoxal was then added to red cells along with glucose to stimulate the production of D-lactate via the glyoxalate pathway. In this case, both D-lactate and L-lactate were produced and their NMR chemical shifts assigned. NSCLC cell lines with different expression levels of GLO1 produced both L- and D-lactate after incubation with glucose and glutamine alone. A GLO1-deleted parental cell line (3553T3) showed no production of D-lactate from glucose while re-expression of GLO1 resulted in higher production of D-lactate. CONCLUSIONS The shift-reagent-aided NMR technique demonstrates that D-lactate is produced from glucose in NSCLC cells via the methylglyoxal pathway. The biological role of D-lactate is uncertain but a convenient method for monitoring D-lactate production could provide new insights into the biological roles of D- versus L-lactate in cancer metabolism.
Collapse
Affiliation(s)
- Eul Hyun Suh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, Faculty of Science and Technology, University of Coimbra, 3000-393, Coimbra, Portugal
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raul Ayala
- School of Health Professions at Yvonne A. Ewell Townview Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Leone A, Nigro C, Nicolò A, Prevenzano I, Formisano P, Beguinot F, Miele C. The Dual-Role of Methylglyoxal in Tumor Progression - Novel Therapeutic Approaches. Front Oncol 2021; 11:645686. [PMID: 33869040 PMCID: PMC8044862 DOI: 10.3389/fonc.2021.645686] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
One of the hallmarks of cancer cells is their metabolic reprogramming, which includes the preference for the use of anaerobic glycolysis to produce energy, even in presence of normal oxygen levels. This phenomenon, known as “Warburg effect”, leads to the increased production of reactive intermediates. Among these Methylglyoxal (MGO), a reactive dicarbonyl known as the major precursor of the advanced glycated end products (AGEs), is attracting great attention. It has been well established that endogenous MGO levels are increased in several types of cancer, however the MGO contribution in tumor progression is still debated. Although an anti-cancer role was initially attributed to MGO due to its cytotoxicity, emerging evidence has highlighted its pro-tumorigenic role in several types of cancer. These apparently conflicting results are explained by the hormetic potential of MGO, in which lower doses of MGO are able to establish an adaptive response in cancer cells while higher doses cause cellular apoptosis. Therefore, the extent of MGO accumulation and the tumor context are crucial to establish MGO contribution to cancer progression. Several therapeutic approaches have been proposed and are currently under investigation to inhibit the pro-tumorigenic action of MGO. In this review, we provide an overview of the early and latest evidence regarding the role of MGO in cancer, in order to define its contribution in tumor progression, and the therapeutic strategies aimed to counteract the tumor growth.
Collapse
Affiliation(s)
- Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Nicolò
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Immacolata Prevenzano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Pietro Formisano
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
38
|
Selke P, Rosenstock P, Bork K, Strauss C, Horstkorte R, Scheer M. Glycation of benign meningioma cells leads to increased invasion. Biol Chem 2021; 402:849-859. [PMID: 33725749 DOI: 10.1515/hsz-2020-0376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Meningiomas are the most common non-malignant intracranial tumors. Like most tumors, meningiomas prefer anaerobic glycolysis for energy production (Warburg effect). This leads to an increased synthesis of the metabolite methylglyoxal (MGO). This metabolite is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation endproducts (AGEs). In this study, we investigated the influence of glycation on two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). Increasing MGO concentrations led to the formation of AGEs and decreased growth in both cell lines. When analyzing the influence of glycation on adhesion, chemotaxis and invasion, we could show that the glycation of meningioma cells resulted in increased invasive potential of the benign meningioma cell line, whereas the invasive potential of the malignant cell line was reduced. In addition, glycation increased the E-cadherin- and decreased the N-cadherin-expression in BEN-MEN-1 cells, but did not affect the cadherin-expression in IOMM-Lee cells.
