1
|
Olvera-León R, Zhang F, Offord V, Zhao Y, Tan HK, Gupta P, Pal T, Robles-Espinoza CD, Arriaga-González FG, Matsuyama LSAS, Delage E, Dicks E, Ezquina S, Rowlands CF, Turnbull C, Pharoah P, Perry JRB, Jasin M, Waters AJ, Adams DJ. High-resolution functional mapping of RAD51C by saturation genome editing. Cell 2024; 187:5719-5734.e19. [PMID: 39299233 DOI: 10.1016/j.cell.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/29/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Pathogenic variants in RAD51C confer an elevated risk of breast and ovarian cancer, while individuals homozygous for specific RAD51C alleles may develop Fanconi anemia. Using saturation genome editing (SGE), we functionally assess 9,188 unique variants, including >99.5% of all possible coding sequence single-nucleotide alterations. By computing changes in variant abundance and Gaussian mixture modeling (GMM), we functionally classify 3,094 variants to be disruptive and use clinical truth sets to reveal an accuracy/concordance of variant classification >99.9%. Cell fitness was the primary assay readout allowing us to observe a phenomenon where specific missense variants exhibit distinct depletion kinetics potentially suggesting that they represent hypomorphic alleles. We further explored our exhaustive functional map, revealing critical residues on the RAD51C structure and resolving variants found in cancer-segregating kindred. Furthermore, through interrogation of UK Biobank and a large multi-center ovarian cancer cohort, we find significant associations between SGE-depleted variants and cancer diagnoses.
Collapse
Affiliation(s)
- Rebeca Olvera-León
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fang Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Hong Kee Tan
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Prashant Gupta
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Tuya Pal
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center (VUMC)/Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN, USA
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - Fernanda G Arriaga-González
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico
| | | | - Erwan Delage
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Ed Dicks
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Suzana Ezquina
- Department of Public Health and Primary Care, University of Cambridge, Robinson Way, Cambridge, UK
| | - Charlie F Rowlands
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; National Cancer Registration and Analysis Service, National Health Service (NHS) England, London, UK; Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Paul Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Waters
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
2
|
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J Pers Med 2024; 14:866. [PMID: 39202057 PMCID: PMC11355318 DOI: 10.3390/jpm14080866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND RAD51C and RAD51D are crucial in homologous recombination (HR) DNA repair. The prevalence of the RAD51C and RAD51D mutations in breast cancer varies across ethnic groups. Associations of RAD51C and RAD51D germline pathogenic variants (GPVs) with breast and ovarian cancer predisposition have been recently reported and are of interest. METHODS We performed multi-gene panel sequencing to study the prevalence of RAD51C and RAD51D germline mutations among 3728 patients with hereditary breast and/or ovarian cancer (HBOC). RESULTS We identified 18 pathogenic RAD51C and RAD51D mutation carriers, with a mutation frequency of 0.13% (5/3728) and 0.35% (13/3728), respectively. The most common recurrent mutation was RAD51D c.270_271dupTA; p.(Lys91Ilefs*13), with a mutation frequency of 0.30% (11/3728), which was also commonly identified in Asians. Only four out of six cases (66.7%) of this common mutation tested positive for homologous recombination deficiency (HRD). CONCLUSIONS Taking the family studies in our registry and tumor molecular pathology together, we concluded that this relatively common RAD51D variant showed incomplete penetrance in our local Chinese community. Personalized genetic counseling emphasizing family history for families with this variant, as suggested at the UK Cancer Genetics Group (UKCGG) Consensus meeting, would also be appropriate in Chinese families.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Yuen Sze Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Sze Keong Tey
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Liu W, Feng W, Zhang Y, Lei T, Wang X, Qiao T, Chen Z, Song W. RP11-789C1.1 inhibits gastric cancer cell proliferation and accelerates apoptosis via the ATR/CHK1 signaling pathway. Chin Med J (Engl) 2024; 137:1835-1843. [PMID: 37882063 DOI: 10.1097/cm9.0000000000002869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) plays an important role in the progression of gastric cancer (GC). Their involvement ranges from genetic regulation to cancer progression. However, the mechanistic roles of RP11-789C1.1 in GC are not fully understood. METHODS We identified the expression of lncRNA RP11-789C1.1 in GC tissues and cell lines by real-time fluorescent quantitative polymerase chain reaction. A series of functional experiments revealed the effect of RP11-789C1.1 on the proliferation of GC cells. In vivo experiments verified the effect of RP11-789C1.1 on the biological behavior of a GC cell line. RNA pull-down unveiled RP11-789C1.1 interacting proteins. Western blot analysis indicated the downstream pathway changes of RP11-789C1.1, and an oxaliplatin dosing experiment disclosed the influence of RP11-789C1.1 on the drug sensitivity of oxaliplatin. RESULTS Our results demonstrated that RP11-789C1.1 inhibited the proliferation of GC cells and promoted the apoptosis of GC cells. Mechanistically, RP11-789C1.1 inhibited checkpoint kinase 1 (CHK1) phosphorylation by binding ataxia-telangiectasia mutated and Rad3 related (ATR), a serine/threonine-specific protein kinase, promoted GC apoptosis, and mediated oxaliplatin sensitivity. CONCLUSION In general, we discovered a tumor suppressor molecule RP11-789C1.1 and confirmed its mechanism of action, providing a theoretical basis for targeted GC therapy.
Collapse
Affiliation(s)
- Wenwei Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518000, China
| | - Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tang Qiao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Drif AI, Yücer R, Damiescu R, Ali NT, Abu Hagar TH, Avula B, Khan IA, Efferth T. Anti-Inflammatory and Cancer-Preventive Potential of Chamomile ( Matricaria chamomilla L.): A Comprehensive In Silico and In Vitro Study. Biomedicines 2024; 12:1484. [PMID: 39062057 PMCID: PMC11275008 DOI: 10.3390/biomedicines12071484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIM Chamomile tea, renowned for its exquisite taste, has been appreciated for centuries not only for its flavor but also for its myriad health benefits. In this study, we investigated the preventive potential of chamomile (Matricaria chamomilla L.) towards cancer by focusing on its anti-inflammatory activity. METHODS AND RESULTS A virtual drug screening of 212 phytochemicals from chamomile revealed β-amyrin, β-eudesmol, β-sitosterol, apigenin, daucosterol, and myricetin as potent NF-κB inhibitors. The in silico results were verified through microscale thermophoresis, reporter cell line experiments, and flow cytometric determination of reactive oxygen species and mitochondrial membrane potential. An oncobiogram generated through comparison of 91 anticancer agents with known modes of action using the NCI tumor cell line panel revealed significant relationships of cytotoxic chamomile compounds, lupeol, and quercetin to microtubule inhibitors. This hypothesis was verified by confocal microscopy using α-tubulin-GFP-transfected U2OS cells and molecular docking of lupeol and quercetin to tubulins. Both compounds induced G2/M cell cycle arrest and necrosis rather than apoptosis. Interestingly, lupeol and quercetin were not involved in major mechanisms of resistance to established anticancer drugs (ABC transporters, TP53, or EGFR). Performing hierarchical cluster analyses of proteomic expression data of the NCI cell line panel identified two sets of 40 proteins determining sensitivity and resistance to lupeol and quercetin, further pointing to the multi-specific nature of chamomile compounds. Furthermore, lupeol, quercetin, and β-amyrin inhibited the mRNA expression of the proinflammatory cytokines IL-1β and IL6 in NF-κB reporter cells (HEK-Blue Null1). Moreover, Kaplan-Meier-based survival analyses with NF-κB as the target protein of these compounds were performed by mining the TCGA-based KM-Plotter repository with 7489 cancer patients. Renal clear cell carcinomas (grade 3, low mutational rate, low neoantigen load) were significantly associated with shorter survival of patients, indicating that these subgroups of tumors might benefit from NF-κB inhibition by chamomile compounds. CONCLUSION This study revealed the potential of chamomile, positioning it as a promising preventive agent against inflammation and cancer. Further research and clinical studies are recommended.
Collapse
Affiliation(s)
- Assia I. Drif
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Tobias H. Abu Hagar
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| | - Bharati Avula
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Ikhlas A. Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (B.A.); (I.A.K.)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (A.I.D.); (R.Y.); (R.D.); (N.T.A.)
| |
Collapse
|
5
|
Li RQ, Yan L, Zhang L, Zhao Y, Lian J. CD74 as a prognostic and M1 macrophage infiltration marker in a comprehensive pan-cancer analysis. Sci Rep 2024; 14:8125. [PMID: 38582956 PMCID: PMC10998849 DOI: 10.1038/s41598-024-58899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
CD74 is a type-II transmembrane glycoprotein that has been linked to tumorigenesis. However, this association was based only on phenotypic studies, and, to date, no in-depth mechanistic studies have been conducted. In this study, combined with a multi-omics study, CD74 levels were significantly upregulated in most cancers relative to normal tissues and were found to be predictive of prognosis. Elevated CD74 expression was associated with reduced levels of mismatch-repair genes and homologous repair gene signatures in over 10 tumor types. Multiple fluorescence staining and bulk, spatial, single-cell transcriptional analyses indicated its potential as a marker for M1 macrophage infiltration in pan-cancer. In addition, CD74 expression was higher in BRCA patients responsive to conventional chemotherapy and was able to predict the prognosis of these patients. Potential CD74-activating drugs (HNHA and BRD-K55186349) were identified through molecular docking to CD74. The findings indicate activation of CD74 may have potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Ruo Qi Li
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- General Surgery Department, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lei Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, Shanxi, China
| | - Ling Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhao
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| | - Jing Lian
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
6
|
Fessart D, Robert J. [Mechanisms of cancer drug resistance]. Bull Cancer 2024; 111:37-50. [PMID: 37679207 DOI: 10.1016/j.bulcan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France.
