1
|
Jiang Y, Xie J, Cheng Q, Cai Z, Xu K, Lu W, Wang F, Wu X, Song Y, Lv T, Zhan P. Comprehensive genomic and spatial immune infiltration analysis of survival outliers in extensive-stage small cell lung cancer receiving first-line chemoimmunotherapy. Int Immunopharmacol 2024; 141:112901. [PMID: 39151386 DOI: 10.1016/j.intimp.2024.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND A minority of patients with extensive-stage small cell lung cancer (ES-SCLC) exhibit prolonged survival following first-line chemoimmunotherapy, which warrants the use of reliable biomarkers. Here, we investigated the disparities in genomics and immune cell spatial distribution between long- and short-term survival of patients with ES-SCLC. METHODS We retrospectively recruited 11 long-term (>2 years) and 13 short-term (<9 months) ES-SCLC survivors receiving first-line chemoimmunotherapy. The samples were processed using targeted next-generation sequencing (tNGS), programmed death ligand-1 staining, multiplex immunohistochemical staining for immune cells (mIHC), tumor mutation burden (TMB), and chromosomal instability score measurements. The expression of putative genes in SCLC at the bulk and single-cell RNA-sequencing levels, as well as the role of putative genes in pan-cancer immunotherapy cohorts, were analyzed. RESULTS At the genomic level, a greater proportion of the smoking signature and higher TMB (>3.1) were associated with favorable survival. At the single-gene and pathway levels, tNGS revealed that MCL1 and STMN1 amplification and alterations in the apoptosis pathway were more common in short-term survivors, whereas alterations in the DLL3, KMT2B, HGF, EPHA3, ADGRB3, lysine deprivation, and HGF-cMET pathways were observed more frequently in long-term survivors. mIHC analysis of immune cells with different spatial distributions revealed that long-term survivors presented increased numbers of M1-like macrophages in all locations and decreased numbers of CD8+ T cells in the tumor stroma. Bulk transcriptomic analysis demonstrated that high levels of STMN1 and DLL3 represented an immune-suppressive tumor immune microenvironment (TIME), whereas HGF indicated an immune-responsive TIME. The expression levels of our putative genes were comparative in both TP53/RB1 mutant-type and TP53/RB1 wild-type. At the single-cell level, STMN1, MCL1, and DLL3 were highly expressed among all molecular subtypes (SCLC-A, SCLC-N, and SCLC-P), with STMN1 being enriched in cell division and G2M checkpoint pathways. CONCLUSIONS For ES-SCLC patients receiving first-line chemoimmunotherapy, alterations in DLL3, KMT2B, HGF, EPHA3, and ADGRB3 and a greater proportion of M1-like macrophages infiltration in all locations were predictors of favorable survival, while MCL1 and STMN1 amplification, as well as a greater proportion of CD8+ T cells infiltrating the tumor stroma, predicted worse survival.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Medicine, Southeast University, Nanjing 210000, China
| | - Jingyuan Xie
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Zijing Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Fufeng Wang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaoying Wu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yong Song
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| | - Tangfeng Lv
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| | - Ping Zhan
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| |
Collapse
|
2
|
Shang X, Zhang C, Lv Y, Zhang X, Guo K, Li H, Wang H. Patients with Extensive-Stage Small Cell Lung Cancer Harboring Less Than 4 Metastatic Sites May Benefit from Immune Checkpoint Inhibitor Rechallenge by Reshaping Tumor Microenvironment. Immunotargets Ther 2024; 13:571-583. [PMID: 39478941 PMCID: PMC11523948 DOI: 10.2147/itt.s483093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) has prolonged survival in patients with extensive-stage small cell lung cancer (ES-SCLC) as first-line treatment. However, whether ICI rechallenge could bring survival benefit to patients with ES-SCLC following its failure as first-line treatment remains unknown. Therefore, we aim to address the issue and identify the cohort of patients that may derive such benefit. Methods Patients with ES-SCLC from both the IMpower133 study and Shandong Cancer Hospital and Institute (shanzhong cohort) who failed first-line ICI were included. Kaplan Meier analysis was performed to compare overall survival (OS). Both univariate and multivariate Cox regression analyses were conducted to identify factors affecting survival. Tumor immune cell infiltration was evaluated by the CIBERSORT algorithm and detected by multiplex immunofluorescence (mIF). Results A total of 125 ES-SCLC patients undergoing atezolizumab and 161 patients undergoing ICI as first-line treatment were recruited from IMpower133 and shanzhong cohort. Those receiving ICI rechallenge had a longer OS than those without in IMpower133 (P = 0.08) and shanzhong cohort (P = 0.013). In IMpower133 cohort, subgroup analyses found that patients with <4 metastatic sites derived more survival benefit from atezolizumab (P = 0.008). For patients with ES-SCLC harboring <4 metastatic sites, there was significant OS difference between atezolizumab versus non-atezolizumab as retreatment (P = 0.036). Moreover, for ES-SCLC patients with <4 metastatic sites, atezolizumab improved survival compared with non-atezolizumab (hazard ratio [HR]: 0.457; 95% CI: 0.256-0.817; P = 0.008). These findings were confirmed in shanzhong cohort. Those harboring <4 metastatic sites had fewer M2 macrophage and more CD4 naïve T cells infiltration, which was further confirmed by mIF of ES-SCLC samples from shanzhong cohort. Conclusion Our study provides rationale for ICI rechallenge among ES-SCLC patients with <4 metastatic sites, suggesting beneficial outcome by reshaping TME.