Collapse
Affiliation(s)
- Philipp Selke
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Philip Rosenstock
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Kaya Bork
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Christian Strauss
- Department for Neurosurgery, University Hospital Halle, D-06120Halle/Saale, Germany
| | - Rüdiger Horstkorte
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
| | - Maximilian Scheer
- Medical Faculty, Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, D-06114Halle/Saale, Germany
- Department for Neurosurgery, University Hospital Halle, D-06120Halle/Saale, Germany
| |
Collapse
|
39
|
Mukhopadhyay S, Vander Heiden MG, McCormick F. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy. NATURE CANCER 2021; 2:271-283. [PMID: 33870211 PMCID: PMC8045781 DOI: 10.1038/s43018-021-00184-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Our understanding of how the RAS protein family, and in particular mutant KRAS promote metabolic dysregulation in cancer cells has advanced significantly over the last decade. In this Review, we discuss the metabolic reprogramming mediated by oncogenic RAS in cancer, and elucidating the underlying mechanisms could translate to novel therapeutic opportunities to target metabolic vulnerabilities in RAS-driven cancers.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frank McCormick
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Genova VM, Fernandes ACF, Hiramatsu É, Queirós LD, Macedo JA, Macedo GA. Biotransformed Antioxidant isoflavone extracts present high-capacity to attenuate the in vitro formation of advanced glycation end products. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2020.1869564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vanize M. Genova
- Bioprocess Laboratory, Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Annayara C. F. Fernandes
- Bioprocess Laboratory, Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Érika Hiramatsu
- Bioprocess Laboratory, Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Lívia D. Queirós
- Bioprocess Laboratory, Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juliana A. Macedo
- Bioactives Laboratory, Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Gabriela A. Macedo
- Bioprocess Laboratory, Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
41
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
42
|
Zheng J, Guo H, Ou J, Liu P, Huang C, Wang M, Simal-Gandara J, Battino M, Jafari SM, Zou L, Ou S, Xiao J. Benefits, deleterious effects and mitigation of methylglyoxal in foods: A critical review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Pavin SS, Prestes ADS, Dos Santos MM, de Macedo GT, Ferreira SA, Claro MT, Dalla Corte C, Vargas Barbosa N. Methylglyoxal disturbs DNA repair and glyoxalase I system in Saccharomyces cerevisiae. Toxicol Mech Methods 2020; 31:107-115. [PMID: 33059495 DOI: 10.1080/15376516.2020.1838019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde able to form covalent adducts with proteins and nucleic acids, disrupting cellular functions. In this study, we performed a screening of Saccharomyces cerevisiae (S. cerevisiae) strains to find out which genes of cells are responsive to MG, emphasizing genes against oxidative stress and DNA repair. Yeast strains were grown in the YPD-Galactose medium containing MG (0.5 to 12 mM). The tolerance to MG was evaluated by determining cellular growth and cell viability. The toxicity of MG was more pronounced in the strains with deletion in genes engaged with DNA repair checkpoint proteins, namely Rad23 and Rad50. MG also impaired the growth and viability of S. cerevisiae mutant strains Glo1 and Gsh1, both components of the glyoxalase I system. Differently, the strains with deletion in genes encoding for antioxidant enzymes were apparently resistant to MG. In summary, our data indicate that DNA repair and MG detoxification pathways are keys in the control of MG toxicity in S. cerevisiae.