| | - Jacques Robert
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France
| |
Collapse
|
7
|
Cao K, Wang R, Li L, Liao Y, Hu X, Li R, Liu X, Xiong XD, Wang Y, Liu X. Targeting DDX11 promotes PARP inhibitor sensitivity in hepatocellular carcinoma by attenuating BRCA2-RAD51 mediated homologous recombination. Oncogene 2024; 43:35-46. [PMID: 38007537 DOI: 10.1038/s41388-023-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Homologous recombination (HR) is a major DNA double-strand break (DSB) repair pathway of clinical interest because of treatment with poly(ADP-ribose) polymerase inhibitors (PARPi). Cooperation between RAD51 and BRCA2 is pivotal for DNA DSB repair, and its dysfunction induces HR deficiency and sensitizes cancer cells to PARPi. The depletion of the DEAD-box protein DDX11 was found to suppress HR in hepatocellular carcinoma (HCC) cells. The HR ability of HCC cells is not always dependent on the DDX11 level because of natural DDX11 mutations. In Huh7 cells, natural DDX11 mutations were detected, increasing the susceptibility of Huh7 cells to olaparib in vitro and in vivo. The HR deficiency of Huh7 cells was restored when CRISPR/Cas9-mediated knock-in genomic editing was used to revert the DDX11 Q238H mutation to wild type. The DDX11 Q238H mutation impeded the phosphorylation of DDX11 by ATM at serine 237, preventing the recruitment of RAD51 to damaged DNA sites by disrupting the interaction between RAD51 and BRCA2. Clinically, a high level of DDX11 correlated with advanced clinical characteristics and a poor prognosis and served as an independent risk factor for overall and disease-free survival in patients with HCC. We propose that HCC with a high level of wild-type DDX11 tends to be more resistant to PARPi because of enhanced recombination repair, and the key mutation of DDX11 (Q238H) is potentially exploitable.
Collapse
Affiliation(s)
- Kun Cao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Ruonan Wang
- Scientific Research Platform Service Management Center, Guangdong Medical University, Dongguan, 523808, China
| | - Lianhai Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Yuting Liao
- Department of Radiotherapy, General Hospital of Southern Theater Command of the Chinese People's Liberation Army, Guangzhou, 510016, China
| | - Xiao Hu
- Department of Surgery, The Second People's Hospital of Guangdong Province, Guangzhou, 510317, China
| | - Ruixue Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xiuwen Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Xing-Dong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanjie Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Abstract
PURPOSE The transcription factor NF-E2-related factor 2 (NRF2) is a master regulator widely involved in essential cellular functions such as DNA repair. By clarifying the upstream and downstream links of NRF2 to DNA damage repair, we hope that attention will be drawn to the utilization of NRF2 as a target for cancer therapy. METHODS Query and summarize relevant literature on the role of NRF2 in direct repair, BER, NER, MMR, HR, and NHEJ in pubmed. Make pictures of Roles of NRF2 in DNA Damage Repair and tables of antioxidant response elements (AREs) of DNA repair genes. Analyze the mutation frequency of NFE2L2 in different types of cancer using cBioPortal online tools. By using TCGA, GTEx and GO databases, analyze the correlation between NFE2L2 mutations and DNA repair systems as well as the degree of changes in DNA repair systems as malignant tumors progress. RESULTS NRF2 plays roles in maintaining the integrity of the genome by repairing DNA damage, regulating the cell cycle, and acting as an antioxidant. And, it possibly plays roles in double stranded break (DSB) pathway selection following ionizing radiation (IR) damage. Whether pathways such as RNA modification, ncRNA, and protein post-translational modification affect the regulation of NRF2 on DNA repair is still to be determined. The overall mutation frequency of the NFE2L2 gene in esophageal carcinoma, lung cancer, and penile cancer is the highest. Genes (50 of 58) that are negatively correlated with clinical staging are positively correlated with NFE2L2 mutations or NFE2L2 expression levels. CONCLUSION NRF2 participates in a variety of DNA repair pathways and plays important roles in maintaining genome stability. NRF2 is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Jiale Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
9
|
Chen X, Wang Y, Guan S, Yan Z, Zhu X, Kuo Y, Wang N, Zhi X, Lian Y, Huang J, Liu P, Li R, Yan L, Qiao J. Application of the PGT-M strategy using single sperm and/or affected embryos as probands for linkage analysis in males with hereditary tumor syndromes without family history. J Hum Genet 2023; 68:813-821. [PMID: 37592134 DOI: 10.1038/s10038-023-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Hereditary tumor syndromes have garnered substantial attention due to their adverse effects on both the physical and psychological health of patients, as well as the elevated risk of transmission to subsequent generations. This has prompted a growing interest in exploring preimplantation genetic testing (PGT) as a treatment option to mitigate and eliminate these impacts. Several studies have demonstrated that de novo variants have become a great cause of many hereditary tumor syndromes, which introduce certain difficulties to PGT. In the absence of adequate genetic linkage information (parents and offspring), haplotype construction seems unrealizable. In the study, researchers used single sperm or affected embryos as proband to perform single-nucleotide polymorphism linkage analysis for cases with de novo variants. For complicated variants, the strategy that sperm combined with embryo detection will increase accuracy while avoiding the limitations and potential failures of using a single detection material. The study recruited 11 couples with male de novo carriers, including 3 tumor types and 4 genes. To date, 4 couples have been clinically confirmed as pregnant and three healthy babies have been born. The results of amniocentesis or umbilical cord blood verification were consistent with the results of PGT-M. The study aims to introduce the application of the PGT-M strategy in hereditary tumor syndromes.
Collapse
Affiliation(s)
- Xi Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China
| | - Shuo Guan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Kuo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jin Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Genomics, Beijing, 100191, China.
| |
Collapse
|
10
|
Wei T, Liu J, Ma S, Wang M, Yuan Q, Huang A, Wu Z, Shang D, Yin P. A Nucleotide Metabolism-Related Gene Signature for Risk Stratification and Prognosis Prediction in Hepatocellular Carcinoma Based on an Integrated Transcriptomics and Metabolomics Approach. Metabolites 2023; 13:1116. [PMID: 37999212 PMCID: PMC10673507 DOI: 10.3390/metabo13111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. The in-depth study of genes and metabolites related to nucleotide metabolism will provide new ideas for predicting the prognosis of HCC patients. This study integrated the transcriptome data of different cancer types to explore the characteristics and significance of nucleotide metabolism-related genes (NMGRs) in different cancer types. Then, we constructed a new HCC classifier and prognosis model based on HCC samples from TCGA and GEO, and detected the gene expression level in the model through molecular biology experiments. Finally, nucleotide metabolism-related products in serum of HCC patients were examined using untargeted metabolomics. A total of 97 NMRGs were obtained based on bioinformatics techniques. In addition, a clinical model that could accurately predict the prognostic outcome of HCC was constructed, which contained 11 NMRGs. The results of PCR experiments showed that the expression levels of these genes were basically consistent with the predicted trends. Meanwhile, the results of untargeted metabolomics also proved that there was a significant nucleotide metabolism disorder in the development of HCC. Our results provide a promising insight into nucleotide metabolism in HCC, as well as a tailored prognostic and chemotherapy sensitivity prediction tool for patients.
Collapse
Affiliation(s)
- Tianfu Wei
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Jifeng Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Shurong Ma
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Mimi Wang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Qihang Yuan
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
| | - Anliang Huang
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian 116000, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China; (T.W.)