Collapse
Affiliation(s)
- Xiaoling Shang
- Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117, People’s Republic of China
| | - Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, People’s Republic of China
| | - Yuanyuan Lv
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Xiaoxiao Zhang
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Kaiyue Guo
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong University, Jinan, 250117, People’s Republic of China
| | - Huijuan Li
- Department of Clinical Drug Research, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People’s Republic of China
| |
Collapse
|
3
|
Wang Y, Cao X, Yang C, Fan J, Zhang X, Wu X, Guo W, Sun S, Liu M, Zhang L, Li T. Ferroptosis and immunosenescence in colorectal cancer. Semin Cancer Biol 2024; 106-107:156-165. [PMID: 39419366 DOI: 10.1016/j.semcancer.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Colorectal cancer (CRC), ranked as the globe's third leading malignancy. Despite advancements in therapeutic approaches, the mortality rate remains distressingly high for those afflicted with advanced stages of the disease. Ferroptosis is a programmed form of cell death. The ways of ferroptosis mainly include promoting the accumulation of cellular ROS and increasing the level of cellular Labile iron pool (LIP). Immunosenescence is characterized by a gradual deterioration of the immune system's ability to respond to pathogens and maintain surveillance against cancer cells. In CRC, this decline is exacerbated by the tumor microenvironment, which can suppress the immune response and promote tumor progression. This paper reviews the relationship between iron prolapse and immune senescence in colorectal cancer, focusing on the following aspects: firstly, the different pathways that induce iron prolapse in colorectal cancer; secondly, immune-immune senescence in colorectal cancer; and lastly, the interactions between immune senescence and iron prolapse in colorectal cancer, e.g., immune-immune senescent cells often exhibit increased oxidative stress, leading to the accumulation of ROS, and consequently to lipid peroxidation and induction of iron-induced cell death. At the same time, ferroptosis induces immune cell senescence as well as alterations in the immune microenvironment by promoting the death of damaged or diseased cells and leading to the inflammation usually associated with it. In conclusion, by exploring the potential targets of ferroptosis and immune senescence in colorectal cancer therapy, we hope to provide a reference for future research.
Collapse
Affiliation(s)
- Yao Wang
- Inpatient ward 8, General Surgery, Harbin Medical University Affiliated Second Hospital, Harbin 150000, China
| | - Xinran Cao
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Chunbaixue Yang
- Graduate School, Hebei North University, Zhangjiakou 075000, China
| | - Jianchun Fan
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| | - Xueliang Wu
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, Hebei 075000, China; Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, Zibo 255024, China.
| | - Ming Liu
- General Surgery, Harbin Medical University Affiliated Fourth Hospital, Harbin 150000, China.
| | - Lifen Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Zhou R, Zhang K, Dai T, Guo Z, Li T, Hong X. Construction and validation of cell cycle-related prognostic genetic model for glioblastoma. Medicine (Baltimore) 2024; 103:e39205. [PMID: 39465756 PMCID: PMC11460857 DOI: 10.1097/md.0000000000039205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma (GBM) is a common primary malignant brain tumor and the prognosis of these patients remains poor. Therefore, further understanding of cell cycle-related molecular mechanisms of GBM and identification of appropriate prognostic markers and therapeutic targets are key research imperatives. Based on RNA-seq expression datasets from The Cancer Genome Atlas database, prognosis-related biological processes in GBM were screened out. Gene Set Variation Analysis (GSVA), LASSO-COX, univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis, and Pearson correlation analysis were performed for constructing a predictive prognostic model. A total of 58 cell cycle-related genes were identified by GSVA and analysis of differential expression between GBM and control samples. By univariate Cox and LASSO regression analyses, 8 genes were identified as prognostic biomarkers in GBM. A nomogram with superior performance to predict the survival of GBM patients was established regarding risk score, cancer status, recurrence type, and mRNAsi. This study revealed the prognostic value of cell cycle-related genes in GBM. In addition, we constructed a reliable model for predicting the prognosis of GBM patients. Our findings reinforce the relationship between cell cycle and GBM and may help improve the prognostic assessment of patients with GBM. Our predictive prognostic model, based on independent prognostic factors, enables tailored treatment strategies for GBM patients. It is particularly useful for subgroups with uncertain prognosis or treatment challenges.