Collapse
Affiliation(s)
- Sandra Sartoretto Pavin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
44
|
Härma MA, Adeshara K, Istomin N, Lehto M, Blaut M, Savolainen MJ, Hörkkö S, Groop PH, Koivukangas V, Hukkanen J. Gastrointestinal manifestations after Roux-en-Y gastric bypass surgery in individuals with and without type 2 diabetes. Surg Obes Relat Dis 2020; 17:585-594. [PMID: 33246847 DOI: 10.1016/j.soard.2020.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is an effective treatment for obesity, which improves cardiovascular health and reduces the risk of premature mortality. However, some reports have suggested that RYGB may predispose patients to adverse health outcomes, such as inflammatory bowel disease (IBD) and colorectal cancer. OBJECTIVES The present prospective study aimed to evaluate the impact of RYGB surgery on cardiovascular risk factors and gastrointestinal inflammation in individuals with and without type 2 diabetes (T2D). SETTING University hospital setting in Finland. METHODS Blood and fecal samples were collected at baseline and 6 months after surgery from 30 individuals, of which 16 had T2D and 14 were nondiabetics. There were also single study visits for 6 healthy reference patients. Changes in cardiovascular risk factors, serum cholesterol, and triglycerides were investigated before and after surgery. Fecal samples were analyzed for calprotectin, anti-Saccharomyces cerevisiae immunoglobulin A antibodies (ASCA), active lipopolysaccharide (LPS) concentration, short-chain fatty acids (SCFAs), intestinal alkaline phosphatase activity, and methylglyoxal-hydro-imidazolone (MG-H1) protein adducts formation. RESULTS After RYGB, weight decreased on average -21.6% (-27.2 ± 7.8 kg), excess weight loss averaged 51%, and there were improvements in cardiovascular risk factors. Fecal calprotectin levels (P < .001), active LPS concentration (P < .002), ASCA (P < .02), and MG-H1 (P < .02) values increased significantly, whereas fecal SCFAs, especially acetate (P < .002) and butyrate (P < .03) levels, were significantly lowered. CONCLUSION The intestinal homeostasis is altered after RYGB, with several fecal markers suggesting increased inflammation; however, clinical significance of the detected changes is currently uncertain. As chronic inflammation may predispose patients to adverse health effects, our findings may have relevance for the suggested association between RYGB and increased risks of incident IBD and colorectal cancer.
Collapse
Affiliation(s)
- Mari-Anne Härma
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Krishna Adeshara
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Natalie Istomin
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Nordlab, Oulu University Hospital, Oulu, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Markku J Savolainen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Nordlab, Oulu University Hospital, Oulu, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Vesa Koivukangas
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Research Unit of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
45
|
Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The Glyoxalase System-New Insights into an Ancient Metabolism. Antioxidants (Basel) 2020; 9:antiox9100939. [PMID: 33019494 PMCID: PMC7600140 DOI: 10.3390/antiox9100939] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The glyoxalase system was discovered over a hundred years ago and since then it has been claimed to provide the role of an indispensable enzyme system in order to protect cells from a toxic byproduct of glycolysis. This review gives a broad overview of what has been postulated in the last 30 years of glyoxalase research, but within this context it also challenges the concept that the glyoxalase system is an exclusive tool of detoxification and that its substrate, methylglyoxal, is solely a detrimental burden for every living cell due to its toxicity. An overview of consequences of a complete loss of the glyoxalase system in various model organisms is presented with an emphasis on the role of alternative detoxification pathways of methylglyoxal. Furthermore, this review focuses on the overlooked posttranslational modification of Glyoxalase 1 and its possible implications for cellular maintenance under various (patho-)physiological conditions. As a final note, an intriguing point of view for the substrate methylglyoxal is offered, the concept of methylglyoxal (MG)-mediated hormesis.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- Correspondence:
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer at Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
46
|
Cheng G, Reisinger SA, Shields PG, Hatsukami DK, Balbo S, Hecht SS. Quantitation by liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry of DNA adducts derived from methyl glyoxal and carboxyethylating agents in leukocytes of smokers and non-smokers. Chem Biol Interact 2020; 327:109140. [PMID: 32442416 PMCID: PMC7682731 DOI: 10.1016/j.cbi.2020.109140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
A liquid chromatograpy-nanoelectrospray ionization-high resolution tandem mass spectrometry (LC-NSI-HRMS/MS) method was developed for quantitation of the DNA adducts 7-(2'-carboxyethyl)guanine (7-2'-CEG) and N2-(1'-carboxyethyl)guanine (N2-1'-CEG), as their methyl esters, in human leukocyte DNA from smokers and non-smokers. 7-2'-CEG has been previously identified in all human liver samples analyzed and is formed from an unknown carboxyethylating agent while N2-1'-CEG is formed from the advanced glycation endproduct methyl glyoxal. The method was applied for the analysis of these two DNA adducts in leukocyte DNA from 20 smokers and 20 non-smokers, in part to test the hypothesis that 7-2'-CEG could be formed by endogenous nitrosation, as previously observed in rats treated with nitrosodihydrouracil and nitrite. Levels of 7-2'-CEG (mean ± S.D.) were 0.6 ± 0.2 pmol/μmol dG in smokers and 0.5 ± 0.2 pmol/μmol dG in non-smokers, while those of N2-1'-CEG were 4.5 ± 1.9 pmol/μmol dG in smokers and 4.6 ± 2 pmol/μmol dG in non-smokers. These results did not support our hypothesis that endogenous nitrosation of dihydrouracil in smokers leads to higher levels of 7-2'-CEG in leukocyte DNA than in non-smokers. However the study provides the first data on levels of these DNA adducts in human leukocyte DNA, and the LC-NSI-HRMS/MS method developed for their quantitation could be important for future studies of DNA damage by methyl glyoxal.
