1
|
Jiang JZ, Qiao YB, Zhu XR, Gu QH, Lu JJ, Ye ZY, Xu L, Liu YY. Identification of Gαi3 as a promising molecular oncotarget of pancreatic cancer. Cell Death Dis 2024; 15:699. [PMID: 39349432 PMCID: PMC11442978 DOI: 10.1038/s41419-024-07079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
The increasing mortality rate of pancreatic cancer globally necessitates the urgent identification for novel therapeutic targets. This study investigated the expression, functions, and mechanistic insight of G protein inhibitory subunit 3 (Gαi3) in pancreatic cancer. Bioinformatics analyses reveal that Gαi3 is overexpressed in human pancreatic cancer, correlating with poor prognosis, higher tumor grade, and advanced classification. Elevated Gαi3 levels are also confirmed in human pancreatic cancer tissues and primary/immortalized cancer cells. Gαi3 shRNA or knockout (KO) significantly reduced cell viability, proliferation, cell cycle progression, and mobility in primary/immortalized pancreatic cancer cells. Conversely, Gαi3 overexpression enhanced pancreatic cancer cell growth. RNA-sequencing and bioinformatics analyses of Gαi3-depleted cells indicated Gαi3's role in modulating the Akt-mTOR and PKA-Hippo-YAP pathways. Akt-S6 phosphorylation was decreased in Gαi3-depleted cells, but was increased with Gαi3 overexpression. Additionally, Gαi3 depletion elevated PKA activity and activated the Hippo pathway kinase LATS1/2, leading to YAP/TAZ inactivation, while Gαi3 overexpression exerted the opposite effects. There is an increased binding between Gαi3 promoter and the transcription factor TCF7L2 in pancreatic cancer tissues and cells. Gαi3 expression was significantly decreased following TCF7L2 silencing, but increased with TCF7L2 overexpression. In vivo, intratumoral injection of Gαi3 shRNA-expressing adeno-associated virus significantly inhibited subcutaneous pancreatic cancer xenografts growth in nude mice. A significant growth reduction was also observed in xenografts from Gαi3 knockout pancreatic cancer cells. Akt-mTOR inactivation and increased PKA activity coupled with YAP/TAZ inactivation were also detected in xenograft tumors upon Gαi3 depletion. Furthermore, bioinformatic analysis and multiplex immunohistochemistry (mIHC) staining on pancreatic cancer tissue microarrays showed a reduced proportion of M1-type macrophages and an increase in PD-L1 positive cells in Gαi3-high pancreatic cancer tissues. Collectively, these findings highlight Gαi3's critical role in promoting pancreatic cancer cell growth, potentially through the modulation of the Akt-mTOR and PKA-Hippo-YAP pathways and its influence on the immune landscape.
Collapse
Affiliation(s)
- Jian-Zhuo Jiang
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yin-Biao Qiao
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qian-Hui Gu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jing-Jing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zhen-Yu Ye
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Lu Xu
- Department of general surgery, The first affiliated hospital of Soochow university, Suzhou, China.
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
2
|
Li D, Weng S, Zeng K, Xu H, Wang W, Shi J, Chen J, Chen C. Long non-coding RNAs and tyrosine kinase-mediated drug resistance in pancreatic cancer. Gene 2024; 895:148007. [PMID: 37981080 DOI: 10.1016/j.gene.2023.148007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors with a dismal survival rate, this is primarily due to inevitable chemoresistance. Dysfunctional tyrosine kinases (TKs) and long non-coding RNAs (lncRNAs) affect the drug resistance and prognosis of PC. Here, we summarize the mechanisms by which TKs or lncRNAs mediate drug resistance and other malignant phenotypes. We also discuss that lncRNAs play oncogenic or tumor suppressor roles and different mechanisms including lncRNA-proteins/microRNAs to mediate drug resistance. Furthermore, we highlight that lncRNAs serve as upstream regulators of TKs mediating drug resistance. Finally, we display the clinical significance of TKs (AXL, EGFR, IGF1R, and MET), clinical trials, and lncRNAs (LINC00460, PVT1, HIF1A-AS1). In the future, TKs and lncRNAs may become diagnostic and prognostic biomarkers or drug targets to overcome the drug resistance of PC.
