1
|
Li S, Lv J, Li Z, Zhang Q, Lu J, Huo X, Guo M, Liu X, Li C, Wang J, Shi H, Deng L, Chen Z, Du X. Overcoming multi-drug resistance in SCLC: a synergistic approach with venetoclax and hydroxychloroquine targeting the lncRNA LYPLAL1-DT/BCL2/BECN1 pathway. Mol Cancer 2024; 23:243. [PMID: 39478582 PMCID: PMC11526623 DOI: 10.1186/s12943-024-02145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) stands as one of the most lethal malignancies, characterized by a grim diagnosis and prognosis. The emergence of multi-drug resistance poses a significant hurdle to effective therapy. Although previous studies have implicated the long noncoding RNA LYPLAL1-DT in the tumorigenesis of SCLC, the precise role of the highly expressed LYPLAL1-DT in SCLC chemoresistance and the underlying mechanism remain inadequately understood. METHODS cDDP-, VP-16- and PTX-resistant SCLC cells lines were established. The viabilities of SCLC cells were assessed by CCK-8 assay in vitro and xenograft tumor formation assay in vivo. Apoptosis was evaluated by FACS, Western blot and JC-1 fluorescence staining, while autophagy was explored via autophagic flux detection under confocal microscopy and autophagic vacuole investigation under transmission electron microscopy (TEM). The functional role and mechanism of LYPLAL1-DT were further investigated by gain- and loss-of-function assays in vitro. Furthermore, the therapeutic efficacy of the combination of venetoclax and HCQ with cDDP, VP-16 or PTX was evaluated by cell line, cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice model. RESULTS Our findings revealed that LYPLAL1-DT is upregulated in chemoresistant SCLC cell lines. Gain- and loss-of-function assays demonstrated that LYPLAL1-DT impairs sensitivity to cDDP, VP-16, or PTX both in vitro and in vivo. Overexpression of LYPLAL1-DT significantly enhanced autophagy and inhibited apoptosis in SCLC cells. Further analyses, including RIP and RNA pull-down assays, revealed that LYPLAL1-DT promotes the expression of BCL2 by sponging miR-204-5p and is implicated in the assembly of the autophagy-specific complex (BECN1/PtdIns3K complex). Combining venetoclax and HCQ with cDDP, VP-16, or PTX effectively mitigated chemoresistance in SCLC cells and suppressed tumor growth in CDX and PDX models without inducing obvious toxic effects. CONCLUSIONS Our findings demonstrate that upregulation of LYPLAL1-DT sequesters apoptosis through the LYPLAL1-DT/miR-204-5p/BCL2 axis and promotes autophagy by facilitating the assembly of the BECN1/PtdIns3K complex, thereby mediating multi-drug resistance of SCLC. The triple combination of venetoclax, HCQ, in conjunction with cDDP, VP-16 or PTX overcomes refractory SCLC, shedding light on a potential therapeutic target for combating SCLC chemoresistance.
Collapse
Affiliation(s)
- Shuxin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Zhihui Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Qiuyu Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hanping Shi
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Li Deng
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing, 100069, China.
| |
Collapse
|
2
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Trillo Aliaga P, Del Signore E, Fuorivia V, Spitaleri G, Asnaghi R, Attili I, Corvaja C, Carnevale Schianca A, Passaro A, de Marinis F. The Evolving Scenario of ES-SCLC Management: From Biology to New Cancer Therapeutics. Genes (Basel) 2024; 15:701. [PMID: 38927637 PMCID: PMC11203015 DOI: 10.3390/genes15060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma accounting for 15% of lung cancers with dismal survival outcomes. Minimal changes in therapy and prognosis have occurred in SCLC for the past four decades. Recent progress in the treatment of extensive-stage disease (ES-SCLC) has been marked by incorporating immune checkpoint inhibitors (ICIs) into platinum-based chemotherapy, leading to modest improvements. Moreover, few second-line-and-beyond treatment options are currently available. The main limitation for the molecular study of SCLC has been the scarcity of samples, because only very early diseases are treated with surgery and biopsies are not performed when the disease progresses. Despite all these difficulties, in recent years we have come to understand that SCLC is not a homogeneous disease. At the molecular level, in addition to the universal loss of retinoblastoma (RB) and TP53 genes, a recent large molecular study has identified other mutations that could serve as targets for therapy development or patient selection. In recent years, there has also been the identification of new genetic subtypes which have shown us how intertumor heterogeneity exists. Moreover, SCLC can also develop intratumoral heterogeneity linked mainly to the concept of cellular plasticity, mostly due to the development of resistance to therapies. The aim of this review is to quickly present the current standard of care of ES-SCLC, to focus on the molecular landscapes and subtypes of SCLC, subsequently present the most promising therapeutic strategies under investigation, and finally recap the future directions of ongoing clinical trials for this aggressive disease which still remains a challenge.