Collapse
Affiliation(s)
- Guang Cheng
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah A Reisinger
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Peter G Shields
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
47
|
Lima AR, Pinto J, Carvalho-Maia C, Jerónimo C, Henrique R, Bastos MDL, Carvalho M, Guedes de Pinho P. A Panel of Urinary Volatile Biomarkers for Differential Diagnosis of Prostate Cancer from Other Urological Cancers. Cancers (Basel) 2020; 12:cancers12082017. [PMID: 32717987 PMCID: PMC7464354 DOI: 10.3390/cancers12082017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our group recently developed a urinary 6-biomarker panel for the diagnosis of prostate cancer (PCa) which has a higher level of accuracy compared to the serum prostate specific antigen (PSA) test. Herein, urine from an independent cohort of PCa patients and cancer-free controls was analyzed to further validate the discriminative power of that panel. Additionally, urine from patients diagnosed with bladder cancer (BC) and renal cancer (RC) were included to evaluate the site-specificity of the panel. Results confirmed the ability of the 6-biomarker panel to discriminate PCa patients from controls, but not from other urological cancers. To overcome this limitation, an untargeted approach was performed to unveil discriminant metabolites among the three cancer types. A 10-biomarker panel comprising the original panel plus four new metabolites was established to discriminate PCa from controls, BC, and RC, with 76% sensitivity, 90% specificity, and 92% accuracy. This improved panel also disclosed better accuracy than serum PSA test and provides the basis for a new non-invasive early detection tool for PCa.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
| | - Carina Carvalho-Maia
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Fernando Pessoa Energy, Environment and Health Research Unit (FP-ENAS), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| |
Collapse
|
48
|
Bellier J, Nokin MJ, Caprasse M, Tiamiou A, Blomme A, Scheijen JL, Koopmansch B, MacKay GM, Chiavarina B, Costanza B, Rademaker G, Durieux F, Agirman F, Maloujahmoum N, Cusumano PG, Lovinfosse P, Leung HY, Lambert F, Bours V, Schalkwijk CG, Hustinx R, Peulen O, Castronovo V, Bellahcène A. Methylglyoxal Scavengers Resensitize KRAS-Mutated Colorectal Tumors to Cetuximab. Cell Rep 2020; 30:1400-1416.e6. [PMID: 32023458 DOI: 10.1016/j.celrep.2020.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/10/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
The use of cetuximab anti-epidermal growth factor receptor (anti-EGFR) antibodies has opened the era of targeted and personalized therapy in colorectal cancer (CRC). Poor response rates have been unequivocally shown in mutant KRAS and are even observed in a majority of wild-type KRAS tumors. Therefore, patient selection based on mutational profiling remains problematic. We previously identified methylglyoxal (MGO), a by-product of glycolysis, as a metabolite promoting tumor growth and metastasis. Mutant KRAS cells under MGO stress show AKT-dependent survival when compared with wild-type KRAS isogenic CRC cells. MGO induces AKT activation through phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin 2 (mTORC2) and Hsp27 regulation. Importantly, the sole induction of MGO stress in sensitive wild-type KRAS cells renders them resistant to cetuximab. MGO scavengers inhibit AKT and resensitize KRAS-mutated CRC cells to cetuximab in vivo. This study establishes a link between MGO and AKT activation and pinpoints this oncometabolite as a potential target to tackle EGFR-targeted therapy resistance in CRC.