Collapse
Affiliation(s)
- Runpeng Zhou
- Department of Neurosurgery, Pu’er People’s Hospital, Pu’er, China
| | - Kai Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tingting Dai
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Jiang Y, Chen Y, Cheng Q, Lu W, Li Y, Zuo X, Wu Q, Wang X, Zhang F, Wang D, Wang Q, Lv T, Song Y, Zhan P. A random survival forest-based pathomics signature classifies immunotherapy prognosis and profiles TIME and genomics in ES-SCLC patients. Cancer Immunol Immunother 2024; 73:241. [PMID: 39358575 PMCID: PMC11448477 DOI: 10.1007/s00262-024-03829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with high mortality, and only a limited subset of extensive-stage SCLC (ES-SCLC) patients demonstrate prolonged survival under chemoimmunotherapy, which warrants the exploration of reliable biomarkers. Herein, we built a machine learning-based model using pathomics features extracted from hematoxylin and eosin (H&E)-stained images to classify prognosis and explore its potential association with genomics and TIME. METHODS We retrospectively recruited ES-SCLC patients receiving first-line chemoimmunotherapy at Nanjing Jinling Hospital between April 2020 and August 2023. Digital H&E-stained whole-slide images were acquired, and targeted next-generation sequencing, programmed death ligand-1 staining, and multiplex immunohistochemical staining for immune cells were performed on a subset of patients. A random survival forest (RSF) model encompassing clinical and pathomics features was established to predict overall survival. The function of putative genes was assessed via single-cell RNA sequencing. RESULTS AND CONCLUSION During the median follow-up period of 12.12 months, 118 ES-SCLC patients receiving first-line immunotherapy were recruited. The RSF model utilizing three pathomics features and liver metastases, bone metastases, smoking status, and lactate dehydrogenase, could predict the survival of first-line chemoimmunotherapy in patients with ES-SCLC with favorable discrimination and calibration. Underlyingly, the higher RSF-Score potentially indicated more infiltration of CD8+ T cells in the stroma as well as a greater probability of MCL-1 amplification and EP300 mutation. At the single-cell level, MCL-1 was associated with TNFA-NFKB signaling and apoptosis-related processes. Hopefully, this noninvasive model could act as a biomarker for immunotherapy, potentially facilitating precision medicine in the management of ES-SCLC.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Yueying Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Yu Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing, 210002, China
| | - Xueying Zuo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Qiuxia Wu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210002, China
| | - Xiaoxia Wang
- Department of Pathology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, School of Medicine, Jinling Hospital, Southeast University, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Dong Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing, 210002, China
- Department of Respiratory and Critical Care Medicine, School of Medicine, Jinling Hospital, Southeast University, 305 Zhongshan East Road, Nanjing, 210002, China
| | - Qin Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| | - Tangfeng Lv
- School of Medicine, Southeast University, Nanjing, 210000, China.
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, School of Medicine, Jinling Hospital, Southeast University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Yong Song
- School of Medicine, Southeast University, Nanjing, 210000, China.
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, School of Medicine, Jinling Hospital, Southeast University, 305 Zhongshan East Road, Nanjing, 210002, China.
| | - Ping Zhan
- School of Medicine, Southeast University, Nanjing, 210000, China.
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing, 210002, China.
- Department of Respiratory and Critical Care Medicine, School of Medicine, Jinling Hospital, Southeast University, 305 Zhongshan East Road, Nanjing, 210002, China.
| |
Collapse
|
6
|
Chen ZK, Zheng S, Long Y, Wang KM, Xiao BL, Li JB, Zhang W, Song H, Chen G. High-throughput screening identifies ibuprofen as an sEV PD-L1 inhibitor for synergistic cancer immunotherapy. Mol Ther 2024; 32:3580-3596. [PMID: 39217416 PMCID: PMC11489553 DOI: 10.1016/j.ymthe.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (sEVs) limits therapeutic effectiveness by interacting with the PD-1 receptor on host immune cells. Targeting the secretion of sEV PD-L1 has emerged as a promising strategy to enhance immunotherapy. However, the lack of small-molecule inhibitors poses a challenge for clinical translation. In this study, we developed a target and phenotype dual-driven high-throughput screening strategy that combined virtual screening with nanoflow-based experimental verification. We identified ibuprofen (IBP) as a novel inhibitor that effectively targeted sEV PD-L1 secretion. IBP disrupted the biogenesis and secretion of PD-L1+ sEVs in tumor cells by physically interacting with a critical regulator of sEV biogenesis, hepatocyte growth factor-regulated tyrosine kinase substrate. Notably, the mechanism of action of IBP is distinct from its commonly known targets, cyclooxygenases. Administration of IBP stimulated antitumor immunity and enhanced the efficacy of anti-PD-1 therapy in melanoma and oral squamous cell carcinoma mouse models. To address potential adverse effects, we further developed an IBP gel for topical application, which demonstrated remarkable therapeutic efficacy when combined with anti-PD-1 treatment. The discovery of this specific small inhibitor provides a promising avenue for establishing durable, systemic antitumor immunity.