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116000, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian 116000, China
| |
Collapse
|
11
|
Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, Song Y, Wei S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. TOXICS 2023; 11:882. [PMID: 37999534 PMCID: PMC10675837 DOI: 10.3390/toxics11110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Recent studies have raised concerns about genotoxic effects associated with titanium dioxide nanoparticles (TiO2 NPs), which are commonly used. This meta-analysis aims to investigate the potential genotoxicity of TiO2 NPs and explore influencing factors. METHODS This study systematically searched Chinese and English literature. The literature underwent quality evaluation, including reliability evaluation using the toxicological data reliability assessment method and relevance evaluation using routine evaluation forms. Meta-analysis and subgroup analyses were performed using R software, with the standardized mean difference (SMD) as the combined effect value. RESULTS A total of 26 studies met the inclusion criteria and passed the quality assessment. Meta-analysis results indicated that the SMD for each genotoxic endpoint was greater than 0. This finding implies a significant association between TiO2 NP treatment and DNA damage and chromosome damage both in vivo and in vitro and gene mutation in vitro. Subgroup analysis revealed that short-term exposure to TiO2 NPs increased DNA damage. Rats and cancer cells exhibited heightened susceptibility to DNA damage triggered by TiO2 NPs (p < 0.05). CONCLUSIONS TiO2 NPs could induce genotoxicity, including DNA damage, chromosomal damage, and in vitro gene mutations. The mechanism of DNA damage response plays a key role in the genotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Yihuan Road, Chengdu 610041, China;
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road, Nanjing 210009, China;
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control, Hepingli Middle Street, Beijing 100013, China;
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Tong Ou
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| |
Collapse
|
12
|
Cui Z, Zou F, Wang R, Wang L, Cheng F, Wang L, Pan R, Guan X, Zheng N, Wang W. Integrative bioinformatics analysis of WDHD1: a potential biomarker for pan-cancer prognosis, diagnosis, and immunotherapy. World J Surg Oncol 2023; 21:309. [PMID: 37759234 PMCID: PMC10523704 DOI: 10.1186/s12957-023-03187-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Although WD repeat and high-mobility group box DNA binding protein 1 (WDHD1) played an essential role in DNA replication, chromosome stability, and DNA damage repair, the panoramic picture of WDHD1 in human tumors remains unclear. Hence, this study aims to comprehensively characterize WDHD1 across 33 human cancers. METHODS Based on publicly available databases such as TCGA, GTEx, and HPA, we used a bioinformatics approach to systematically explore the genomic features and biological functions of WDHD1 in pan-cancer. RESULTS WDHD1 mRNA levels were significantly increased in more than 20 types of tumor tissues. Elevated WDHD1 expression was associated with significantly shorter overall survival (OS) in 10 tumors. Furthermore, in uterine corpus endometrial carcinoma (UCEC) and liver hepatocellular carcinoma (LIHC), WDHD1 expression was significantly associated with higher histological grades and pathological stages. In addition, WDHD1 had a high diagnostic value among 16 tumors (area under the ROC curve [AUC] > 0.9). Functional enrichment analyses suggested that WDHD1 probably participated in many oncogenic pathways such as E2F and MYC targets (false discovery rate [FDR] < 0.05), and it was involved in the processes of DNA replication and DNA damage repair (p.adjust < 0.05). WDHD1 expression also correlated with the half-maximal inhibitory concentrations (IC50) of rapamycin (4 out of 10 cancers) and paclitaxel (10 out of 10 cancers). Overall, WDHD1 was negatively associated with immune cell infiltration and might promote tumor immune escape. Our analysis of genomic alterations suggested that WDHD1 was altered in 1.5% of pan-cancer cohorts and the "mutation" was the predominant type of alteration. Finally, through correlation analysis, we found that WDHD1 might be closely associated with tumor heterogeneity, tumor stemness, mismatch repair (MMR), and RNA methylation modification, which were all processes associated with the tumor progression. CONCLUSIONS Our pan-cancer analysis of WDHD1 provides valuable insights into the genomic characterization and biological functions of WDHD1 in human cancers and offers some theoretical support for the future use of WDHD1-targeted therapies, immunotherapies, and chemotherapeutic combinations for the management of tumors.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
14
|
Zhu Y, Liu Z, Gui L, Yun W, Mao C, Deng R, Yao Y, Yu Q, Feng J, Ma H, Bao W. Inhibition of CXorf56 promotes PARP inhibitor-induced cytotoxicity in triple-negative breast cancer. NPJ Breast Cancer 2023; 9:34. [PMID: 37156759 PMCID: PMC10167262 DOI: 10.1038/s41523-023-00540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) induce DNA lesions that preferentially kill homologous recombination (HR)-deficient breast cancers induced by BRCA mutations, which exhibit a low incidence in breast cancer, thereby limiting the benefits of PARPis. Additionally, breast cancer cells, particularly triple-negative breast cancer (TNBC) cells, exhibit HR and PARPi resistance. Therefore, targets must be identified for inducing HR deficiency and sensitizing cancer cells to PARPis. Here, we reveal that CXorf56 protein increased HR repair in TNBC cells by interacting with the Ku70 DNA-binding domain, reducing Ku70 recruitment and promoting RPA32, BRCA2, and RAD51 recruitment to sites of DNA damage. Knockdown of CXorf56 protein suppressed HR in TNBC cells, specifically during the S and G2 phases, and increased cell sensitivity to olaparib in vitro and in vivo. Clinically, CXorf56 protein was upregulated in TNBC tissues and associated with aggressive clinicopathological characteristics and poor survival. All these findings indicate that treatment designed to inhibit CXorf56 protein in TNBC combined with PARPis may overcome drug resistance and expand the application of PARPis to patients with non-BRCA mutantion.
Collapse
Affiliation(s)
- Ying Zhu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixian Liu
- Department of Pharmacy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Gui
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Yun
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Deng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yufeng Yao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Wei Bao
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
15
|
Yang J, Xu P, Chen Z, Zhang X, Xia Y, Fang L, Xie L, Li B, Xu Z. N6-methyadenosine modified SUV39H2 regulates homologous recombination through epigenetic repression of DUSP6 in gastric cancer. Cancer Lett 2023; 558:216092. [PMID: 36806557 DOI: 10.1016/j.canlet.2023.216092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Despite many advances in treatment over the past few years, the poor 5-year survival rate and high recurrence rate of gastric cancer (GC) remain unsatisfactory. As the most abundant epigenetic modification in the eukaryotic mRNA, N6-methyladenosine (m6A) methylation participates in tumor progression and tissue development. During tumor progression, DNA damage repair mechanisms can be reprogrammed to give new growth advantages on tumor clones whose genomic integrity is disturbed. Here we detected the elevated SUV39H2 expression in GC tissues and cell lines. Functionally, SUV39H2 promoted GC proliferation and inhibited apoptosis in vitro and in vivo. Mechanistically, METTL3-mediated m6A modification promotes mRNA stability of SUV39H2 in an IGF2BP2 dependent manner, resulting in upregulated mRNA expression of SUV39H2. As a histone methyltransferase, SUV39H2 was verified to increase the phosphorylation level of ATM through transcriptional repression of DUSP6, thereby promoting HRR and ultimately inhibiting GC chemosensitivity to cisplatin. Collectively, these results indicate the specific mechanism of m6A-modified SUV39H2 as a histone methyltransferase promoting HRR to inhibit the chemosensitivity of GC. SUV39H2 is expected to become a key target in the precision targeted therapy of GC.
Collapse
Affiliation(s)
- Jing Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, China.
| |
Collapse
|
16
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
17
|
Lai J, Chen W, Zhao A, Huang J. Determination of a DNA repair-related gene signature with potential implications for prognosis and therapeutic response in pancreatic adenocarcinoma. Front Oncol 2022; 12:939891. [PMID: 36353555 PMCID: PMC9638008 DOI: 10.3389/fonc.2022.939891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the leading causes of cancer death worldwide. Alterations in DNA repair-related genes (DRGs) are observed in a variety of cancers and have been shown to affect the development and treatment of cancers. The aim of this study was to develop a DRG-related signature for predicting prognosis and therapeutic response in PAAD. Methods We constructed a DRG signature using least absolute shrinkage and selection operator (LASSO) Cox regression analysis in the TCGA training set. GEO datasets were used as the validation set. A predictive nomogram was constructed based on multivariate Cox regression. Calibration curve and decision curve analysis (DCA) were applied to validate the performance of the nomogram. The CIBERSORT and ssGSEA algorithms were utilized to explore the relationship between the prognostic signature and immune cell infiltration. The pRRophetic algorithm was used to estimate sensitivity to chemotherapeutic agents. The CellMiner database and PAAD cell lines were used to investigate the relationship between DRG expression and therapeutic response. Results We developed a DRG signature consisting of three DRGs (RECQL, POLQ, and RAD17) that can predict prognosis in PAAD patients. A prognostic nomogram combining the risk score and clinical factors was developed for prognostic prediction. The DCA curve and the calibration curve demonstrated that the nomogram has a higher net benefit than the risk score and TNM staging system. Immune infiltration analysis demonstrated that the risk score was positively correlated with the proportions of activated NK cells and monocytes. Drug sensitivity analysis indicated that the signature has potential predictive value for chemotherapy. Analyses utilizing the CellMiner database showed that RAD17 expression is correlated with oxaliplatin. The dynamic changes in three DRGs in response to oxaliplatin were examined by RT-qPCR, and the results show that RAD17 is upregulated in response to oxaliplatin in PAAD cell lines. Conclusion We constructed and validated a novel DRG signature for prediction of the prognosis and drug sensitivity of patients with PAAD. Our study provides a theoretical basis for further unraveling the molecular pathogenesis of PAAD and helps clinicians tailor systemic therapies within the framework of individualized treatment.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weijie Chen
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Aiyue Zhao
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
18
|
PAK6 promotes homologous-recombination to enhance chemoresistance to oxaliplatin through ATR/CHK1 signaling in gastric cancer. Cell Death Dis 2022; 13:658. [PMID: 35902562 PMCID: PMC9334622 DOI: 10.1038/s41419-022-05118-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
Chemoresistance remains the primary challenge of clinical treatment of gastric cancer (GC), making the biomarkers of chemoresistance crucial for treatment decision. Our previous study has reported that p21-actived kinase 6 (PAK6) is a prognostic factor for selecting which patients with GC are resistant to 5-fluorouracil/oxaliplatin chemotherapy. However, the mechanistic role of PAK6 in chemosensitivity remains unknown. The present study identified PAK6 as an important modulator of the DNA damage response (DDR) and chemosensitivity in GC. Analysis of specimens from patients revealed significant associations between the expression of PAK6 and poorer stages, deeper invasion, more lymph node metastases, higher recurrence rates, and resistance to oxaliplatin. Cells exhibited chemosensitivity to oxaliplatin after knockdown of PAK6, but showed more resistant to oxaliplatin when overexpressing PAK6. Functionally, PAK6 mediates cancer chemoresistance by enhancing homologous recombination (HR) to facilitate the DNA double-strand break repair. Mechanistically, PAK6 moves into nucleus to promote the activation of ATR, thereby further activating downstream repair protein CHK1 and recruiting RAD51 from cytoplasm to the DNA damaged site to repair the broken DNA in GC. Activation of ATR is the necessary step for PAK6 mediated HR repair to protect GC cells from oxaliplatin-induced apoptosis, and ATR inhibitor (AZD6738) could block the PAK6-mediated HR repair, thereby reversing the resistance to oxaliplatin and even promoting the sensitivity to oxaliplatin regardless of high expression of PAK6. In conclusion, these findings indicate a novel regulatory mechanism of PAK6 in modulating the DDR and chemoresistance in GC and provide a reversal suggestion in clinical decision.