Collapse
Affiliation(s)
- Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Maurine Caprasse
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Assia Tiamiou
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Jean L Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
| | | | | | - Barbara Chiavarina
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Brunella Costanza
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Gilles Rademaker
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Florence Durieux
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Pino G Cusumano
- Department of Senology, Liège University Hospital, University of Liège, Liège, Belgium
| | - Pierre Lovinfosse
- Oncology Imaging Division, Liège University Hospital, University of Liège, Liège, Belgium
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Frédéric Lambert
- Department of Human Genetics, Liège University Hospital, Liege, Belgium
| | - Vincent Bours
- Department of Human Genetics, Liège University Hospital, Liege, Belgium
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
| | - Roland Hustinx
- Oncology Imaging Division, Liège University Hospital, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liège, Belgium.
| |
Collapse
|
49
|
Hirahara I, Kusano E, Jin D, Takai S. Hypermetabolism of glutathione, glutamate and ornithine via redox imbalance in methylglyoxal-induced peritoneal injury rats. J Biochem 2020; 167:185-194. [PMID: 31593282 DOI: 10.1093/jb/mvz077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Peritoneal dialysis (PD) is a blood purification treatment for patients with reduced renal function. However, the peritoneum is exposed to oxidative stress during PD and long-term PD results in peritoneal damage, leading to the termination of PD. Methylglyoxal (MGO) contained in commercial PD fluids is a source of strong oxidative stress. The aim of this study was to clarify the mechanism of MGO-induced peritoneal injury using metabolome analysis in rats. We prepared peritoneal fibrosis rats by intraperitoneal administration of PD fluids containing MGO for 21 days. As a result, MGO-induced excessive proliferation of mesenchymal cells with an accumulation of advanced glycation end-products (AGEs) at the surface of the thickened peritoneum in rats. The effluent levels of methionine sulfoxide, an oxidative stress marker and glutathione peroxidase activity were increased in the MGO-treated rats. The levels of glutathione, glutamate, aspartate, ornithine and AGEs were also increased in these rats. MGO upregulated the gene expression of transporters and enzymes related to the metabolism of glutathione, glutamate and ornithine in the peritoneum. These results suggest that MGO may induce peritoneal injury with mesenchymal cell proliferation via increased redox metabolism, directly or through the formation of AGEs during PD.
Collapse
Affiliation(s)
- Ichiro Hirahara
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| | - Eiji Kusano
- JCHO Utsunomiya Hospital, 11-17 Minamitakasago-chou, Utsunomiya, Tochigi 321-0143, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 568-8686
| |
Collapse
|
50
|
Polykretis P, Luchinat E, Boscaro F, Banci L. Methylglyoxal interaction with superoxide dismutase 1. Redox Biol 2020; 30:101421. [PMID: 31931282 PMCID: PMC6957824 DOI: 10.1016/j.redox.2019.101421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde spontaneously formed in human cells mainly as a by-product of glycolysis. Such endogenous metabolite reacts with proteins, nucleotides and lipids forming advanced glycation end-products (AGEs). MG binds to arginine, lysine and cysteine residues of proteins causing the formation of stable adducts that can interfere with protein function. Among the proteins affected by glycation, MG has been found to react with superoxide dismutase 1 (SOD1), a fundamental anti-oxidant enzyme that is abundantly expressed in neurons. Considering the high neuronal susceptibility to MG-induced oxidative stress, we sought to investigate by mass spectrometry and NMR spectroscopy which are the structural modifications induced on SOD1 by the reaction with MG. We show that MG reacts preferentially with the disulfide-reduced, demetallated form of SOD1, gradually causing its unfolding, and to a lesser extent, with the intermediate state of maturation – the reduced, zinc-bound homodimer – causing its gradual monomerization. These results suggest that MG could impair the correct maturation of SOD1 in vivo, thus both increasing cellular oxidative stress and promoting the cytotoxic misfolding and aggregation process of SOD1. MG forms stable adducts with the immature forms of SOD1. MG causes the unfolding of the apo-SOD1SH form. MG causes the monomerization of the E,Zn-SOD1SH form. In both forms, arginine 143 is more prone to interact with MG. The structural modifications caused by MG impair the correct maturation of SOD1.
Collapse
Affiliation(s)
- Panagis Polykretis
- Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Enrico Luchinat
- Magnetic Resonance Center - CERM, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|