Collapse
Affiliation(s)
- Zhuo-Kun Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Yan Long
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China
| | - Kui-Ming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bo-Lin Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jin-Bang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430079, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Tan J, Liao S, Yuan B, Liu X, Yu W, Zhan H, Jiang Y, Liu Y. Targeting SMYD2 promotes ferroptosis and impacts the progression of pancreatic cancer through the c-Myc/NCOA4 axis-mediated ferritinophagy. Biochim Biophys Acta Gen Subj 2024; 1868:130683. [PMID: 39089637 DOI: 10.1016/j.bbagen.2024.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is characterized by a poor prognosis and limited treatment options. Ferroptosis plays an important role in cancer, SET and MYND domain-containing protein 2 (SMYD2) is widely expressed in various cancers. However, the role of SMYD2 in regulating ferroptosis in PC remains unexplored. This study aimed to investigate the role of SMYD2 in mediating ferroptosis and its mechanistic implications in PC progression. METHODS The levels of SMYD2, c-Myc, and NCOA4 were assessed in PC tissues, and peritumoral tissues. SMYD2 expression was further analyzed in human PC cell lines. In BxPC3 cells, the expression of c-Myc, NCOA4, autophagy-related proteins, and mitochondrial morphology, was evaluated following transfection with si-SMYD2 and treatment with autophagy inhibitors and ferroptosis inhibitors. Ferroptosis levels were quantified using flow cytometry and ELISA assays. RNA immunoprecipitation was conducted to elucidate the interaction between c-Myc and NCOA4 mRNA. A xenograft mouse model was constructed to validate the impact of SMYD2 knockdown on PC growth. RESULTS SMYD2 and c-Myc were found to be highly expressed in PC tissues, while NCOA4 showed reduced expression. Among the PC cell lines studied, BxPC3 cells exhibited the highest SMYD2 expression. SMYD2 knockdown led to decreased c-Myc levels, increased NCOA4 expression, reduced autophagy-related protein expression, mitochondrial shrinkage, and heightened ferroptosis levels. Additionally, an interaction between c-Myc and NCOA4 was identified. In vivo, SMYD2 knockdown inhibited tumor growth. CONCLUSIONS Targeting SMYD2 inhibits PC progression by promoting ferritinophagy-dependent ferroptosis through the c-Myc/NCOA4 axis. These findings provide insights into potential diagnostic and therapeutic strategies for PC.
Collapse
Affiliation(s)
- Juan Tan
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shan Liao
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Bowen Yuan
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinrong Liu
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wentao Yu
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Han Zhan
- 921 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Changsha, China
| | - Yan Jiang
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
8
|
Fu XT, Qie JB, Chen JF, Gao Z, Li XG, Feng SR, Dong EF, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Wu WX, Gao Q, Zhou J, Li T, Fan J, Ding ZB. Inhibition of SIRT1 relieves hepatocarcinogenesis via alleviating autophagy and inflammation. Int J Biol Macromol 2024; 278:134120. [PMID: 39074701 DOI: 10.1016/j.ijbiomac.2024.134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Imbalanced Sirtuin 1 (SIRT1) levels may lead to liver diseases through abnormal regulation of autophagy, but the roles of SIRT1-regulated autophagy in hepatocellular carcinoma are still controversial. In this study, we found that SIRT1 mRNA and protein levels were upregulated in hepatocellular carcinoma, and high SIRT1 expression hinted an advanced stage and a poor prognosis. The differentially expressed proteins were significantly elevated in autophagy, cellular response to stress, and immune signaling pathways. In a thioacetamide-induced hepatocellular carcinoma mouse model, we found that SIRT1 expression was highly increased with increased autophagy and excessive macrophage inflammatory response. Next, we established a Hepa 1-6 cells and macrophage co-culture system in vitro to model the alteration of tumor microenvironment, and found that the medium from CCl4-treated or SIRT1-overexpressing Hepa 1-6 cells triggered the polarization of macrophage M1, and the culture medium derived from M1 macrophage promoted Hepa 1-6 cells growth and intracellular oxidative stress. The progression of liver fibrosis in the CCl4-induced liver fibrosis mouse model showed that inhibition of SIRT1 alleviated inflammatory response and ameliorated liver fibrosis. These findings suggest that SIRT1-regulated autophagy and inflammation are oncogenic in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jing-Bo Qie
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan-Ru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - En-Fu Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Wei-Xun Wu
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