Collapse
Affiliation(s)
- Dangran Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210029, China
| | - Shiting Weng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Kai Zeng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hanmiao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenyueyang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Luo L, Wang X, Liao YP, Xu X, Chang CH, Nel AE. Reprogramming the pancreatic cancer stroma and immune landscape by a silicasome nanocarrier delivering nintedanib, a protein tyrosine kinase inhibitor. NANO TODAY 2024; 54:102058. [PMID: 38681872 PMCID: PMC11044875 DOI: 10.1016/j.nantod.2023.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The prevailing desmoplastic stroma and immunosuppressive microenvironment within pancreatic ductal adenocarcinoma (PDAC) pose substantial challenges to therapeutic intervention. Despite the potential of protein tyrosine kinase (PTK) inhibitors in mitigating the desmoplastic stromal response and enhancing the immune milieu, their efficacy is curtailed by suboptimal pharmacokinetics (PK) and insufficient tumor penetration. To surmount these hurdles, we have pioneered a novel strategy, employing lipid bilayer-coated mesoporous silica nanoparticles (termed "silicasomes") as a carrier for the delivery of Nintedanib. Nintedanib, a triple PTK inhibitor that targets vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor receptors, was encapsulated in the pores of silicasomes via a remote loading mechanism for weak bases. This innovative approach not only enhanced pharmacokinetics and intratumor drug concentrations but also orchestrated a transformative shift in the desmoplastic and immune landscape in a robust orthotopic KRAS-mediated pancreatic carcinoma (KPC) model. Our results demonstrate attenuation of vascular density and collagen content through encapsulated Nintedanib treatment, concomitant with significant augmentation of the CD8+/FoxP3+ T-cell ratio. This remodeling was notably correlated with tumor regression in the KPC model. Strikingly, the synergy between encapsulated Nintedanib and anti-PD-1 immunotherapy further potentiated the antitumor effect. Both free and encapsulated Nintedanib induced a transcriptional upregulation of PD-L1 via the extracellular signal-regulated kinase (ERK) pathway. In summary, our pioneering approach involving the silicasome carrier not only improved antitumor angiogenesis but also profoundly reshaped the desmoplastic stromal and immune landscape within PDAC. These insights hold excellent promise for the development of innovative combinatorial strategies in PDAC therapy.
Collapse
Affiliation(s)
- Lijia Luo
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiao Xu
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Andre E. Nel
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Hasibuan PAZ, Keliat JM, Lubis MF, Nasution A. The ethyl acetate extract of Vernonia amygdalina leaf ameliorates gemcitabine effect against migration and invasion of PANC-1 cells via down-regulation the VEGF, COX 2, and RAS/MEK pathways. Saudi Pharm J 2024; 32:101872. [PMID: 38111670 PMCID: PMC10727942 DOI: 10.1016/j.jsps.2023.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023] Open
Abstract
Individuals diagnosed with cancer often turn to the use of herbal remedies with the intention of treating and ameliorating the condition, impeding the progression of metastasis, enhancing immune function, mitigating stress, and inducing relaxation. Recently, medicinal plants were combined with conventional chemotherapy to decrease the side effects and increase the effectiveness of chemotherapy. This study showed the effectiveness of gemcitabine (Gem) was significantly increased after being used together with ethyl acetate extract obtained from Vernonia amygdalina (Eav) leaves. The combination doses of Eav and Gem were determined based on cytotoxic activity using the MTT assay method. The anticancer effect of this combination was identified by several parameters including the apoptosis effect, anti-migration, and anti-invasion activities of PANC-1 cells. Furthermore, this effect was explained via protein expression evaluation using immunohistochemical and flow cytometry. The Eav has a better Inhibitory Concentration 50 (IC50) than Gem of 21.19 ± 0.64 µg/mL and 164.78 ± 1.40 µg/mL. The combination of Eav and Gem at IC50 (1:1) has the strongest activity than Eav and Gem alone at 500.00 µg/mL. The anti-cancer effect of this combination showed significantly increased levels of apoptosis, particularly in the early phase of 17.46 ± 0.35 % (p < 0.0001) than Eav and Gem alone of 7.76 ± 0.25 % and 7.06 ± 0.20 %. A similar impact was evaluated in the migration and invasion of PANC-1 cells after the combination treatment. The % relative migration and cell invasion were significantly decreased compared to the control group and Eav or Gem alone by 21.49 ± 0.96 % and 125.25 ± 5.25 cells, respectively (p < 0.0001). This study found that signature molecules of VEGF, COX2, RAS, and MEK were down-regulated after treatment. Our study suggested that the Eav ameliorates the Gem effect against PANC-1 cells through apoptosis, migration, and invasion influence via RAS/MEK pathways.