Collapse
|
19
|
Deficiency of kin17 Facilitates Apoptosis of Cervical Cancer Cells by Modulating Caspase 3, PARP, and Bcl-2 Family Proteins. JOURNAL OF ONCOLOGY 2022; 2022:3156968. [PMID: 35909901 PMCID: PMC9328945 DOI: 10.1155/2022/3156968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022]
Abstract
Background The treatment of cervical cancer in the late stage is still quite challenging, because of nonspecificity in conventional therapies and the lack of molecular targeted drugs. It is necessary to find novel biomarkers for cervical cancer treatment. Methods In the present study, cervical cell lines HeLa and SiHa with kin17 knockdown were constructed by transfection of the recombinant lentiviral vector carrying KIN17 siRNA and screened by puromycin. The established cells with kin17 knockdown were determined by fluorescence observation and western blotting. Cell apoptosis and the mitochondrial membrane potential (MMP) were detected by flow cytometry. The activity of caspase 3 enzyme was tested by spectrophotometry. The expression profile of apoptosis-associated proteins was analyzed by western blotting. Finally, we used bioinformatics and proteomic data to analyze KIN-related genes in cervical cancer. Results The results showed high fluorescent positive rates (>90%) and high gene silencing efficiency (>65%) in HeLa and SiHa cells transfected with gene silencing vectors. Moreover, kin17 deficiency decreased the MMP and increased the apoptosis rates in HeLa and SiHa cells, respectively. Furthermore, knockdown of kin17 enhanced the activity of caspase 3 enzyme, increased the expression of cleaved PARP and Bim, while decreasing the expression of Bcl-xL and phosphorylated BAD in HeLa and SiHa cells. Identification of KIN-related prognostic genes in cervical cancer revealed that a total of 5 genes (FZR1, IMPDH1, GPKOW, XPA, and DDX39A) were constructed for this risk score, and the results showed that CTLA4 expressions were negatively correlated with the risk score. Conclusion Our findings demonstrated that kin17 knockdown facilitates apoptosis of cervical cancer cells by targeting caspase 3, PARP, and Bcl-2 family proteins. Besides, kin17 could regulate cancer cell apoptosis through the mitochondrial pathway and could be used as a novel therapeutic target for the regulation of cell apoptosis in cervical cancer.
Collapse
|
20
|
Blankenstein LJ, Cordes N, Kunz-Schughart LA, Vehlow A. Targeting of p21-Activated Kinase 4 Radiosensitizes Glioblastoma Cells via Impaired DNA Repair. Cells 2022; 11:cells11142133. [PMID: 35883575 PMCID: PMC9316146 DOI: 10.3390/cells11142133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is a devastating malignant disease with poor patient overall survival. Strong invasiveness and resistance to radiochemotherapy have challenged the identification of molecular targets that can finally improve treatment outcomes. This study evaluates the influence of all six known p21-activated kinase (PAK) protein family members on the invasion capacity and radio-response of glioblastoma cells by employing a siRNA-based screen. In a panel of human glioblastoma cell models, we identified PAK4 as the main PAK isoform regulating invasion and clonogenic survival upon irradiation and demonstrated the radiosensitizing potential of PAK4 inhibition. Mechanistically, we show that PAK4 depletion and pharmacological inhibition enhanced the number of irradiation-induced DNA double-strand breaks and reduced the expression levels of various DNA repair proteins. In conclusion, our data suggest PAK4 as a putative target for radiosensitization and impairing DNA repair in glioblastoma, deserving further scrutiny in extended combinatorial treatment testing.
Collapse
Affiliation(s)
- Leon J. Blankenstein
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
21
|
Pinarbasi-Degirmenci N, Sur-Erdem I, Akcay V, Bolukbasi Y, Selek U, Solaroglu I, Bagci-Onder T. Chronically Radiation-Exposed Survivor Glioblastoma Cells Display Poor Response to Chk1 Inhibition under Hypoxia. Int J Mol Sci 2022; 23:ijms23137051. [PMID: 35806055 PMCID: PMC9266388 DOI: 10.3390/ijms23137051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naïve glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naïve and IR-Surv cells. However, IR-Surv cells’ response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naïve and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.
Collapse
Affiliation(s)
- Nareg Pinarbasi-Degirmenci
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
| | - Ilknur Sur-Erdem
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Correspondence: (I.S.-E.); (T.B.-O.)
| | - Vuslat Akcay
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul 34010, Turkey; (Y.B.); (U.S.)
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ugur Selek
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul 34010, Turkey; (Y.B.); (U.S.)
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ihsan Solaroglu
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Department of Neurosurgery, Koç University School of Medicine, Istanbul 34010, Turkey
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Correspondence: (I.S.-E.); (T.B.-O.)
| |
Collapse
|
22
|
Characterization of Aberrations in DNA Damage Repair Pathways in Gastrointestinal Stromal Tumors: The Clinicopathologic Relevance of γH2AX and 53BP1 in Correlation with Heterozygous Deletions of CHEK2, BRCA2, and RB1. Cancers (Basel) 2022; 14:cancers14071787. [PMID: 35406559 PMCID: PMC8997382 DOI: 10.3390/cancers14071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic aberrations involving DNA damage repair (DDR) remain underexplored in gastrointestinal stromal tumors (GISTs). We characterized DDR abnormalities using targeted next-generation sequencing and multiplex ligation-dependent probe amplification, and performed immunofluorescence (IF) and immunohistochemistry (IHC) analyses of γH2AX and 53BP1. Consistent with IF-validated nuclear co-localization, γH2AX and 53BP1 showed robust correlations in expression levels, as did both biomarkers between IF and IHC. Without recurrent pathogenic single-nucleotide variants, heterozygous deletions (HetDels) frequently targeted DNA damage-sensing genes, with CHEK2-HetDel being the most prevalent. Despite their chromosomal proximity, BRCA2 and RB1 were occasionally hit by HetDels and were seldom co-deleted. HetDels of CHEK2 and BRCA2 showed a preference for older age groups, while RB1-HetDel predominated in the non-gastric, high-risk, and 53BP1-overexpressing GISTs. Higher risk levels were consistently related to γ-H2AX or 53BP1 overexpression (all p < 0.01) in two validation cohorts, while only 53BP1 overexpression was associated with the deletion of KIT exon 11 (KITex11-del) among genotyped GISTs. Low expressers of dual biomarkers were shown by univariate analysis to have longer disease-free survival (p = 0.031). However, higher risk levels, epithelioid histology, and KITex11-del retained prognostic independence. Conclusively, IHC is a useful surrogate of laborious IF in the combined assessment of 53BP1 and γ-H2AX to identify potential DDR-defective GISTs, which were frequently aberrated by HetDels and a harbinger of progression.
Collapse
|
23
|
Kneubil M, Goulart K, Brollo J, Coelho G, Mandelli J, Orlandin B, Corso L, Roesch-Ely M, Henriques J. Predictive value of DNA repair gene expression for response to neoadjuvant chemotherapy in breast cancer. Braz J Med Biol Res 2022; 55:e11857. [PMID: 35293552 PMCID: PMC8922549 DOI: 10.1590/1414-431x2021e11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Genome-wide analysis using microarrays has revolutionized breast cancer (BC)
research. A substantial body of evidence supports the clinical utility of the
21-gene assay (Oncotype DX) and 70-gene assay (MammaPrint) to predict BC
recurrence and the magnitude of benefit from chemotherapy. However, there is
currently no genetic tool able to predict chemosensitivity and chemoresistance
to neoadjuvant chemotherapy (NACT) during BC treatment. In this study, we
explored the predictive value of DNA repair gene expression in the neoadjuvant
setting. We selected 98 patients with BC treated with NACT. We assessed DNA
repair expression in 98 formalin-fixed, paraffin-embedded core biopsy fragments
used at diagnosis and in 32 formalin-fixed, paraffin-embedded post-NACT residual
tumors using quantitative reverse transcription-polymerase chain reaction. The
following genes were selected: BRCA1, PALB2,
RAD51C, BRCA2, ATM,
FANCA, MSH2, XPA,
ERCC1, PARP1, and SNM1.
Of 98 patients, 33 (33.7%) achieved pathologic complete response (pCR). The DNA
expression of 2 genes assessed in pre-NACT biopsies (PALB2 and
ERCC1) was lower in pCR than in non-pCR patients (P=0.005
and P=0.009, respectively). There was no correlation between molecular subtype
and expression of DNA repair genes. The genes BRCA2 (P=0.009),
ATM (P=0.004), FANCA (P=0.001), and
PARP1 (P=0.011) showed a lower expression in post-NACT
residual tumor samples (n=32) than in pre-NACT biopsy samples (n=98). The
expression of 2 genes (PALB2 and ERCC1) was
lower in pCR patients. These alterations in DNA repair could be considered
suitable targets for cancer therapy.
Collapse
Affiliation(s)
- M.C. Kneubil
- Universidade de Caxias do Sul, Brasil; Universidade de Caxias do Sul, Brasil
| | | | - J. Brollo
- Universidade de Caxias do Sul, Brasil
| | | | | | | | - L.L. Corso
- Universidade de Caxias do Sul, Brasil; Instituto Hercílio Randon, Brasil
| | | | - J.A.P. Henriques
- Universidade de Caxias do Sul, Brasil; Universidade do Vale do Taquari - UNIVATES, Brasil
| |
Collapse
|
24
|
Boni J, Idani A, Roca C, Feliubadaló L, Tomiak E, Weber E, Foulkes WD, Orthwein A, El Haffaf Z, Lazaro C, Rivera B. A decade of RAD51C and RAD51D germline variants in cancer. Hum Mutat 2021; 43:285-298. [PMID: 34923718 DOI: 10.1002/humu.24319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
Defects in DNA repair genes have been extensively associated with cancer susceptibility. Germline pathogenic variants (GPV) in genes involved in homologous recombination repair pathways predispose to cancers arising mainly in the breast and ovary, but also other tissues. The RAD51 paralogs RAD51C and RAD51D were included in this group 10 years ago when germline variants were associated with non-BRCA1/2 familial ovarian cancer. Here, we have reviewed the landscape of RAD51C and RAD51D germline variants in cancer reported in the literature during the last decade, integrating this list with variants identified by in-house patient screening. A comprehensive catalog of 341 variants that have been classified applying ACMG/AMP criteria has been generated pinpointing the existence of recurrent variants in both genes. Recurrent variants have been extensively discussed compiling data on population frequencies and functional characterization if available, highlighting variants that have not been fully characterized yet to properly establish their pathogenicity. Finally, we have complemented this data with relevant information regarding the conservation of mutated residues among RAD51 paralogs and modeling of putative hotspot areas, which contributes to generating an exhaustive update on these two cancer predisposition genes.