9
|
He C. Activating Invasion and Metastasis in Small Cell Lung Cancer: Role of the Tumour Immune Microenvironment and Mechanisms of Vasculogenesis, Epithelial-Mesenchymal Transition, Cell Migration, and Organ Tropism. Cancer Rep (Hoboken) 2024; 7:e70018. [PMID: 39376011 PMCID: PMC11458887 DOI: 10.1002/cnr2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) harbours the most aggressive phenotype of all lung cancers to correlate with its bleak prognosis. The aggression of SCLC is partially attributable to its strong metastatic tendencies. The biological processes facilitating the metastasis in SCLC are still poorly understood and garnering a deeper understanding of these processes may enable the exploration of additional targets against this cancer hallmark in the treatment of SCLC. RECENT FINDINGS This narrative review will discuss the proposed molecular mechanisms by which the cancer hallmark of activating invasion and metastasis is featured in SCLC through important steps of the metastatic pathway, and address the various molecular targets that may be considered for therapeutic intervention. The tumour immune microenvironment plays an important role in facilitating immunotherapy resistance, whilst the poor infiltration of natural killer cells in particular fosters a pro-metastatic environment in SCLC. SCLC vasculogenesis is achieved through VEGF expression and vascular mimicry, and epithelial-mesenchymal transition is facilitated by the expression of the transcriptional repressors of E-cadherin, the suppression of the Notch signalling pathway and tumour heterogeneity. Nuclear factor I/B, selectin and B1 integrin hold important roles in SCLC migration, whilst various molecular markers are expressed by SCLC to assist organ-specific homing during metastasis. The review will also discuss a recent article observing miR-1 mRNA upregulation as a potential therapeutic option in targeting the metastatic activity of SCLC. CONCLUSION Treatment of SCLC remains a clinical challenge due to its recalcitrant and aggressive nature. Amongst the many hallmarks used by SCLC to enable its aggressive behaviour, that of its ability to invade surrounding tissue and metastasise is particularly notable and understanding the molecular mechanisms in SCLC metastasis can identify therapeutic targets to attenuate SCLC aggression and improve mortality.
Collapse
Affiliation(s)
- Carl He
- Department of Oncology, Eastern HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
10
|
Cheng Y, Chen J, Zhang W, Xie C, Hu Q, Zhou N, Huang C, Wei S, Sun H, Li X, Yu Y, Lai J, Yang H, Fang H, Chen H, Zhang P, Gu K, Wang Q, Shi J, Yi T, Xu X, Ye X, Wang D, Xie C, Liu C, Zheng Y, Lin D, Zhuang W, Lu P, Yu G, Li J, Gu Y, Li B, Wu R, Jiang O, Wang Z, Wu G, Lin H, Zhong D, Xu Y, Shu Y, Wu D, Chen X, Wang J, Wang M, Yang R. Benmelstobart, anlotinib and chemotherapy in extensive-stage small-cell lung cancer: a randomized phase 3 trial. Nat Med 2024; 30:2967-2976. [PMID: 38992123 PMCID: PMC11485241 DOI: 10.1038/s41591-024-03132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/12/2024] [Indexed: 07/13/2024]
Abstract
Immunochemotherapy is the first-line standard for extensive-stage small-cell lung cancer (ES-SCLC). Combining the regimen with anti-angiogenesis may improve efficacy. ETER701 was a multicenter, double-blind, randomized, placebo-controlled phase 3 trial that investigated the efficacy and safety of benmelstobart (a novel programmed death-ligand 1 (PD-L1) inhibitor) with anlotinib (a multi-target anti-angiogenic small molecule) and standard chemotherapy in treatment-naive ES-SCLC. The ETER701 trial assessed two primary endpoints: Independent Review Committee-assessed progression-free survival per RECIST 1.1 and overall survival (OS). Here the prespecified final progression-free survival and interim OS analysis is reported. Patients randomly received benmelstobart and anlotinib plus etoposide/carboplatin (EC; n = 246), placebo and anlotinib plus EC (n = 245) or double placebo plus EC ('EC alone'; n = 247), followed by matching maintenance therapy. Compared with EC alone, median OS was prolonged with benmelstobart and anlotinib plus EC (19.3 versus 11.9 months; hazard ratio 0.61; P = 0.0002), while improvement of OS was not statistically significant with anlotinib plus EC (13.3 versus 11.9 months; hazard ratio 0.86; P = 0.1723). The incidence of grade 3 or higher treatment-related adverse events was 93.1%, 94.3% and 87.0% in the benmelstobart and anlotinib plus EC, anlotinib plus EC, and EC alone groups, respectively. This study of immunochemotherapy plus multi-target anti-angiogenesis as first-line treatment achieved a median OS greater than recorded in prior randomized studies in patients with ES-SCLC. The safety profile was assessed as tolerable and manageable. Our findings suggest that the addition of anti-angiogenesis therapy to immunochemotherapy may represent an efficacious and safe approach to the management of ES-SCLC. ClinicalTrials.gov identifier: NCT04234607 .