Collapse
Affiliation(s)
- Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Valeria Fuorivia
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Riccardo Asnaghi
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Ambra Carnevale Schianca
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
4
|
Zhao X, Cao Y, Lu R, Zhou Z, Huang C, Li L, Huang J, Chen R, Wang Y, Huang J, Cheng J, Zheng J, Fu Y, Yu J. Phosphorylation of AGO2 by TBK1 Promotes the Formation of Oncogenic miRISC in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305541. [PMID: 38351659 PMCID: PMC11022703 DOI: 10.1002/advs.202305541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/22/2024] [Indexed: 04/18/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
- Department of Thoracic Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Yingting Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Runhui Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zihan Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lian Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jiayi Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yujie Fu
- Department of Thoracic Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025China
- Department of Thoracic Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200120China
| |
Collapse
|
5
|
Yang Y, Fan S. Small cell lung cancer transformations from non-small cell lung cancer: Biological mechanism and clinical relevance. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:42-47. [PMID: 39170959 PMCID: PMC11332903 DOI: 10.1016/j.pccm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide, consisting of two major histological subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). In some cases, NSCLC patients may undergo a histological transformation to SCLC during clinical treatments, which is associated with resistance to targeted therapy, immunotherapy, or chemotherapy. The review provides a comprehensive analysis of SCLC transformation from NSCLC, including biological mechanism, clinical relevance, and potential treatment options after transformation, which may give a better understanding of SCLC transformation and provide support for further research to define better therapy options.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Goel A, Rastogi A, Jain M, Niveriya K. RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment. Curr Pharm Biotechnol 2024; 25:2125-2137. [PMID: 38347795 DOI: 10.2174/0113892010291042240130171709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 09/10/2024]
Abstract
It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura, India
| | - Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | | |
Collapse
|
7
|
Li S, Lv J, Zhang X, Zhang Q, Li Z, Lu J, Huo X, Guo M, Liu X, Gao R, Gong J, Li C, Li W, Zhang T, Wang J, Chen Z, Du X. ELAVL4 promotes the tumorigenesis of small cell lung cancer by stabilizing LncRNA LYPLAL1-DT and enhancing profilin 2 activation. FASEB J 2023; 37:e23170. [PMID: 37676718 DOI: 10.1096/fj.202300314rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Small cell lung cancer (SCLC) is one of the most malignant tumors that has an extremely poor prognosis. RNA-binding protein (RBP) and long noncoding RNA (lncRNA) have been shown to be key regulators during tumorigenesis as well as lung tumor progression. However, the role of RBP ELAVL4 and lncRNA LYPLAL1-DT in SCLC remains unclear. In this study, we verified that lncRNA LYPLAL1-DT acts as an SCLC oncogenic lncRNA and was confirmed in vitro and in vivo. Mechanistically, LYPLAL1-DT negatively regulates the expression of miR-204-5p, leading to the upregulation of PFN2, thus, promoting SCLC cell proliferation, migration, and invasion. ELAVL4 has been shown to enhance the stability of LYPLAL1-DT and PFN2 mRNA. Our study reveals a regulatory pathway, where ELAVL4 stabilizes PFN2 and LYPLAL1-DT with the latter further increasing PFN2 expression by blocking the action of miR-204-5p. Upregulated PFN2 ultimately promotes tumorigenesis and invasion in SCLC. These findings provide novel prognostic indicators as well as promising new therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Shuxin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xing Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Qiuyu Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Zhihui Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jianan Gong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Weiying Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, P.R. China
| |
Collapse
|
8
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
9
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
10
|
Cani M, Napoli VM, Garbo E, Ferrari G, Del Rio B, Novello S, Passiglia F. Targeted Therapies in Small Cell Lung Cancer: From Old Failures to Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24108883. [PMID: 37240229 DOI: 10.3390/ijms24108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical management of small cell lung cancer (SCLC) treatment remains a major challenge for thoracic oncologists, with very few therapeutic advances significantly impacting patients' survival. The recent introduction of immunotherapy in the clinical setting produced a marginal benefit for a limited subset of metastatic patients, while the therapeutic scenario for relapsing extended-disease small cell lung cancers (ED-SCLCs) remains almost deserted. Recent efforts clarified the molecular features of this disease, leading to the identification of key signalling pathways which may serve as potential targets for clinical use. Despite the large number of molecules tested and the numerous therapeutic failures, some targeted therapies have recently shown interesting preliminary results. In this review, we describe the main molecular pathways involved in SCLC development/progression and provide an updated summary of the targeted therapies currently under investigation in SCLC patients.