Collapse
Affiliation(s)
| | - Jane Melita Keliat
- Department of Pharmaceutical and Food Analysis, Faculty of Vocational, Universitas Sumatera Utara, Indonesia
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| | - Annisa Nasution
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| |
Collapse
|
5
|
Yang B, Quan Y, Zhao W, Ji Y, Yang X, Li J, Li Y, Liu X, Wang Y, Li Y. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors. J Enzyme Inhib Med Chem 2023; 38:2169282. [PMID: 36656085 PMCID: PMC9858427 DOI: 10.1080/14756366.2023.2169282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To explore the potential use of CDK inhibitors in pancreatic ductal adenocarcinoma (PDAC) therapy, a series of novel 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives was designed, synthesised, and investigated for inhibition on both CDK kinase activity and cellular proliferation of pancreatic cancer. Most of new sulphonamide-containing derivatives demonstrated strong inhibitory activity on CDK9 and obvious anti-proliferative activity in cell culture. Moreover, two new compounds suppressed cell proliferation of multiple human pancreatic cancer cell lines. The most potent compound 2g inhibited cancer cell proliferation by blocking Rb phosphorylation and induced apoptosis via downregulation of CDK9 downstream proteins Mcl-1 and c-Myc in MIA PaCa-2 cells. CDK9 knockdown experiment suggests its anti-proliferative activity is mainly mediated by CDK9. Additionally, 2g displayed moderate tumour inhibition effect in AsPC-1 derived xenograft mice model. Altogether, this study provided a new start for further optimisation to develop potential CDK inhibitor candidates for PDAC treatment by alone or combination use.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanni Quan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yingjie Ji
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaotang Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianrui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Ying Wang Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, China
| | - Yanping Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,CONTACT Yanping Li
| |
Collapse
|
6
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
7
|
Jiao J, Ruan L, Cheng CS, Wang F, Yang P, Chen Z. Paired protein kinases PRKCI-RIPK2 promote pancreatic cancer growth and metastasis via enhancing NF-κB/JNK/ERK phosphorylation. Mol Med 2023; 29:47. [PMID: 37016317 PMCID: PMC10074657 DOI: 10.1186/s10020-023-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Protein kinases play a pivotal role in the malignant evolution of pancreatic cancer (PC) through mediating phosphorylation. Many kinase inhibitors have been developed and translated into clinical use, while the complex pathology of PC confounds their clinical efficacy and warrants the discovery of more effective therapeutic targets. METHODS Here, we used the Gene Expression Omnibus (GEO) database and protein kinase datasets to map the PC-related protein kinase-encoding genes. Then, applying Gene Expression and Profiling Interactive Analysis (GEPIA), GEO and Human Protein Atlas, we evaluated gene correlation, gene expression at protein and mRNA levels, as well as survival significance. In addition, we performed protein kinase RIPK2 knockout and overexpression to observe effects of its expression on PC cell proliferation, migration and invasion in vitro, as well as cell apoptosis, reactive oxygen species (ROS) production and autophagy. We established PC subcutaneous xenograft and liver metastasis models to investigate the effects of RIPK2 knockout on PC growth and metastasis. Co-immunoprecipitation and immunofluorescence were utilized to explore the interaction between protein kinases RIPK2 and PRKCI. Polymerase chain reaction and immunoblotting were used to evaluate gene expression and protein phosphorylation level. RESULTS We found fourteen kinases aberrantly expressed in human PC and nine kinases with prognosis significance. Among them, RIPK2 with both serine/threonine and tyrosine activities were validated to promote PC cells proliferation, migration and invasion. RIPK2 knockout could inhibit subcutaneous tumor growth and liver metastasis of PC. In addition, RIPK2 knockout suppressed autophagosome formation, increased ROS production and PC cell apoptosis. Importantly, another oncogenic kinase PRKCI could interact with RIPK2 to enhance the phosphorylation of downstream NF-κB, JNK and ERK. CONCLUSION Paired protein kinases PRKCI-RIPK2 with multiple phosphorylation activities represent a new pathological mechanism in PC and could provide potential targets for PC therapy.