Collapse
Affiliation(s)
- Jacopo Boni
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Aida Idani
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Carla Roca
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Tomiak
- Department of Genetics, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Evan Weber
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Quebec, Montreal, Canada
| | - William D Foulkes
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Quebec, Montreal, Canada.,Gerald Bronfman Department of Oncology, McGill University Montreal, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University Montreal, Montreal, Quebec, Canada.,Cancer Research Axis, Lady Davis Institute, Jewish General Hospital, Quebec, Montreal, Canada
| | - Alexandre Orthwein
- Gerald Bronfman Department of Oncology, McGill University Montreal, Montreal, Quebec, Canada.,Cancer Research Axis, Lady Davis Institute, Jewish General Hospital, Quebec, Montreal, Canada
| | - Zaki El Haffaf
- Division of Genetics, Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal (CRCHUM), Quebec, Montreal, Canada
| | - Conxi Lazaro
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Barbara Rivera
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Gerald Bronfman Department of Oncology, McGill University Montreal, Montreal, Quebec, Canada.,Cancer Research Axis, Lady Davis Institute, Jewish General Hospital, Quebec, Montreal, Canada
| |
Collapse
|
25
|
CCNB2 is a novel prognostic factor and a potential therapeutic target in Low-grade glioma (LGG). Biosci Rep 2021; 42:230458. [PMID: 34908101 PMCID: PMC8799923 DOI: 10.1042/bsr20211939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Cyclin B2 (CCNB2) is an important component of the cyclin pathway and plays a key role in the occurrence and development of cancer. However, the correlation between prognosis of low-grade glioma (LGG), CCNB2, and tumor infiltrating lymphocytes is not clear. Methods: The expression of CCNB2 in LGG was queried in Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and TIMER databases. The relationships between CCNB2 and the clinicopathological features of LGG were analyzed using the Chinese Glioma Genome Atlas (CGGA) database. The relationship between CCNB2 expression and overall survival (OS) was evaluated by GEPIA2. The correlation between CCNB2 and LGG immune infiltration was analyzed by the TIMER database. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect CCNB2 expression. Results: The expression of CCNB2 differed across different tumor tissues, but was higher in LGG than in normal tissues. LGG patients with high expression of CCNB2 have poorer prognosis. The expression of CCNB2 was correlated with age, WHO grade, IDH mutational status, 1p/19q codeletion status, and other clinicopathological features. The expression of CCNB2 in LGG was positively correlated with the infiltration level of B cells, dendritic cells, and macrophages. qRT-PCR results revealed that the expression of CCNB2 in LGG tissues was higher than normal tissues and higher expression of CCNB2 was associated with worse prognosis. Conclusion: CCNB2 may be used as a potential biomarker to determine the prognosis of LGG and is also related to immune infiltration.
Collapse
|
26
|
Feng W, Smith CM, Simpson DA, Gupta GP. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. Semin Radiat Oncol 2021; 32:29-41. [PMID: 34861993 DOI: 10.1016/j.semradonc.2021.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.
Collapse
Affiliation(s)
| | - Chelsea M Smith
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program
| | | | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center; Pathobiology and Translational Science Graduate Program; Department of Radiation Oncology; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC.
| |
Collapse
|
27
|
Zhu Q, Huang J, Huang H, Li H, Yi P, Kloeber JA, Yuan J, Chen Y, Deng M, Luo K, Gao M, Guo G, Tu X, Yin P, Zhang Y, Su J, Chen J, Lou Z. RNF19A-mediated ubiquitination of BARD1 prevents BRCA1/BARD1-dependent homologous recombination. Nat Commun 2021; 12:6653. [PMID: 34789768 PMCID: PMC8599684 DOI: 10.1038/s41467-021-27048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
BRCA1-BARD1 heterodimers act in multiple steps during homologous recombination (HR) to ensure the prompt repair of DNA double strand breaks. Dysfunction of the BRCA1 pathway enhances the therapeutic efficiency of poly-(ADP-ribose) polymerase inhibitors (PARPi) in cancers, but the molecular mechanisms underlying this sensitization to PARPi are not fully understood. Here, we show that cancer cell sensitivity to PARPi is promoted by the ring between ring fingers (RBR) protein RNF19A. We demonstrate that RNF19A suppresses HR by ubiquitinating BARD1, which leads to dissociation of BRCA1-BARD1 complex and exposure of a nuclear export sequence in BARD1 that is otherwise masked by BRCA1, resulting in the export of BARD1 to the cytoplasm. We provide evidence that high RNF19A expression in breast cancer compromises HR and increases sensitivity to PARPi. We propose that RNF19A modulates the cancer cell response to PARPi by negatively regulating the BRCA1-BARD1 complex and inhibiting HR-mediated DNA repair.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hongyang Huang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Huan Li
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Peiqiang Yi
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of medicine, Shanghai, 200120, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of medicine, Shanghai, 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Su
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Yoshida K, Fujita M. DNA damage responses that enhance resilience to replication stress. Cell Mol Life Sci 2021; 78:6763-6773. [PMID: 34463774 PMCID: PMC11072782 DOI: 10.1007/s00018-021-03926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
During duplication of the genome, eukaryotic cells may experience various exogenous and endogenous replication stresses that impede progression of DNA replication along chromosomes. Chemical alterations in template DNA, imbalances of deoxynucleotide pools, repetitive sequences, tight DNA-protein complexes, and conflict with transcription can negatively affect the replication machineries. If not properly resolved, stalled replication forks can cause chromosome breaks leading to genomic instability and tumor development. Replication stress is enhanced in cancer cells due, for example, to the loss of DNA repair genes or replication-transcription conflict caused by activation of oncogenic pathways. To prevent these serious consequences, cells are equipped with diverse mechanisms that enhance the resilience of replication machineries to replication stresses. This review describes DNA damage responses activated at stressed replication forks and summarizes current knowledge on the pathways that promote faithful chromosome replication and protect chromosome integrity, including ATR-dependent replication checkpoint signaling, DNA cross-link repair, and SLX4-mediated responses to tight DNA-protein complexes that act as barriers. This review also focuses on the relevance of replication stress responses to selective cancer chemotherapies.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
30
|
Li J, Zhou J, Zhang J, Xiao Z, Wang W, Chen H, Lin L, Yang Q. DNA repair genes are associated with tumor tissue differentiation and immune environment in lung adenocarcinoma: a bioinformatics analysis based on big data. J Thorac Dis 2021; 13:4464-4475. [PMID: 34422373 PMCID: PMC8339776 DOI: 10.21037/jtd-21-949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/02/2021] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common type of lung cancer. DNA repair genes (DRGs) is important in lung cancer. The relationship between the immune environment and the expression levels of DRGs in LUAD remains unclear. The purpose of this study is to assess the relationship between DRGs and the immune environment and clinical characteristics of LUAD. Methods Data of 169 LUAD cases were obtained from cbioportal. The RNA-seq data came from the The Cancer Genome Atlas (TCGA) database. We collected DRGs from the Reactom database (KW0037, Reactom.org). The 302 genes expressed in each sample were analyzed by hierarchical clustering and grouped using the Gene Cluster 3.0 program. The Java Treeview program was used to generate heat maps of cluster indications and tumor staging patterns. GraphPad Prism 8 was used to draw survival curves and compare overall survival (OS). For single genes, an OS difference analysis between low and high expression populations was performed in GraphPad Prism 8. Results Matrix clustering showed no difference in the prognosis of the two clusters. The comparison of subgroups showed that Subcluster 1 (SC1) had the best prognosis, and Subcluster 2 (SC2) had the worst. There was a significant difference in tumor grades between Cluster 1 and Cluster 2 (P=0.01). There were significant differences in smoking status, histological grade and adenocarcinoma subtype among subgroups. In Subcluster 3 (SC3), the proportion of poorly differentiated cases was highest. Immunological index analysis showed that there were significant differences between Cluster 1 and Cluster 2 in interferon, macrophages, monocytes, neutrophils, natural killer (NK) cells, and T cells. Tumor purity, interferon, macrophages, monocytes, neutrophils, NK cells, T cells, translation, and proliferation all showed significant differences between subgroups. In SC2, the proliferation index increased (0.082 vs. 0.070); the protein translation index decreased (0.134 vs. 0.137); and the interferon level increased (0.099 vs. 0.097). In SC3, the proliferation index decreased (0.076 vs. 0.071); the protein translation index decreased (0.140 vs. 0.136); and the level of neutrophils increased (0.083 vs. 0.086). Conclusions The differences of DRGs in LUAD are related to tissue differentiation and immune indicators but not to prognosis.