Collapse
Affiliation(s)
- Massimiliano Cani
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Valerio Maria Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Edoardo Garbo
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Giorgia Ferrari
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Benedetta Del Rio
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, TO, Italy
| |
Collapse
|
11
|
Liu Y, Li D, Chen Y, Liu Y, Lin Y, Huang X, Wu T, Wang C, Ding J. Integrated bioinformatics analysis for conducting a prognostic model and identifying immunotherapeutic targets in gastric cancer. BMC Bioinformatics 2023; 24:191. [PMID: 37161430 PMCID: PMC10170748 DOI: 10.1186/s12859-023-05312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Gastric cancer is the third leading cause of death from cancer worldwide and has a poor prognosis. Practical risk scores and prognostic models for gastric cancer are lacking. While immunotherapy has succeeded in some cancers, few gastric cancer patients benefit from immunotherapy. Immune genes and the tumor microenvironment (TME) are essential for cancer progression and immunotherapy response. However, the roles of immune genes and the tumor microenvironment in immunotherapy remain unclear. The study aimed to construct a prognostic prediction model and identify immunotherapeutic targets for gastric cancer (GC) patients by exploring immune genes and the tumor microenvironment. RESULTS An immune-related risk score (IRRS) model, including APOH, RNASE2, F2R, DEFB126, CXCL6, and CXCL3 genes, was constructed for risk stratification. Patients in the low-risk group, which was characterized by elevated tumor mutation burden (TMB) have higher survival rate. The risk level was remarkably correlated with tumor-infiltrating immune cells (TIICs), the immune checkpoint molecule expression, and immunophenoscore (IPS). CXCL3 and CXCL6 were significantly upregulated in gastric cancer tissues compared with normal tissues using the UALCAN database and RT-qPCR. The nomogram showed good calibration and moderate discrimination in predicting overall survival (OS) at 1-, 3-, and 5- year for gastric cancer patients using risk-level and clinical characteristics. CONCLUSION Our findings provided a risk stratification and prognosis prediction tool for gastric cancer patients and further the research into immunotherapy in gastric cancer.
Collapse
Affiliation(s)
- YaLing Liu
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, 350212, China
| | - Yong Chen
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - YiJuan Liu
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - YiJuan Lin
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - XunRu Huang
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ting Wu
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - ChengDang Wang
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jian Ding
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
12
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Khan P, Siddiqui JA, Kshirsagar PG, Venkata RC, Maurya SK, Mirzapoiazova T, Perumal N, Chaudhary S, Kanchan RK, Fatima M, Khan MA, Rehman AU, Lakshmanan I, Mahapatra S, Talmon GA, Kulkarni P, Ganti AK, Jain M, Salgia R, Batra SK, Nasser MW. MicroRNA-1 attenuates the growth and metastasis of small cell lung cancer through CXCR4/FOXM1/RRM2 axis. Mol Cancer 2023; 22:1. [PMID: 36597126 PMCID: PMC9811802 DOI: 10.1186/s12943-022-01695-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prakash G Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana Kumari Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Apar K Ganti
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Khan P, Fatima M, Khan MA, Batra SK, Nasser MW. Emerging role of chemokines in small cell lung cancer: Road signs for metastasis, heterogeneity, and immune response. Semin Cancer Biol 2022; 87:117-126. [PMID: 36371025 PMCID: PMC10199458 DOI: 10.1016/j.semcancer.2022.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Small cell lung cancer (SCLC) is a recalcitrant, relatively immune-cold, and deadly subtype of lung cancer. SCLC has been viewed as a single or homogenous disease that includes deletion or inactivation of the two major tumor suppressor genes (TP53 and RB1) as a key hallmark. However, recent sightings suggest the complexity of SCLC tumors that comprises highly dynamic multiple subtypes contributing to high intratumor heterogeneity. Furthermore, the absence of targeted therapies, the understudied tumor immune microenvironment (TIME), and subtype plasticity are also responsible for therapy resistance. Secretory chemokines play a crucial role in immunomodulation by trafficking immune cells to the tumors. Chemokines and cytokines modulate the anti-tumor immune response and wield a pro-/anti-tumorigenic effect on SCLC cells after binding to cognate receptors. In this review, we summarize and highlight recent findings that establish the role of chemokines in SCLC growth and metastasis, and sophisticated intratumor heterogeneity. We also discuss the chemokine networks that are putative targets or modulators for augmenting the anti-tumor immune responses in targeted or chemo-/immuno-therapeutic strategies, and how these combinations may be utilized to conquer SCLC.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