Collapse
Affiliation(s)
- Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Dayyani F, Macarulla T, Johnson A, Wainberg ZA. Second-line treatment options for patients with metastatic pancreatic ductal adenocarcinoma: A systematic literature review. Cancer Treat Rev 2023; 113:102502. [PMID: 36641880 DOI: 10.1016/j.ctrv.2022.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The aim of this review was to characterize the second- and later-line (≥2L) treatment landscape for patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). METHODS This systematic literature review (PROSPERO: CRD42021279753) involved searches of MEDLINE® and Embase to identify results from prospective studies of ≥2L treatment options for metastatic pancreatic cancer published from 2016 to 2021. Publications were screened according to predetermined eligibility criteria; population-level data were extracted using standardized data fields. Publication quality was assessed according to Grading of Recommendations Assessment, Development and Evaluation (GRADE). The data were analyzed descriptively, grouped by drug class. RESULTS Sixty publications were identified, including 23 relating to comparative trials. GRADE assessment found that, of these 23 trials, 83% reported high or moderate-quality evidence. Of the publications relating to comparative trials, nine (three trials) reported favorable results: the pivotal phase 3 NAPOLI-1 trial for liposomal irinotecan; a phase 3 trial of non-liposomal irinotecan within the FOLFIRINOX regimen; and a phase 2 trial of eryaspase plus chemotherapy. CONCLUSIONS The level of unmet need for ≥2L treatment options for mPDAC remains high. Irinotecan-based regimens currently offer the greatest promise. Investigations into paradigm-changing agents and combination approaches continue.
Collapse
Affiliation(s)
| | - Teresa Macarulla
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | |
Collapse
|
9
|
Parejo-Alonso B, Royo-García A, Espiau-Romera P, Courtois S, Curiel-García Á, Zagorac S, Villaoslada I, Olive KP, Heeschen C, Sancho P. Pharmacological targeting of the receptor ALK inhibits tumorigenicity and overcomes chemoresistance in pancreatic ductal adenocarcinoma. Biomed Pharmacother 2023; 158:114162. [PMID: 36571997 DOI: 10.1016/j.biopha.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease characterized by its metastatic potential and chemoresistance. These traits are partially attributable to the highly tumorigenic pancreatic cancer stem cells (PaCSCs). Interestingly, these cells show unique features in order to sustain their identity and functionality, some of them amenable for therapeutic intervention. Screening of phospho-receptor tyrosine kinases revealed that PaCSCs harbored increased activation of anaplastic lymphoma kinase (ALK). We subsequently demonstrated that oncogenic ALK signaling contributes to tumorigenicity in PDAC patient-derived xenografts (PDXs) by promoting stemness through ligand-dependent activation. Indeed, the ALK ligands midkine (MDK) or pleiotrophin (PTN) increased self-renewal, clonogenicity and CSC frequency in several in vitro local and metastatic PDX models. Conversely, treatment with the clinically-approved ALK inhibitors Crizotinib and Ensartinib decreased PaCSC content and functionality in vitro and in vivo, by inducing cell death. Strikingly, ALK inhibitors sensitized chemoresistant PaCSCs to Gemcitabine, as the most used chemotherapeutic agent for PDAC treatment. Consequently, ALK inhibition delayed tumor relapse after chemotherapy in vivo by effectively decreasing the content of PaCSCs. In summary, our results demonstrate that targeting the MDK/PTN-ALK axis with clinically-approved inhibitors impairs in vivo tumorigenicity and chemoresistance in PDAC suggesting a new treatment approach to improve the long-term survival of PDAC patients.