Collapse
Affiliation(s)
- Jiayin Li
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxu Zhou
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwei Xiao
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenping Wang
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanrui Chen
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuye Yang
- Department of Medical Technologic, The First Affiliated Hospital to Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Sun H, Zhou R, Zheng Y, Wen Z, Zhang D, Zeng D, Wu J, Huang Z, Rong X, Huang N, Sun L, Bin J, Liao Y, Shi M, Liao W. CRIP1 cooperates with BRCA2 to drive the nuclear enrichment of RAD51 and to facilitate homologous repair upon DNA damage induced by chemotherapy. Oncogene 2021; 40:5342-5355. [PMID: 34262130 PMCID: PMC8390368 DOI: 10.1038/s41388-021-01932-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repair is an important determinant of chemosensitivity. However, the mechanisms underlying HR regulation remain largely unknown. Cysteine-rich intestinal protein 1 (CRIP1) is a member of the LIM/double-zinc finger protein family and is overexpressed and associated with prognosis in several tumor types. However, to date, the functional role of CRIP1 in cancer biology is poorly understood. Here we found that CRIP1 downregulation causes HR repair deficiency with concomitant increase in cell sensitivity to cisplatin, epirubicin, and the poly ADP-ribose polymerase (PARP) inhibitor olaparib in gastric cancer cells. Mechanistically, upon DNA damage, CRIP1 is deubiquitinated and upregulated by activated AKT signaling. CRIP1, in turn, promotes nuclear enrichment of RAD51, which is a prerequisite step for HR commencement, by stabilizing BRCA2 to counteract FBXO5-targeted RAD51 degradation and by binding to the core domain of RAD51 (RAD51184-257) in coordination with BRCA2, to facilitate nuclear export signal masking interactions between BRCA2 and RAD51. Moreover, through mass spectrometry screening, we found that KPNA4 is at least one of the carriers controlling the nucleo-cytoplasmic distribution of the CRIP1-BRCA2-RAD51 complex in response to chemotherapy. Consistent with these findings, RAD51 inhibitors block the CRIP1-mediated HR process, thereby restoring chemotherapy sensitivity of gastric cancer cells with high CRIP1 expression. Analysis of patient specimens revealed an abnormally high level of CRIP1 expression in GC tissues compared to that in the adjacent normal mucosa and a significant negative association between CRIP1 expression and survival time in patient cohorts with different types of solid tumors undergoing genotoxic treatments. In conclusion, our study suggests an essential function of CRIP1 in promoting HR repair and facilitating gastric cancer cell adaptation to genotoxic therapy.
Collapse
Affiliation(s)
- Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Yannan Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dingling Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
32
|
Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:130-142. [PMID: 33115610 PMCID: PMC8666131 DOI: 10.1016/j.pbiomolbio.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cancer will directly affect the lives of over one-third of the population. The DNA Damage Response (DDR) is an intricate system involving damage recognition, cell cycle regulation, DNA repair, and ultimately cell fate determination, playing a central role in cancer etiology and therapy. Two primary therapeutic approaches involving DDR targeting include: combinatorial treatments employing anticancer genotoxic agents; and synthetic lethality, exploiting a sporadic DDR defect as a mechanism for cancer-specific therapy. Whereas, many DDR proteins have proven "undruggable", Fragment- and Structure-Based Drug Discovery (FBDD, SBDD) have advanced therapeutic agent identification and development. FBDD has led to 4 (with ∼50 more drugs under preclinical and clinical development), while SBDD is estimated to have contributed to the development of >200, FDA-approved medicines. Protein X-ray crystallography-based fragment library screening, especially for elusive or "undruggable" targets, allows for simultaneous generation of hits plus details of protein-ligand interactions and binding sites (orthosteric or allosteric) that inform chemical tractability, downstream biology, and intellectual property. Using a novel high-throughput crystallography-based fragment library screening platform, we screened five diverse proteins, yielding hit rates of ∼2-8% and crystal structures from ∼1.8 to 3.2 Å. We consider current FBDD/SBDD methods and some exemplary results of efforts to design inhibitors against the DDR nucleases meiotic recombination 11 (MRE11, a.k.a., MRE11A), apurinic/apyrimidinic endonuclease 1 (APE1, a.k.a., APEX1), and flap endonuclease 1 (FEN1).
Collapse
Affiliation(s)
- David M Wilson
- Hasselt University, Biomedical Research Institute, Diepenbeek, Belgium; Boost Scientific, Heusden-Zolder, Belgium; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Ashley M Deacon
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | | | | | - Millie M Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; XPose Therapeutics Inc., San Carlos, CA, USA
| | - Andrew P Yeh
- Accelero Biostructures Inc., San Francisco, CA, USA
| | - Andrew S Arvai
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Davide Moiani
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Debanu Das
- Accelero Biostructures Inc., San Francisco, CA, USA; XPose Therapeutics Inc., San Carlos, CA, USA.
| |
Collapse
|
33
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 297] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
34
|
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021; 9:693. [PMID: 34207450 PMCID: PMC8235073 DOI: 10.3390/biomedicines9060693] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death in women as survival is highly dependent on the stage of the disease. Ovarian cancer is typically diagnosed in the late stage due to the fact that in the early phases is mostly asymptomatic. Genomic instability is one of the hallmarks of ovarian cancer. While ovarian cancer is stratified into different clinical subtypes, there still exists extensive genetic and progressive diversity within each subtype. Early detection of the disorder is one of the most important steps that facilitate a favorable prognosis and a good response to medical therapy for the patients. In targeted therapies, individual patients are treated by agents targeting the changes in tumor cells that help them grow, divide and spread. Currently, in gynecological malignancies, potential therapeutic targets include tumor-intrinsic signaling pathways, angiogenesis, homologous-recombination deficiency, hormone receptors, and immunologic factors. Ovarian cancer is usually diagnosed in the final stages, partially due to the absence of an effective screening strategy, although, over the times, numerous biomarkers have been studied and used to assess the status, progression, and efficacy of the drug therapy in this type of disorder.
Collapse
Affiliation(s)
- Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Alina Prădatu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Romeo Micu
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Viorica Elena Rădoi
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
35
|
Starzyńska A, Sobocki BK, Sejda A, Sakowicz-Burkiewicz M, Szot O, Jereczek-Fossa BA. ZNF-281 as the Potential Diagnostic Marker of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021. [PMID: 34071380 PMCID: PMC8197962 DOI: 10.3390/cancers13112661;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ZNF-281 is a zinc finger factor which can lead to cancer progression and metastasis. Its up-regulation reported in many cancers was correlated with metastasis and worsened patients' prognosis. This is the first study describing ZNF-281 in the context of OSCC. Oral tissue samples drawn from 66 OSCC patients and 36 control patients were collected to determine protein (using immunochemistry and the semi-quantitative H-score method) and mRNA expression levels (using the RT-qPCR reaction). Our aim was to assess the ZNF-281 expression level in OSCC and the control group. Moreover, we determined the impact of ZNF-281 on survival parameters and the association of diversified clinical parameters with ZNF-281 expression. Clinical factors such as grade, AJCC stage and radiotherapy have an impact on the ZNF-281 H-score level, whereas AJCC stage and grade have an influence on ZNF-281 mRNA expression. Our survival analysis indicated that the impact on overall survival is not statistically significant, and the prognostic potential of ZNF-281 is rather limited. Our findings show that both levels of the ZNF-281 H-score and mRNA are decreased in OSCC in comparison to normal tissue. Moreover, we estimated that the H-score can differentiate normal tissue from OSCC with a sensitivity of 97% and specificity of 93.7%.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
- Correspondence: (A.S.); (B.K.S.); Tel.: +48-58-349-15-71 (A.S.)
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
- Correspondence: (A.S.); (B.K.S.); Tel.: +48-58-349-15-71 (A.S.)
| | - Aleksandra Sejda
- Department of Pathomorphology, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland;
| | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Olga Szot
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy
| |
Collapse
|
36
|
Starzyńska A, Sobocki BK, Sejda A, Sakowicz-Burkiewicz M, Szot O, Jereczek-Fossa BA. ZNF-281 as the Potential Diagnostic Marker of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:2661. [PMID: 34071380 PMCID: PMC8197962 DOI: 10.3390/cancers13112661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
ZNF-281 is a zinc finger factor which can lead to cancer progression and metastasis. Its up-regulation reported in many cancers was correlated with metastasis and worsened patients' prognosis. This is the first study describing ZNF-281 in the context of OSCC. Oral tissue samples drawn from 66 OSCC patients and 36 control patients were collected to determine protein (using immunochemistry and the semi-quantitative H-score method) and mRNA expression levels (using the RT-qPCR reaction). Our aim was to assess the ZNF-281 expression level in OSCC and the control group. Moreover, we determined the impact of ZNF-281 on survival parameters and the association of diversified clinical parameters with ZNF-281 expression. Clinical factors such as grade, AJCC stage and radiotherapy have an impact on the ZNF-281 H-score level, whereas AJCC stage and grade have an influence on ZNF-281 mRNA expression. Our survival analysis indicated that the impact on overall survival is not statistically significant, and the prognostic potential of ZNF-281 is rather limited. Our findings show that both levels of the ZNF-281 H-score and mRNA are decreased in OSCC in comparison to normal tissue. Moreover, we estimated that the H-score can differentiate normal tissue from OSCC with a sensitivity of 97% and specificity of 93.7%.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3A Sklodowskiej-Curie Street, 80-210 Gdansk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland;
| | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Olga Szot
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy
| |
Collapse
|
37
|
Qin F, Sun Y, Deng K, Qin J, Xu Z, Wei J, Yuan L, Zheng T, Li S. Comprehensive analysis of DNA damage repair in squamous cell carcinoma subtypes. Life Sci 2021; 278:119559. [PMID: 33932441 DOI: 10.1016/j.lfs.2021.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
AIMS Defective components resulting from DNA damage and repair mechanisms have been found to be underlying causes that affect the development and progression of different types of cancers, including squamous cell carcinoma (SCC). A more detailed classification of SCC is necessary for better application of DNA damage repair therapies. MATERIALS AND METHODS We aimed to characterize the molecular profile of SCC by developing a classification system based on DNA damage repair gene expression profiles. An integrative analysis was performed using a metadata set of 1374 SCC human samples from the UCSC Genome Browser. We then analyzed genomic alterations and mutations, and genes-TF-microRNA regulatory relationships and conducted enrichment, survival, and immune infiltration analyses. KEY FINDINGS This study was conducted on a total of 1374 SCC patients and 402 DNA damage repair genes. Two subtypes were established using consensus clustering, with 1143 patients being of the Non DDR subtype and 231 patients being of the DDR subtype. MATH, mutation burden, and heterogeneity were significantly higher in Non-DDR subtype than in DDR subtype. Next, a total of 1081 differentially expressed genes and 21 microRNAs were identified between the two subtypes and a genes-TF-microRNA regulatory network was constructed. In addition, stromal score, immune score and ESTIMATE score were significantly lower for the Non-DDR subtype, while tumor purity was significantly lower for the DDR subtype. In addition, five pathways associated with DNA damage repair were all enriched in the DDR subtype. SIGNIFICANCE Our study established two subtypes of SCC based on DNA damage repair, which may help to predict prognosis and determine the most suitable treatment for SCC patients.