15
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
16
|
Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol 2022; 86:273-285. [PMID: 35288298 DOI: 10.1016/j.semcancer.2022.03.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer characterized by dismal prognosis. Although SCLC may initially respond well to platinum-based chemotherapy, it ultimately relapses and is almost universally resistant to this treatment. Immune checkpoint inhibitors (ICIs) have been approved as the first- and third-line therapeutic regimens for extensive-stage or relapsed SCLC, respectively. Despite this, only a minority of patients with SCLC respond to ICIs partly due to a lack of tumor-infiltrating lymphocytes (TILs). Transforming the immune "cold" tumors into "hot" tumors that are more likely to respond to ICIs is the main challenge for SCLC therapy. Ferroptosis, necroptosis, and pyroptosis represent the newly discovered immunogenic cell death (ICD) forms. Promoting ICD may alter the tumor microenvironment (TME) and the influx of TILs, and combination of their inducers and ICIs plays a synergistical role in enhancing antitumor effects. Nevertheless, the combination of the above two modalities has not been systematically discussed in SCLC therapy. In the present review, we summarize the roles of distinct ICD mechanisms on antitumor immunity and recent advances of ferroptosis-, necroptosis- and pyroptosis-inducing agents, and present perspectives on these cell death mechanisms in immunotherapy of SCLC.
Collapse
|
17
|
Luo H, Shan J, Zhang H, Song G, Li Q, Xu CX. Targeting the epigenetic processes to enhance antitumor immunity in small cell lung cancer. Semin Cancer Biol 2022; 86:960-970. [PMID: 35189321 DOI: 10.1016/j.semcancer.2022.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Dysregulation of the epigenetic processes, such as DNA methylation, histone modifications, and modulation of chromatin states, drives aberrant transcription that promotes initiation and progression of small cell lung cancer (SCLC). Accumulating evidence has proven crucial roles of epigenetic machinery in modulating immune cell functions and antitumor immune response. Epigenetics-targeting drugs such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, and histone methyltransferase inhibitors involved in preclinical and clinical trials may trigger antitumor immunity. Herein, we summarize the impact of epigenetic processes on tumor immunogenicity and antitumor immune cell functions in SCLC. Furthermore, we review current clinical trials of epigenetic therapy against SCLC and the mechanisms of epigenetic inhibitors to boost antitumor immunity. Eventually, we discuss the opportunities of developing therapeutic regimens combining epigenetic agents with immunotherapy for SCLC.
Collapse
Affiliation(s)
- Hao Luo
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China; School of Medicine, Chongqing University, Chongqing 400030, China; Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Jinlu Shan
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hong Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| | - Guanbin Song
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Qing Li
- College of Bioengineering, Key Lab of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
18
|
Szczepanski AP, Tsuboyama N, Watanabe J, Hashizume R, Zhao Z, Wang L. POU2AF2/C11orf53 functions as a coactivator of POU2F3 by maintaining chromatin accessibility and enhancer activity. SCIENCE ADVANCES 2022; 8:eabq2403. [PMID: 36197978 PMCID: PMC9534498 DOI: 10.1126/sciadv.abq2403] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small cell lung cancer (SCLC), accounting for around 13% of all lung cancers, often results in rapid tumor growth, early metastasis, and acquired therapeutic resistance. The POU class 2 homeobox 3 (POU2F3) is a master regulator of tuft cell identity and defines the SCLC-P subtype that lacks the neuroendocrine markers. Here, we have identified a previously uncharacterized protein, C11orf53, which is coexpressed with POU2F3 in both SCLC cell lines and patient samples. Mechanistically, C11orf53 directly interacts with POU2F3 and is recruited to chromatin by POU2F3. Depletion of C11orf53 reduced enhancer H3K27ac levels and chromatin accessibility, resulting in a reduction of POU2F3-dependent gene expression. On the basis of the molecular function of C11orf53, we renamed it as "POU Class 2 Homeobox Associating Factor 2" (POU2AF2). In summary, our study has identified a new coactivator of POU2F3 and sheds light on the therapeutic potential of targeting POU2AF2/POU2F3 heterodimer in human SCLC.