Collapse
Affiliation(s)
- Beatriz Parejo-Alonso
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Alba Royo-García
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Pilar Espiau-Romera
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Sarah Courtois
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Álvaro Curiel-García
- Department of Medicine, Division of Digestive Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sladjana Zagorac
- Center for Stem Cells in Cancer & Ageing (Barts Cancer Institute), London, UK
| | - Isabel Villaoslada
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive Liver Diseases and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christopher Heeschen
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (Torino), Italy
| | - Patricia Sancho
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain.
| |
Collapse
|
10
|
Zhao X, Li Z, Gu Z. A new era: tumor microenvironment in chemoresistance of pancreatic cancer. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:61-86. [PMID: 35187493 DOI: 10.26502/jcsct.5079146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with an extremely poor prognosis. Gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, either as monotherapy or as a part of the combination chemotherapy, GEM achieved only limited success in improving the survival of patients with advanced PDAC, primarily due to GEM resistance. PDAC is characterized by an extensive desmoplasia in the tumor microenvironment (TME). Increasing evidence indicates that this fibrotic TME not only actively participates in the tumor growth and spread of PDAC but also contributes to the induction of GEM resistance. Here we review the current advances of how TME components are involved in the induction of GEM resistance.
Collapse
Affiliation(s)
- Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongze Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
An In Vitro Investigation into Cryoablation and Adjunctive Cryoablation/Chemotherapy Combination Therapy for the Treatment of Pancreatic Cancer Using the PANC-1 Cell Line. Biomedicines 2022; 10:biomedicines10020450. [PMID: 35203660 PMCID: PMC8962332 DOI: 10.3390/biomedicines10020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
As the incidence of pancreatic ductal adenocarcinoma (PDAC) continues to grow, so does the need for new strategies for treatment. One such area being evaluated is cryoablation. While promising, studies remain limited and questions surrounding basic dosing (minimal lethal temperature) coupled with technological issues associated with accessing PDAC tumors and tumor proximity to vasculature and bile ducts, among others, have limited the use of cryoablation. Additionally, as chemotherapy remains the first-line of attack for PDAC, there is limited information on the impact of combining freezing with chemotherapy. As such, this study investigated the in vitro response of a PDAC cell line to freezing, chemotherapy, and the combination of chemotherapy pre-treatment and freezing. PANC-1 cells and PANC-1 tumor models were exposed to cryoablation (freezing insult) and compared to non-frozen controls. Additionally, PANC-1 cells were exposed to varying sub-clinical doses of gemcitabine or oxaliplatin alone and in combination with freezing. The results show that freezing to −10 °C did not affect viability, whereas −15 °C and −20 °C resulted in a reduction in 1 day post-freeze viability to 85% and 20%, respectively, though both recovered to controls by day 7. A complete cell loss was found following a single freeze below −25 °C. The combination of 100 nM gemcitabine (1.1 mg/m2) pre-treatment and a single freeze at −15 °C resulted in near-complete cell death (<5% survival) over the 7-day assessment interval. The combination of 8.8 µM oxaliplatin (130 mg/m2) pre-treatment and a single −15 °C freeze resulted in a similar trend of increased PANC-1 cell death. In summary, these in vitro results suggest that freezing alone to temperatures in the range of −25 °C results in a high degree of PDAC destruction. Further, the data support a potential combinatorial chemo/cryo-therapeutic strategy for the treatment of PDAC. These results suggest that a reduction in chemotherapeutic dose may be possible when offered in combination with freezing for the treatment of PDAC.