Collapse
Affiliation(s)
- Ying Cheng
- Jilin Cancer Hospital, Changchun, China.
| | | | - Wei Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Xie
- Shandong Cancer Hospital and Institute, Shandong University, Jinan, China
| | - Qun Hu
- The Affiliated Hospital of Inner Mongolia University, Hohhot, China
| | - Ningning Zhou
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chun Huang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shihong Wei
- Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Hong Sun
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingya Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinhuo Lai
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Huaping Yang
- Xiangya Hospital Central South University, Changsha, China
| | | | - Hualin Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Peng Zhang
- Shanghai Pulmonary Hospital, Shanghai, China
| | - Kangsheng Gu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiming Wang
- Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Tienan Yi
- Xiangyang Central Hospital, Xiangyang, China
| | - Xingxiang Xu
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xianwei Ye
- Guizhou Provincial People's Hospital, Guiyang, China
| | | | - Conghua Xie
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chunling Liu
- Cancer Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yulong Zheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daren Lin
- Jiangmen Central Hospital, Jiangmen, China
| | - Wu Zhuang
- Fujian Cancer Hospital, Fuzhou, China
| | - Ping Lu
- The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Guohua Yu
- Weifang People's Hospital, Weifang, China
| | - Jinzhang Li
- Qinghai University Affiliated Hospital, Xining, China
| | - Yuhai Gu
- Qinghai Provincial People's Hospital, Xining, China
| | - Baolan Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rong Wu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Ou Jiang
- The Second People's Hospital of Neijiang, Neijiang, China
| | - Zaiyi Wang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guowu Wu
- Meizhou People's Hospital, Meizhou, China
| | - Haifeng Lin
- The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | | | - Yanhua Xu
- Jingzhou Central Hospital, Jingzhou, China
| | | | - Di Wu
- Shenzhen People's Hospital, Shenzhen, China
| | - Xingwu Chen
- The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jie Wang
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Minghui Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
11
|
Shen S, Hong Y, Huang J, Qu X, Sooranna SR, Lu S, Li T, Niu B. Targeting PD-1/PD-L1 in tumor immunotherapy: Mechanisms and interactions with host growth regulatory pathways. Cytokine Growth Factor Rev 2024; 79:16-28. [PMID: 39179486 DOI: 10.1016/j.cytogfr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Songyu Shen
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Yihan Hong
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Jiajun Huang
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China
| | - Xiaosheng Qu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, 169 Changle West Rd, Xi'an 710032, China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, 200444, China.
| |
Collapse
|
12
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
13
|
Yu W, Xing Y, Song X, Li T, Zhang M. EGFR-Tyrosine Kinase Inhibitor Combined with Radiotherapy in 105 Patients of Lung Adenocarcinoma with Brain Metastasis: A Retrospective Study of Prognostic Factor Analysis. Oncol Res Treat 2024; 47:531-548. [PMID: 39293411 DOI: 10.1159/000541494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION This study aimed to retrospectively analyse the response and prognosis factors for patients with lung adenocarcinoma exhibiting brain metastasis and epidermal growth factor receptor (EGFR) mutations, who were treated with a combination of EGFR-tyrosine kinase inhibitor (TKI) and brain radiotherapy (RT). METHODS Clinicopathological data of patients with lung adenocarcinoma were collected from January 2021 to January 2024 at the First Affiliated Hospital of Hebei North University. Statistical analysis was performed using SPSS version 26.0, with significance set at p < 0.05. RESULTS A total of 105 patients were included. The overall survival (OS) rates at 1, 2, and 3 years were 82.9%, 61.2%, and 33.7%, respectively. The progression-free survival 1 (PFS1) rates at 1, 2, and 3 years were 62.7%, 36.6%, and 22.1%, respectively. The progression-free survival 2 (PFS2) rates at 1, 2, and 3 years were 80.8%, 54.6%, and 31.4%, respectively. The median OS, PFS1, and PFS2 were 29.8, 18.0, and 28.1 months, respectively. Cox multivariate analysis identified gene mutation status and brain radiation dose as independent prognostic factors for OS. For PFS1, gene mutation status, brain radiation dose, and initial treatment response were independent prognostic factors. Clinical stage, gene mutation status, brain radiation dose, and initial treatment response were independent prognostic factors for PFS2. CONCLUSION The combination of TKIs and brain RT is effective for patients with lung adenocarcinoma with EGFR mutations and brain metastases. Patients with exon 19 Del or exon 21 L858R mutations and brain radiation doses ≥40 Gy exhibit longer OS, PFS1, and PFS2. Additionally, complete remission + partial remission is associated with extended PFS1 and PFS2, while patients in stage IVA show longer PFS2.