Collapse
Affiliation(s)
- Aileen Patricia Szczepanski
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Natsumi Tsuboyama
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jun Watanabe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Chicago, IL 60611, USA
- Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 303 East Superior St., Chicago, IL 60611, USA
- Division of Hematology, Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 East Chicago Avenue, Box 205, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Corresponding author. Email (Z.Z.); (L.W.)
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Corresponding author. Email (Z.Z.); (L.W.)
| |
Collapse
|
19
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
20
|
Small cell lung cancer: novel treatments beyond immunotherapy. Semin Cancer Biol 2022; 86:376-385. [PMID: 35568295 DOI: 10.1016/j.semcancer.2022.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
Abstract
Small cell lung cancer (SCLC) arises in peribronchial locations and infiltrates the bronchial submucosa, including about 15% of lung cancer cases. Despite decades of research, the prognosis for SCLC patients remains poor because this tumor is characterized by an exceptionally high proliferative rate, strong tendency for early widespread metastasis and acquired chemoresistance. Omics profiling revealed that SCLC harbor extensive chromosomal rearrangements and a very high mutation burden. This led to the development of immune-checkpoint inhibitors as single agents or in combination with chemotherapy, which however resulted in a prolonged benefit only for a small subset of patients. Thus, the present review discusses the rationale and limitations of immunotherapeutic approaches, presenting the current biological understanding of aberrant signaling pathways that might be exploited with new potential treatments. In particular, new agents targeting DNA damage repair, cell cycle checkpoint, and apoptosis pathways showed several promising results in different preclinical models. Epigenetic alterations, gene amplifications and mutations can act as biomarkers in this context. Future research and improved clinical outcome for SCLC patients will depend on the integration between these omics and pharmacological studies with clinical translational research, in order to identify specific predictive biomarkers that will be hopefully validated using clinical trials with biomarker-selected targeted treatments.
Collapse
|
21
|
Kashima J, Okuma Y. Advances in biology and novel treatments of SCLC: The four-color problem in uncharted territory. Semin Cancer Biol 2022; 86:386-395. [DOI: 10.1016/j.semcancer.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 10/31/2022]
|
22
|
Small cell lung cancer transformation: From pathogenesis to treatment. Semin Cancer Biol 2022; 86:595-606. [PMID: 35276343 DOI: 10.1016/j.semcancer.2022.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023]
Abstract
Small cell lung cancer (SCLC) is a type of neuroendocrine tumor with high malignancy and poor prognosis. Besides the de novo SCLC, there is transformed SCLC, which has similar characteristics of pathological morphology, molecular characteristics, clinical manifestations and drug sensitivity. However, de novo SCLC and transformed SCLC have different pathogenesis and tumor microenvironment. SCLC transformation is one of the mechanisms of resistance to chemotherapy, immunotherapy, and targeted therapy in NSCLC. Two hypotheses have been used to explain the pathogenesis of SCLC transformation. Although SCLC transformation is not common in clinical practice, it has been repeatedly identified in many small patient series and case reports. It usually occurs in epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma after treatment with tyrosine kinase inhibitors (TKIs). SCLC transformation can also occur in anaplastic lymphoma kinase (ALK)-positive lung cancer after treatment with ALK inhibitors and in wild-type EGFR or ALK NSCLC treated with immunotherapy. Chemotherapy was previously used to treat transformed SCLC, yet it is associated with an unsatisfactory prognosis. We comprehensively review the advancements in transformed SCLC, including clinical and pathological characteristics, and the potential effective treatment after SCLC transformation, aiming to give a better understanding of transformed SCLC and provide support for clinical uses.