Collapse
|
12
|
Zhu P, Liu HY, Liu FC, Gu FM, Yuan SX, Huang J, Pan ZY, Wang WJ. Circulating Tumor Cells Expressing Krüppel-Like Factor 8 and Vimentin as Predictors of Poor Prognosis in Pancreatic Cancer Patients. Cancer Control 2021; 28:10732748211027163. [PMID: 34378430 PMCID: PMC8361509 DOI: 10.1177/10732748211027163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) with an epithelial-mesenchymal transition phenotype in peripheral blood may be a useful marker of carcinomas with poor prognosis. The aim of this study was to determine the prognostic significance of CTCs expressing Krüppel-like factor 8 (KLF8) and vimentin in pancreatic cancer (PC). METHODS CTCs were isolated by immunomagnetic separation from the peripheral blood of 40 PC patients before undergoing surgical resection. Immunocytochemistry was performed to identify KLF8+ and vimentin+ CTCs. The associations between CTCs and time to recurrence (TTR), clinicopathologic factors, and survival were assessed. Univariate and multivariate analyzes were performed to identify risk factors. RESULTS Patients with CTCs (n = 30) had a higher relapse rate compared to those without (n = 10) (70.0% vs 20.0%; P < 0.01). The proportion of KLF8+/vimentin+ CTCs to total CTCs was inversely related to TTR (r = -0.646; P < 0.01); TTR was reduced in patients with > 50% of CTCs identified as KLF8+/vimentin+ (P < 0.01). Independent risk factors for recurrence were perineural invasion and > 50% KLF8+/vimentin+ CTCs (both P < 0.05). CONCLUSION Poor prognosis can be predicted in PC patients when > 50% of CTCs are positive for KLF8 and vimentin.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hui-Ying Liu
- Department of Biotherapy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fu-Chen Liu
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fang-Ming Gu
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Sheng-Xian Yuan
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jian Huang
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ze-Ya Pan
- Department of Hepatic Surgery (III), Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wei-Jun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Antibody therapy in pancreatic cancer: mAb-ye we're onto something? Biochim Biophys Acta Rev Cancer 2021; 1876:188557. [PMID: 33945846 DOI: 10.1016/j.bbcan.2021.188557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer remains an extremely deadly disease, with little improvement seen in treatment or outcomes over the last 40 years. Targeted monoclonal antibody therapy is one area that has been explored in attempts to tackle this disease. This review examines antibodies that have undergone clinical evaluation in pancreatic cancer. These antibodies target a wide variety of molecules, including tumour cell surface, stromal, immune and embryonic pathway targets. We discuss the therapeutic utility of these therapies both as monotherapeutics and in combination with other treatments such as chemotherapy. While antibody therapy for pancreatic cancer has yet to yield significant success, lessons learned from research thus far highlights future directions that may help overcome observed hurdles to yield clinically efficacious results.
Collapse
|
14
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
15
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
16
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
17
|
Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur J Med Chem 2020; 187:111965. [DOI: 10.1016/j.ejmech.2019.111965] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
18
|
Dosch AR, Dai X, Reyzer ML, Mehra S, Srinivasan S, Willobee BA, Kwon D, Kashikar N, Caprioli R, Merchant NB, Nagathihalli NS. Combined Src/EGFR Inhibition Targets STAT3 Signaling and Induces Stromal Remodeling to Improve Survival in Pancreatic Cancer. Mol Cancer Res 2020; 18:623-631. [PMID: 31949002 DOI: 10.1158/1541-7786.mcr-19-0741] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Lack of durable response to cytotoxic chemotherapy is a major contributor to the dismal outcomes seen in pancreatic ductal adenocarcinoma (PDAC). Extensive tumor desmoplasia and poor vascular supply are two predominant characteristics which hinder the delivery of chemotherapeutic drugs into PDAC tumors and mediate resistance to therapy. Previously, we have shown that STAT3 is a key biomarker of therapeutic resistance to gemcitabine treatment in PDAC, which can be overcome by combined inhibition of the Src and EGFR pathways. Although it is well-established that concurrent EGFR and Src inhibition exert these antineoplastic properties through direct inhibition of mitogenic pathways in tumor cells, the influence of this combined therapy on stromal constituents in PDAC tumors remains unknown. In this study, we demonstrate in both orthotopic tumor xenograft and Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mouse models that concurrent EGFR and Src inhibition abrogates STAT3 activation, increases microvessel density, and prevents tissue fibrosis in vivo. Furthermore, the stromal changes induced by parallel EGFR and Src pathway inhibition resulted in improved overall survival in PKT mice when combined with gemcitabine. As a phase I clinical trial utilizing concurrent EGFR and Src inhibition with gemcitabine has recently concluded, these data provide timely translational insight into the novel mechanism of action of this regimen and expand our understanding into the phenomenon of stromal-mediated therapeutic resistance. IMPLICATIONS: These findings demonstrate that Src/EGFR inhibition targets STAT3, remodels the tumor stroma, and results in enhanced delivery of gemcitabine to improve overall survival in a mouse model of PDAC.