Collapse
Affiliation(s)
- Wenjuan Yu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yuan Xing
- Department of Pharmacy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiao Song
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mi Zhang
- Department of Respiratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
15
|
Yang Y, Hao L, Guiyang L, Haozhe P. Multifaceted bioinformatic analysis of m6A-related ferroptosis and its link with gene signatures and tumour-infiltrating immune cells in gliomas. J Cell Mol Med 2024; 28:e70060. [PMID: 39248438 PMCID: PMC11382363 DOI: 10.1111/jcmm.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Whether N6-Methyladenosine (m6A)- and ferroptosis-related genes act on immune responses to regulate glioma progression remains unanswered. Data of glioma and corresponding normal brain tissues were fetched from the TCGA database and GTEx. Differentially expressed genes (DEGs) were identified for GO and KEGG enrichment analyses. The FerrDb database was based to yield ferroptosis-related DEGs. Hub genes were then screened out using the cytoHubba database and validated in clinical samples. Immune cells infiltrating into the glioma tissues were analysed using the CIBERSORT R script. The association of gene signature underlying the m6A-related ferroptosis with tumour-infiltrating immune cells and immune checkpoints in low-grade gliomas was analysed. Of 6298 DEGs enriched in mRNA modifications, 144 were ferroptosis-related; NFE2L2 and METTL16 showed the strongest positive correlation. METTL16 knockdown inhibited the migrative and invasive abilities of glioma cells and induced ferroptosis in vitro. NFE2L2 was enriched in the anti-m6A antibody. Moreover, METTL16 knockdown reduced the mRNA stability and level of NFE2L2 (both p < 0.05). Proportions of CD8+ T lymphocytes, activated mast cells and M2 macrophages differed between low-grade gliomas and normal tissues. METTL16 expression was negatively correlated with CD8+ T lymphocytes, while that of NFE2L2 was positively correlated with M2 macrophages and immune checkpoints in low-grade gliomas. Gene signatures involved in the m6A-related ferroptosis in gliomas were identified via bioinformatic analyses. NFE2L2 interacted with METTL16 to regulate the immune response in low-grade gliomas, and both molecules may be novel therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
- TCM Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liu Hao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Liu Guiyang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Piao Haozhe
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
16
|
Xu Y, He C, Xi Y, Zhang Y, Bai Y. Gut microbiota and immunosenescence in cancer. Semin Cancer Biol 2024; 104-105:32-45. [PMID: 39127266 DOI: 10.1016/j.semcancer.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Cancer is generally defined as a disease of aging. With aging, the composition, diversity and functional characteristics of the gut microbiota occur changes, with a decline of beneficial commensal microbes triggered by intrinsic and extrinsic factors (e.g., diet, drugs and chronic health conditions). Nowadays, dysbiosis of the gut microbiota is recognized as a hallmark of cancer. At the same time, aging is accompanied by changes in innate and adaptive immunity, known as immunosenescence, as well as chronic low-grade inflammation, known as inflammaging. The elevated cancer incidence and mortality in the elderly are linked with aging-associated alterations in the gut microbiota that elicit systemic metabolic alterations, leading to immune dysregulation with potentially tumorigenic effects. The gut microbiota and immunosenescence might both affect the response to treatment in cancer patients. In-depth understanding of age-associated alterations in the gut microbiota and immunity will shed light on the risk of cancer development and progression in the elderly. Here, we describe the aging-associated changes of the gut microbiota in cancer, and review the evolving understanding of the gut microbiota-targeted intervention strategies. Furthermore, we summarize the knowledge on the cellular and molecular mechanisms of immunosenescence and its impact on cancer. Finally, we discuss the latest knowledge about the relationships between gut microbiota and immunosenescence, with implications for cancer therapy. Intervention strategies targeting the gut microbiota may attenuate inflammaging and rejuvenate immune function to provide antitumor benefits in elderly patients.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| |
Collapse
|
17
|
Li L, Zhang T, Xiao M, Lu Y, Gao L. Brain macrophage senescence in glioma. Semin Cancer Biol 2024; 104-105:46-60. [PMID: 39098625 DOI: 10.1016/j.semcancer.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Gliomas are a diverse group of primary central nervous system neoplasms with no curative therapies available. Brain macrophages comprise microglia in the brain parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space and monocyte-derived macrophages infiltrating the brain. With the great improvement of our recognition of brain macrophages, diverse macrophage populations have been found in the context of glioma, which exhibit functional and phenotypic heterogeneity. We have long thought that brain macrophage senescence is detrimental, manifested by specialized forms of persistent cell cycle arrest and chronic low-grade inflammation. Persistent senescence of macrophages may result in immune dysfunction, potentially contributing to glioma initiation and development. Given the crucial roles played by brain macrophages in glioma, we unravel how brain macrophages undergo reprogramming and their contribution to glioma. We outline general molecular alterations and specific biomarkers in senescent brain macrophages, as well as functional changes (such as metabolism, autophagy, phagocytosis, antigen presentation, and infiltration and recruitment). In addition, recent advances in genetic regulation and mechanisms linked to senescent brain macrophages are discussed. In particular, this review emphasizes the contribution of senescent brain macrophages to glioma, which may drive translational efforts to utilize brain macrophages as a prognostic marker or/and treatment target in glioma. An in-depth comprehending of how brain macrophage senescence functionally influences the tumor microenvironment will be key to our development of innovative therapeutics for glioma.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Tianhe Zhang
- Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Meiling Xiao
- Department of Rehabilitation, The Central Hospital of Shenyang Medical College, Shenyang, Liaoning 110024, China
| | - Yu Lu
- Rehabilitation Medicine Department, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China.