Collapse
|
23
|
Guo Y, Yuan X, Hong L, Wang Q, Liu S, Li Z, Huang L, Jiang S, Shi J. Promotor Hypomethylation Mediated Upregulation of miR-23b-3p Targets PTEN to Promote Bronchial Epithelial-Mesenchymal Transition in Chronic Asthma. Front Immunol 2022; 12:771216. [PMID: 35058921 PMCID: PMC8765721 DOI: 10.3389/fimmu.2021.771216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Chronic asthma is characterized by airway inflammation and irreversible airway remodeling. Epithelial-mesenchymal transition (EMT) is a typical pathological change of airway remodeling. Our previous research demonstrated miR-23b inhibited airway smooth muscle proliferation while the function of miR-23b-3p has not been reported yet. Besides, miRNA is regulated by many factors, including DNA methylation. The function of miR-23b-3p and whether it is regulated by DNA methylation are worth exploring. Balb/c mice were given OVA sensitization to develop the asthmatic model. Expression of miR-23b-3p and EMT markers were measured by RT-qPCR, WB and immunohistochemistry (IHC). DNA methylation was detected by methylation-specific PCR (MSP) and the MassARRAY System. Asthmatic mice and TGF-β1-stimulated bronchial epithelial cells (BEAS-2B) showed EMT with increased miR-23b-3p. Overexpression of miR-23b-3p promoted EMT and migration, while inhibition of miR-23b-3p reversed these transitions. DNA methyltransferases were decreased in asthmatic mice. MSP and MassARRAY System detected the promotor of miR-23b showed DNA hypomethylation. DNA methyltransferase inhibitor 5’-AZA-CdZ increased the expression of miR-23b-3p. Meanwhile, PTEN was identified as a target gene of miR-23b-3p. Our results indicated that promotor hypomethylation mediated upregulation of miR-23b-3p targets PTEN to promote EMT in chronic asthma. miR-23b-3p and DNA methylation might be potential therapeutic targets for irreversible airway remodeling.
Collapse
Affiliation(s)
- Yimin Guo
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China.,Department of Respiratory Medicine, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Luna Hong
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Qiujie Wang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhaolin Li
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Shanping Jiang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Jianting Shi
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Therapeutic targeting of BAP1/ASXL3 sub-complex in ASCL1-dependent small cell lung cancer. Oncogene 2022; 41:2152-2162. [PMID: 35194152 PMCID: PMC8993689 DOI: 10.1038/s41388-022-02240-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 01/22/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease, with patients diagnosed with either early-stage, limited stage, or extensive stage of SCLC tumor progression. Discovering and targeting the functional biomarkers for SCLC will be crucial in understanding the molecular basis underlying SCLC tumorigenesis to better assist in improving clinical treatment. Emerging studies have demonstrated that dysregulations in BAP1 histone H2A deubiquitinase complex are collectively associated with pathogenesis in human SCLC. Here, we investigated the function of the oncogenic BAP1/ASXL3/BRD4 epigenetic axis in SCLC by developing a next-generation BAP1 inhibitor, iBAP-II, and focusing on the epigenetic balance established between BAP1 and non-canonical PRC1 complexes in regulating SCLC-specific transcriptional programming. We further demonstrated that pharmacologic inhibition of BAP1’s catalytic activity disrupted BAP1/ASXL3/BRD4 epigenetic axis by inducing protein degradation of the ASXL3 scaffold protein, which bridges BRD4 and BAP1 at active enhancers. Furthermore, treatment of iBAP-II represses neuroendocrine lineage-specific ASCL1/MYCL/E2F signaling in SCLC cell lines, and dramatically inhibits SCLC cell viability and tumor growth in vivo. In summary, this study has provided mechanistic insight into the oncogenic function of BAP1 in SCLC and highlighted the potential of targeting BAP1’s activity as a novel SCLC therapy.
Collapse
|
25
|
Mattos ACD, Florindo JB, Adam RL, Lorand-Metze I, Metze K. The Fractal Dimension Suggests Two Chromatin Configurations in Small Cell Neuroendocrine Lung Cancer and Is an Independent Unfavorable Prognostic Factor for Overall Survival. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-5. [PMID: 35193724 DOI: 10.1017/s1431927622000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Experimental studies have shown that in small cell neuroendocrine lung carcinomas (SCLC) global opening of the chromatin structure is associated with a higher transcription activity and increase of tumor aggressiveness and metastasis. The study of the fractal characteristics (FD) of nuclear chromatin has been widely used to describe the cell nuclear texture and its changes correspond to changes in nuclear metabolic and transcription activity. Hence, we investigated whether the nuclear fractal dimension could be a prognostic factor in SCLC. Hematoxylin-eosin stained brush cytology slides from 49 patients with SCLC were retrieved from our files. The chromatin (FD) was calculated in digitalized and interactively segmented nuclei using a differential box-counting method. The 3,575 nuclei studied showed a bimodal distribution (peaks at FD1 = 2.115 and FD2 = 2.180). The 75 percentile of the FD was an independent unfavorable prognostic factor for overall survival when tested together with ECOG (Eastern Cooperative Oncology Group) performance status, tumor extension, and therapy in a multivariate Cox regression. Our study corroborates the concept of two main chromatin configurations in small cell neuroendocrine carcinomas and that globally more open chromatin indicates a higher risk of metastasis and therefore a shorter survival of the patient.