Collapse
Affiliation(s)
- Austin R Dosch
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Xizi Dai
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Siddharth Mehra
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Supriya Srinivasan
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Brent A Willobee
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Deukwoo Kwon
- Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Nilesh Kashikar
- Department of Pathology, University of Colorado, Denver, Colorado
| | - Richard Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Nipun B Merchant
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S Nagathihalli
- Division of Surgical Oncology, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
19
|
Network Meta-Analysis of Efficacy and Safety of Chemotherapy and Target Therapy in the First-Line Setting of Advanced Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11111746. [PMID: 31703359 PMCID: PMC6895788 DOI: 10.3390/cancers11111746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022] Open
Abstract
Both gemcitabine and fluoropyrimidine are recommended backbones in the first-line treatment of pancreatic ductal adenocarcinoma (PDAC). To compare the efficacy and safety of these two therapeutic backbones, and to investigate the optimal therapies, we conducted a network meta-analysis. By retrospective analysis of randomized controlled trials (RCT), the most preferred therapeutic regimen may be predicted. The eligible RCTs of the gemcitabine-based therapies and fluoropyrimidine-based therapies were searched up to 31 August 2019. In a frequentist network meta-analysis, treatments were compared and ranked according to overall survival (OS) and progression-free survival (PFS). Thirty-two trials with 10,729 patients were included. The network meta-analyses results for overall survival and progression-free survival showed that fluoropyrimidine-based therapy seems to be the most effective treatment choice. Compared to gemcitabine combined with taxanes or immunotherapy, fluoropyrimidine-based therapy had comparable treatment effects (PFS: 0.67, p-Value = 0.11; 0.76, p-Value = 0.32; OS: 0.80, p-Value = 0.16; 0.77, p-Value = 0.21). Moreover, the combination of immunotherapy and gemcitabine had tolerable toxicities. Based on current evidence, fluoropyrimidine-based therapies and the combination of gemcitabine and taxanes were the most effective therapies in the advanced pancreatic cancer, and the combination of immunotherapy and gemcitabine can be developed into a new form of therapy.
Collapse
|
20
|
Sapalidis K, Kosmidis C, Funtanidou V, Katsaounis A, Barmpas A, Koimtzis G, Mantalobas S, Alexandrou V, Aidoni Z, Koulouris C, Pavlidis E, Giannakidis D, Surlin V, Pantea S, Strambu V, Constantina RO, Amaniti A, Zarogoulidis P, Mogoantă S, Kesisoglou I, Sardeli C. Update on current pancreatic treatments: from molecular pathways to treatment. J Cancer 2019; 10:5162-5172. [PMID: 31602269 PMCID: PMC6775621 DOI: 10.7150/jca.36300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is still diagnosed at a late stage although we have novel diagnostic tools. Pancreatic cancer chemotherapy treatment resistance is observed and therefore novel treatments are in need. Anti-cancer stem cell therapy, combination of chemotherapy and/or radiotherapy with immunotherapy, proteins/enzymes and gene therapy are currently under evaluation. Targeted treatment with tyrosine kinase inhibitors is also administered and novel inhibitors are also under evaluation. In the current review we present recent data from our search within the year 2018.
Collapse
Affiliation(s)
- Konstantinos Sapalidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Varvara Funtanidou
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Amastasios Barmpas
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Georgios Koimtzis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stylianos Mantalobas
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Vyron Alexandrou
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Zoi Aidoni
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Charilaos Koulouris
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Efstathios Pavlidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Valeriu Surlin
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | | | - Victor Strambu
- General Surgery Department, "Dr Carol Davila", University of Medicine and Pharmacy, Bucuresti, Romania
| | | | - Aikaterini Amaniti
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Paul Zarogoulidis
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
- Anesthesiology Department, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Stelian Mogoantă
- Department of Pharmacology and Department of Surgery, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Isaak Kesisoglou
- 3rd Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|