Collapse
Affiliation(s)
- Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
38
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
39
|
Buzon B, Grainger RA, Rzadki C, Huang SYM, Junop M. Identification of Bioactive SNM1A Inhibitors. ACS OMEGA 2021; 6:9352-9361. [PMID: 33869915 PMCID: PMC8047731 DOI: 10.1021/acsomega.0c03528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
SNM1A is a nuclease required to repair DNA interstrand cross-links (ICLs) caused by some anticancer compounds, including cisplatin. Unlike other nucleases involved in ICL repair, SNM1A is not needed to restore other forms of DNA damage. As such, SNM1A is an attractive target for selectively increasing the efficacy of ICL-based chemotherapy. Using a fluorescence-based exonuclease assay, we screened a bioactive library of compounds for inhibition of SNM1A. Of the 52 compounds initially identified as hits, 22 compounds showed dose-response inhibition of SNM1A. An orthogonal gel-based assay further confirmed nine small molecules as SNM1A nuclease activity inhibitors with IC50 values in the mid-nanomolar to low micromolar range. Finally, three compounds showed no toxicity at concentrations able to significantly potentiate the cytotoxicity of cisplatin. These compounds represent potential leads for further optimization to sensitize cells toward chemotherapeutic agents inducing ICL damage.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan A. Grainger
- Department
of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| | - Cameron Rzadki
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Simon York Ming Huang
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Murray Junop
- Department
of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Biochemistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
40
|
Ghidini M, Petrillo A, Botticelli A, Trapani D, Parisi A, La Salvia A, Sajjadi E, Piciotti R, Fusco N, Khakoo S. How to Best Exploit Immunotherapeutics in Advanced Gastric Cancer: Between Biomarkers and Novel Cell-Based Approaches. J Clin Med 2021; 10:1412. [PMID: 33915839 PMCID: PMC8037391 DOI: 10.3390/jcm10071412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research efforts, advanced gastric cancer still has a dismal prognosis with conventional treatment options. Immune checkpoint inhibitors have revolutionized the treatment landscape for many solid tumors. Amongst gastric cancer subtypes, tumors with microsatellite instability and Epstein Barr Virus positive tumors provide the strongest rationale for responding to immunotherapy. Various predictive biomarkers such as mismatch repair status, programmed death ligand 1 expression, tumor mutational burden, assessment of tumor infiltrating lymphocytes and circulating biomarkers have been evaluated. However, results have been inconsistent due to different methodologies and thresholds used. Clinical implementation therefore remains a challenge. The role of immune checkpoint inhibitors in gastric cancer is emerging with data from monotherapy in the heavily pre-treated population already available and studies in earlier disease settings with different combinatorial approaches in progress. Immune checkpoint inhibitor combinations with chemotherapy (CT), anti-angiogenics, tyrosine kinase inhibitors, anti-Her2 directed therapy, poly (ADP-ribose) polymerase inhibitors or dual checkpoint inhibitor strategies are being explored. Moreover, novel strategies including vaccines and CAR T cell therapy are also being trialed. Here we provide an update on predictive biomarkers for response to immunotherapy with an overview of their strengths and limitations. We discuss clinical trials that have been reported and trials in progress whilst providing an account of future steps needed to improve outcome in this lethal disease.
Collapse
Affiliation(s)
- Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy;
- Medical Oncology (B), Policlinico Umberto I, 00161 Rome, Italy
| | - Dario Trapani
- Division of Early Drug Development for innovative therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | - Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Medical Oncology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy
| | - Anna La Salvia
- Department of Oncology, University Hospital 12 De Octubre, 28041 Madrid, Spain;
| | - Elham Sajjadi
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberto Piciotti
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (E.S.); (R.P.); (N.F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Shelize Khakoo
- Department of Medicine, Royal Marsden Hospital, London and Surrey, Sutton SM25PT, UK;
| |
Collapse
|
41
|
Yu Q, Xiao W, Sun S, Sohrabi A, Liang J, Seidlits SK. Extracellular Matrix Proteins Confer Cell Adhesion-Mediated Drug Resistance Through Integrin α v in Glioblastoma Cells. Front Cell Dev Biol 2021; 9:616580. [PMID: 33834020 PMCID: PMC8021872 DOI: 10.3389/fcell.2021.616580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy resistance to glioblastoma (GBM) remains an obstacle that is difficult to overcome, leading to poor prognosis of GBM patients. Many previous studies have focused on resistance mechanisms intrinsic to cancer cells; the microenvironment surrounding tumor cells has been found more recently to have significant impacts on the response to chemotherapeutic agents. Extracellular matrix (ECM) proteins may confer cell adhesion-mediated drug resistance (CAMDR). Here, expression of the ECM proteins laminin, vitronectin, and fibronectin was assessed in clinical GBM tumors using immunohistochemistry. Then, patient-derived GBM cells grown in monolayers on precoated laminin, vitronectin, or fibronectin substrates were treated with cilengitide, an integrin inhibitor, and/or carmustine, an alkylating chemotherapy. Cell adhesion and viability were quantified. Transcription factor (TF) activities were assessed over time using a bioluminescent assay in which GBM cells were transduced with lentiviruses containing consensus binding sites for specific TFs linked to expression a firefly luciferase reporter. Apoptosis, mediated by p53, was analyzed by Western blotting and immunocytofluorescence. Integrin αv activation of the FAK/paxillin/AKT signaling pathway and effects on expression of the proliferative marker Ki67 were investigated. To assess effects of integrin αv activation of AKT and ERK pathways, which are typically deregulated in GBM, and expression of epidermal growth factor receptor (EGFR), which is amplified and/or mutated in many GBM tumors, shRNA knockdown was used. Laminin, vitronectin, and fibronectin were abundant in clinical GBM tumors and promoted CAMDR in GBM cells cultured on precoated substrates. Cilengitide treatment induced cell detachment, which was most pronounced for cells cultured on vitronectin. Cilengitide treatment increased cytotoxicity of carmustine, reversing CAMDR. ECM adhesion increased activity of NFκB and decreased that of p53, leading to suppression of p53-mediated apoptosis and upregulation of multidrug resistance gene 1 (MDR1; also known as ABCB1 or P-glycoprotein). Expression of Ki67 was correlative with activation of the integrin αv-mediated FAK/paxillin/AKT signaling pathway. EGFR expression increased with integrin αv knockdown GBM cells and may represent a compensatory survival mechanism. These results indicate that ECM proteins confer CAMDR through integrin αv in GBM cells.
Collapse
Affiliation(s)
- Qi Yu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weikun Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Songping Sun
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse Liang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stephanie K Seidlits
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in women in the United States. Because success in early screening is limited, and most patients with advanced disease develop resistance to multiple treatment modalities, the overall prognosis of ovarian cancer is poor. Despite the revolutionary role of surgery and chemotherapy in curing ovarian cancer, recurrence remains a major challenge in treatment. Thus, improving our understanding of the pathogenesis of ovarian cancer is essential for developing more effective treatments. In this review, we analyze the underlying molecular mechanisms leading to chemotherapy resistance. We discuss the clinical benefits and potential challenges of using nanocarrier-delivered small interfering RNA to treat chemotherapy-resistant ovarian cancer. We aim to elicit collaborative studies on nanocarrier-delivered small interfering RNA to improve the long-term survival rate and quality of life of patients with ovarian cancer. This article is categorized under: RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Liu
- The First People's Hospital of Wu'an, Wu'an, Hebei, China
| | - Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
43
|
The APEX1/miRNA-27a-5p axis plays key roles in progression, metastasis and targeted chemotherapy of gastric cancer. Int J Pharm 2021; 599:120446. [PMID: 33675923 DOI: 10.1016/j.ijpharm.2021.120446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) presents a challenge for conventional therapeutics due to low targeting specificity and subsequent elicitation of multiple drug resistance (MDR). As an essential enzyme for DNA repair, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) exhibits multiple functions to affect cancer malignancy and is excessively expressed in GC. However, the roles APEX1 and its inhibitor miR-27a-5p play in modulating GC progression and MDR development remains unclear. Here, we verified APEX1 as a target of miR-27a-5p and subsequently established the APEX1-deleted SGC-7901 cell line by CRISPR/Cas9 editing. The roles of the APEX1/miR-27a-5p axis in GC progression, metastasis and doxorubicin (DOX) resistance were explored by the targeted chemotherapy facilitated by a GC-specific peptide (GP5) functionalized liposomal drug delivery formulation (GP5/Lipo/DOX/miR-27a-5p). The results showed that APEX1 deletion distinctly attenuated cell growth and metastatic properties in GC, and also sensitized GC cells to DOX. Notably, miR-27a-5p was validated as a suppressor of APEX1-dependent GC development and DOX resistance by a RAS/MEK/FOS and PTEN/AKT/SMAD2 pathway-dependent manner. The altered expression of epithelial-mesenchymal transition (EMT) signatures and signal pathway proteins in the APEX1-deleted cells implied that APEX1 potentially enhances DOX resistance of GC cells by altering the regulation of MAPK and AKT pathways, leading to compromised efficacy of chemotherapy or by initiating additional DNA damage response pathways. Taken together, these findings revealed that as a novel therapeutic target, APEX1/miR-27a-5p axis plays essential roles in modulating the GC development and MDR, and the GC targeted drug delivery formulation presents a strategic reference for the future designation of chemotherapeutics study.