Collapse
Affiliation(s)
- Amilcar Castro de Mattos
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
- Laboratory of Pathology, Pontifical Catholic University of Campinas PUCC, Campinas, Brazil
| | - João Batista Florindo
- Institute of Mathematics, Statistics and Scientific Computing, University of Campinas (UNICAMP), Campinas, Brazil
| | - Randall L Adam
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Irene Lorand-Metze
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Konradin Metze
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
26
|
Ahmad A. Special Issue: Epigenetic regulation of cancer progression: Promises and progress. Semin Cancer Biol 2021; 83:1-3. [PMID: 34921992 DOI: 10.1016/j.semcancer.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Zhang Z, Zhang C, Luo Y, Wu P, Zhang G, Zeng Q, Wang L, Yang Z, Xue L, Zheng B, Zeng H, Tan F, Xue Q, Gao S, Sun N, He J. m 6A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer. BMC Med 2021; 19:284. [PMID: 34802443 PMCID: PMC8607595 DOI: 10.1186/s12916-021-02148-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is lethal and possesses limited therapeutic options. Platinum-based chemotherapy-with or without immune checkpoint inhibitors (anti-PDs)-is the current first-line therapy for SCLCs; however, its associated outcomes are heterogeneous. N6-methyladenosine (m6A) is a novel and decisive factor in tumour progression, chemotherapy resistance, and immunotherapy response. However, m6A modification in SCLC remains poorly understood. METHODS We systematically explored the molecular features and clinical significance of m6A regulators in SCLC. We then constructed an m6A regulator-based prognostic signature (m6A score) based on our examination of 256 cases with limited-stage SCLC (LS-SCLC) from three different cohorts-including an independent cohort that contained 150 cases with qPCR data. We additionally evaluated the relationships between the m6A score and adjuvant chemotherapy (ACT) benefits and the patients' responses to anti-PD-1 treatment. Immunohistochemical (IHC) staining and the HALO digital pathological platform were used to calculate CD8+ T cell density. RESULTS We observed abnormal somatic mutations and expressions of m6A regulators. Using the LASSO Cox model, a five-regulator-based (G3BP1, METTL5, ALKBH5, IGF2BP3, and RBM15B) m6A score was generated from the significant regulators to classify patients into high- and low-score groups. In the training cohort, patients with high scores had shorter overall survival (HR, 5.19; 2.75-9.77; P < 0.001). The prognostic accuracy of the m6A score was well validated in two independent cohorts (HR 4.6, P = 0.006 and HR 3.07, P < 0.001). Time-dependent ROC and C-index analyses found the m6A score to possess superior predictive power than other clinicopathological parameters. A multicentre multivariate analysis revealed the m6A score to be an independent prognostic indicator. Additionally, patients with low scores received a greater survival benefit from ACT, exhibited more CD8+ T cell infiltration, and were more responsive to cancer immunotherapy. CONCLUSIONS Our results, for the first time, affirm the significance of m6A regulators in LS-SCLC. Our multicentre analysis found that the m6A score was a reliable prognostic tool for guiding chemotherapy and immunotherapy selections for patients with SCLC.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lide Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
28
|
Zhang Z, Zhang C, Yang Z, Zhang G, Wu P, Luo Y, Zeng Q, Wang L, Xue Q, Zhang Y, Sun N, He J. m 6A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J Hematol Oncol 2021; 14:190. [PMID: 34758859 PMCID: PMC8579518 DOI: 10.1186/s13045-021-01173-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Small-cell lung cancer (SCLC) is a devastating subtype of lung cancer with few therapeutic options. Despite the advent of immunotherapy, platinum-based chemotherapy is still the irreplaceable first-line therapy for SCLCs. However, drug resistance will invariably occur in most patients and the outcomes are heterogeneous. Therefore, clinically feasible classification strategies and potential therapeutic targets for overcoming chemotherapy resistance are urgently needed. N6-methyladenosine (m6A) is a novel epigenetic decisive factor that is involved in tumor progression and drug resistance. However, almost nothing is known about m6A modification in SCLC. Here, we assessed 200 SCLC samples from patients who underwent chemotherapy from three different cohorts, including a validation cohort containing 71 cases with qPCR data and an independent cohort containing 79 cases with immunohistochemistry data (quantified as H-score). We systematically characterized the predictive landscape of m6A regulators in SCLC patients following with chemotherapy. Using the LASSO Cox model, we built a seven-regulator-based (ZCCHC4, IGF2BP3, ALKBH5, YTHDF3, METTL5, G3BP1, and RBMX) chemotherapy benefit predictive classifier (m6A score) and subsequently validated the classifier in two other cohorts. Time-dependent ROC and C-index analyses showed that the m6A score to possessed superior predictive power for chemotherapy benefit in comparison with other clinicopathological parameters. A multicohort multivariate analysis revealed that the m6A score is an independent factor that affects survival benefit across multiple cohorts. Our in vitro experimental results revealed that three regulators—ZCCHC4, G3BP1, and RBMX—may serve as promising novel therapeutic targets for overcoming chemoresistance in SCLCs. Our results, for the first time, demonstrate the predictive significance of m6A regulators for chemotherapy benefit, as well as their potential as therapeutic targets for overcoming chemotherapy resistance in SCLC patients. The m6A score was found to be a reliable prognostic tool that may help guide chemotherapy decisions for patients with SCLC.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lide Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Zhang C, Zhang Z, Zhang Z, Luo Y, Wu P, Zhang G, Xue L, Zeng Q, Wang L, Yang Z, Zeng H, Zheng B, Tan F, Xue Q, Gao S, Sun N, He J. The landscape of m 6A regulators in small cell lung cancer: molecular characteristics, immuno-oncology features, and clinical relevance. Mol Cancer 2021; 20:122. [PMID: 34579719 PMCID: PMC8474928 DOI: 10.1186/s12943-021-01408-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/15/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lide Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
30
|
Guo Q, Li D, Luo X, Yuan Y, Li T, Liu H, Wang X. The Regulatory Network and Potential Role of LINC00973-miRNA-mRNA ceRNA in the Progression of Non-Small-Cell Lung Cancer. Front Immunol 2021; 12:684807. [PMID: 34394080 PMCID: PMC8358408 DOI: 10.3389/fimmu.2021.684807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background The occurrence and development of cancer could be promoted by abnormally competing endogenous RNAs (ceRNA) network. This article aims to determine the prognostic biomarker of ceRNA for non-small-cell lung cancer (NSCLC) prognosis. Methods The expression and clinical significance of LINC00973 in NSCLC tissues were analyzed via the The Cancer Genome Atlas (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), lnCAR, and clinical samples in Taihe Hospital. The biological functions and signaling pathways involved in target genes of ceRNA network were analyzed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Survival analysis, univariate and multivariate Cox regression analysis were used for prognostic-related mRNA. Results Expression of LINC00973 was increased in NSCLC tissues. High expression of LINC00973 was associated with poor prognosis of NSCLC patients. There were 15 miRNA and 238 differential mRNA in the INC00973-miRNA-mRNA ceRNA network, involving cell migration, endothelial cell proliferation, tumor growth factor (TGF)-β, cellular senescence, phosphatidylinositol 3-hydroxy kinase (PI3K)-Akt, Hippo, Rap1, mitogen-activated protein kinase (MAPK), cell cycle signaling pathway, etc. The expression levels of RTKN2, NFIX, PTX3, BMP2 and LOXL2 were independent risk factors for the poor prognosis of NSCLC patients. Conclusions LINC00973-miRNA-mRNA ceRNA network might be the basis for determining pivotal post-translational regulatory mechanisms in the progression of NSCLC. BMP2, LOXL2, NFIX, PTX3 and RTKN2 might be valuable prognostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dan Li
- Department of Oncology, Huanggang Central Hospital, Huanggang, China
| | - Xiangyu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ye Yuan
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Huasong Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xinju Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Respiratory, Xinchang People's Hospital, Xinchang, China
| |
Collapse
|
31
|
Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, Batra SK, Nasser MW. MicroRNA-1: Diverse role of a small player in multiple cancers. Semin Cell Dev Biol 2021; 124:114-126. [PMID: 34034986 DOI: 10.1016/j.semcdb.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nivetha Sarah Ebenezer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
32
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, Batra SK, Nasser MW. RNA-based therapies: A cog in the wheel of lung cancer defense. Mol Cancer 2021; 20:54. [PMID: 33740988 PMCID: PMC7977189 DOI: 10.1186/s12943-021-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Apar Kishor Ganti
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA-Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
- Division of Oncology-Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA, 91010, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|