Collapse
|
44
|
Benedetti F, Curreli S, Gallo RC, Zella D. Tampering of Viruses and Bacteria with Host DNA Repair: Implications for Cellular Transformation. Cancers (Basel) 2021; 13:E241. [PMID: 33440726 PMCID: PMC7826954 DOI: 10.3390/cancers13020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
A reduced ability to properly repair DNA is linked to a variety of human diseases, which in almost all cases is associated with an increased probability of the development of cellular transformation and cancer. DNA damage, that ultimately can lead to mutations and genomic instability, is due to many factors, such as oxidative stress, metabolic disorders, viral and microbial pathogens, excess cellular proliferation and chemical factors. In this review, we examine the evidence connecting DNA damage and the mechanisms that viruses and bacteria have evolved to hamper the pathways dedicated to maintaining the integrity of genetic information, thus affecting the ability of their hosts to repair the damage(s). Uncovering new links between these important aspects of cancer biology might lead to the development of new targeted therapies in DNA-repair deficient cancers and improving the efficacy of existing therapies. Here we provide a comprehensive summary detailing the major mechanisms that viruses and bacteria associated with cancer employ to interfere with mechanisms of DNA repair. Comparing these mechanisms could ultimately help provide a common framework to better understand how certain microorganisms are involved in cellular transformation.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Robert C. Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.C.); (R.C.G.)
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
45
|
Zhao Z, Cai Q, Zhang P, He B, Peng X, Tu G, Peng W, Wang L, Yu F, Wang X. N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing (AS) Gene Signature Predicts Non-Small Cell Lung Cancer Prognosis. Front Mol Biosci 2021; 8:657087. [PMID: 34179079 PMCID: PMC8226009 DOI: 10.3389/fmolb.2021.657087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Aberrant N6-methyladenosine (m6A) RNA methylation regulatory genes and related gene alternative splicing (AS) could be used to predict the prognosis of non-small cell lung carcinoma. This study focused on 13 m6A regulatory genes (METTL3, METTL14, WTAP, KIAA1429, RBM15, ZC3H13, YTHDC1, YTHDC2, YTHDF1, YTHDF2, HNRNPC, FTO, and ALKBH5) and expression profiles in TCGA-LUAD (n = 504) and TCGA-LUSC (n = 479) datasets from the Cancer Genome Atlas database. The data were downloaded and bioinformatically and statistically analyzed, including the gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. There were 43,948 mRNA splicing events in lung adenocarcinoma (LUAD) and 46,020 in lung squamous cell carcinoma (LUSC), and the data suggested that m6A regulators could regulate mRNA splicing. Differential HNRNPC and RBM15 expression was associated with overall survival (OS) of LUAD and HNRNPC and METTL3 expression with the OS of LUSC patients. Furthermore, the non-small cell lung cancer prognosis-related AS events signature was constructed and divided patients into high- vs. low-risk groups using seven and 14 AS genes in LUAD and LUSC, respectively. The LUAD risk signature was associated with gender and T, N, and TNM stages, but the LUSC risk signature was not associated with any clinical features. In addition, the risk signature and TNM stage were independent prognostic predictors in LUAD and the risk signature and T stage were independent prognostic predictors in LUSC after the multivariate Cox regression and receiver operating characteristic analyses. In conclusion, this study revealed the AS prognostic signature in the prediction of LUAD and LUSC prognosis.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiang Wang,
| |
Collapse
|
46
|
Chen SY, Chen S, Feng W, Li Z, Luo Y, Zhu X. A STING-related prognostic score predicts high-risk patients of colorectal cancer and provides insights into immunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:14. [PMID: 33553307 PMCID: PMC7859804 DOI: 10.21037/atm-20-2430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Targeted therapeutic strategies for advanced colorectal cancer (CRC) have been limited. STING is crucial to the antitumor immunotherapy, for it stimulates IFN signaling to mediate the crosstalk between innate and adaptive immune responses. Emerging evidence suggests that STING also contributes to the prognosis of CRC. However, prognostic models relating to STING have not yet been explored. Methods A total of 431 CRC samples from the TCGA database were analyzed to explore the prognostic value of STING-related genes. We trained prognostic models using the multivariate Cox regression. A STING-related prognostic score (SPS) was calculated as the gene expression multiplied by the corresponding coefficients of the final model. A backward stepAIC strategy was adopted to select the optimal model. A nomogram was used to personalize medical decisions for CRC. Results The expression level of STING was upregulated in the CMS1 subtype (P=0.036). Among STING-related genes, DHX9 (HR =0.72, P=0.01), IRF2 (HR =1.34, P=0.022), and POLR1D (HR =1.23, P=0.038) showed significant prognostic value. The SPS was proven to be an independent risk factor (training: HR =2.9, P=0.00013; validation: HR =3.02, P=0.01), and outperformed random classifiers in identifying high-risk CRC. The high SPS group was characterized by less genomic aberrations, upregulated IL6-JAK-STAT3 and IL2-STAT5 signaling pathways, increased expression of TIM-3, increased infiltration of regulatory T (Treg) cells and T helper 17 (Th17) cells, and decreased infiltration of M0 macrophages. Finally, the nomogram based on the SPS and clinical factors showed good performance in CRC. Conclusions SPS is an independent risk factor that could identify high-risk CRC. While ICBs may benefit patients of the CMS1 subtype, for the CMS2, CMS3, and CMS4 subtypes in the high SPS group, STING agonists and immunotherapies targeting the Th17 axis may be beneficial. Finally, the SPS-based nomogram could help advance personalized medical decisions for CRC.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Siyu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wanjing Feng
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziteng Li
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixiao Luo
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
48
|
Development of Multiscale Transcriptional Regulatory Network in Esophageal Cancer Based on Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5603958. [PMID: 32851080 PMCID: PMC7441423 DOI: 10.1155/2020/5603958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 02/05/2023]
Abstract
Objective To explore multiscale integrated analysis methods in identifying key regulators of esophageal cancer (ESCA). Methods We downloaded the ESCA dataset from The Cancer Genome Atlas (TCGA) database, which contained RNA-seq data, miRNA-seq data, methylation data, and clinical phenotype information. Then, we combined ESCA-related genes from the NCBI-GENE and OMIM databases and RNA-seq dataset from TCGA to analyze differentially expressed genes (DEGs). Meanwhile, differentially expressed miRNAs (DEmiRNAs) and genes with differential methylation levels were identified. The pivot–module pairs were established using the RAID v2.0 database and TRRUST v2 database. Next, the multifactor-regulated functional network was constructed based on the above information. Additionally, gene corresponding targeted drug information was obtained from the DrugBank database. Moreover, we further screened regulators by assessing their diagnostic value and prognostic value, especially the value of distinguishing patients at TNM I stage from normal patients. In addition, the external database from the Gene Expression Omnibus (GEO) database was used for validation. Lastly, gene set enrichment analysis (GSEA) was performed to explore the potential biological functions of key regulators. Results Our study indicated that CXCL8, CYP2C8, and E2F1 had excellent diagnostic and prognostic values, which may be potential regulators of ESCA. At the same time, the good early diagnosis ability of the three regulators also provided new insights for the diagnosis and early treatment of ESCA patients. Conclusion We develop a multiscale integrated analysis and suggest that CXCL8, CYP2C8, and E2F1 are promising regulators with good diagnostic and prognostic values in ESCA.
Collapse
|
49
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
50
|
Zhao L, Li R, Qiu JZ, Yu JB, Cao Y, Yuan RT. YY1-mediated PTEN dephosphorylation antagonizes IR-induced DNA repair contributing to tongue squamous cell carcinoma radiosensitization. Mol Cell Probes 2020; 53:101577. [PMID: 32334006 DOI: 10.1016/j.mcp.2020.101577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Ionizing radiation (IR) confers a survival advantage in tongue squamous cell carcinoma (TSCC), however, IR resistance limits its efficacy. Although Yin Yang 1 (YY1) has been reported to play a role in genotoxic drug resistance by accelerating DNA repair, its role in TSCC radioresistance remains unclear. In this study, we examined YY1 mRNA and protein expression in human tongue cancer samples using qRT-PCR and western blotting, respectively. DNA array data identified YY1 mRNA expression in IR sensitivity or resistance cell lines and tissues. Tongue carcinoma primary cells and CAL27 cells with YY1 stably overexpressed or knocked-down were exposed to IR and evaluated for cell proliferation and apoptosis by CCK8-assay and caspase-3 assay, respectively. We also examined DNA damage- or repair-related indicators, such as YY1, p-H2AX, nuclear PTEN, p-PTEN, and Rad51 through Western blot analysis. Additionally, we explored the mechanism of IR-induced PTEN nuclear translocation by introducing a series of PTEN phosphorylation site mutations and co-IP assay. We observed that YY1 mRNA and protein are highly expressed in TSCC tissues, which was correlated with worse overall survival. Moreover, higher expression of YY1 and Rad51 was observed in radioresistant cells and tissues, overexpression of YY1 led to IR resistance in TSCC cells, whereas YY1 knockdown sensitized TSCC cells to IR. The underlying mechanism showed that the overexpression of YY1 upregulated nuclear PTEN and Rad51 expression, which is essential for DNA repair. IR upregulated YY1, nuclear PTEN, and Rad51; thus, knockdown of YY1 completely blocked IR-induced upregulation of nuclear PTEN/Rad51. IR upregulated PTEN phosphorylation, and mutation of the phosphorylation site of Ser380 nearly completely blocked IR-induced PTEN nuclear translocation. Furthermore, the phosphatase PP2A negatively regulated pS380-PTEN, and knockdown of YY1 completely blocked IR-induced pS380-PTEN through PP2A. In conclusion, knockdown of YY1 enhanced TSCC radiosensitivity through PP2A-mediated dephosphorylation of PTEN Ser380; thus, antagonizing the IR-induced nuclear PTEN/Rad51 axis and targeting YY1 may reverse IR resistance in TSCC.
Collapse
Affiliation(s)
- Lu Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Ran Li
- Department of Oral and Maxillo-facial Surgery, Weifang Medical University Affiliated Qingdao Stomatological Hospital, #17 Dexian Road, Qingdao, 266000, PR China
| | - Jian-Zhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Jiang-Bo Yu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Yang Cao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Rong-Tao Yuan
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China.
| |
Collapse
|