| | - Lin Gao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
18
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
19
|
Li Q, Zhang K, Liu H, Zhai S, Jia Y, Li T, Pan Y. Clinical effects of neuroendoscopic infratentorial supracerebellar approach surgical technique for resecting pineal tumors: a retrospective study. Neurochirurgie 2024; 70:101576. [PMID: 38908132 DOI: 10.1016/j.neuchi.2024.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE Pineal tumors are relatively rare central nervous system lesions with a predilection for the pediatric population. This article aims to explore the clinical effects of neuroendoscopic infratentorial supracerebellar approach for resecting tumors in the pineal area. METHODS This is a retrospective study that included patients who underwent neuroendoscopic infratentorial supracerebellar approach to resect nine tumors in the pineal area at the Department of Neurosurgery of the Second Hospital of Lanzhou University from December 2017 to October 2023. RESULTS The results of postoperative MRI revealed that all tumors were resected. Five patients received postoperative radiotherapy, three patients received radiotherapy along with chemotherapy, and one patient received neither radiotherapy nor chemotherapy. The pathological results showed that four patients were diagnosed with germinoma, two patients with teratoma, two patients with mixed germ cell tumors, and one patient with central neurocytoma. After surgery, one patient developed psychiatric symptoms, two patients developed binocular upward vision and diplopia, and one patient developed unstable walking and diplopia. With a follow-up of 1.7-4.8 years, all nine patients lived normally. Furthermore, none of them had tumor recurrence or death. CONCLUSION The simple neuroendoscopic infratentorial supracerebellar approach has some safety and efficacy. It is suitable for tumors in the pineal region where the disease is mainly located below the Galen vein complex.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Kai Zhang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Hanruo Liu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Shijia Zhai
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China.
| | - Yanfei Jia
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
20
|
Gu M, Liu Y, Zheng W, Jing Z, Li X, Guo W, Zhao Z, Yang X, Liu Z, Zhu X, Gao W. Combined targeting of senescent cells and senescent macrophages: A new idea for integrated treatment of lung cancer. Semin Cancer Biol 2024; 106-107:43-57. [PMID: 39214157 DOI: 10.1016/j.semcancer.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer is one of the most common cancers worldwide and a leading cause of cancer-related deaths. Macrophages play a key role in the immune response and the tumour microenvironment. As an important member of the immune system, macrophages have multiple functions, including phagocytosis and clearance of pathogens, modulation of inflammatory responses, and participation in tissue repair and regeneration. In lung cancer, macrophages are considered to be the major cellular component of the tumor-associated inflammatory response and are closely associated with tumorigenesis, progression and metastasis. However, macrophages gradually undergo a senescence process with age and changes in pathological states. Macrophage senescence is an important change in the functional and metabolic state of macrophages and may have a significant impact on lung cancer development. In lung cancer, senescent macrophages interact with other cells in the tumor microenvironment (TME) by secreting senescence-associated secretory phenotype (SASP) factors, which can either promote the proliferation, invasion and metastasis of tumor cells or exert anti-tumor effects through reprogramming or clearance under specific conditions. Therefore, senescent macrophages are considered important potential targets for lung cancer therapy. In this paper, a systematic review of macrophages and their senescence process, and their role in tumors is presented. A variety of inhibitory strategies against senescent macrophages, including enhancing autophagy, inhibiting SASP, reducing DNA damage, and modulating metabolic pathways, were also explored. These strategies are expected to improve lung cancer treatment outcomes by restoring the anti-tumor function of macrophages.
Collapse
Affiliation(s)
- Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zimo Zhao
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xu Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Wei Gao
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
21
|
Feng Y, Wang K, Fan J, Wu X, Li T, Yang Z. Mindfulness intervention, homogeneous medical concept, and concentrated solution nursing for colorectal cancer patients: a retrospective study. BMC Cancer 2024; 24:1055. [PMID: 39192195 DOI: 10.1186/s12885-024-12508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/12/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECTIVE We aim to explore the differences of the psychological distress of postoperative chemotherapy patients with colorectal cancer between mindfulness intervention combined with homogeneous medical concepts and mindfulness intervention only. METHODS One hundred patients with colorectal cancer undergoing chemotherapy after surgery from Sep 2020 to Sep 2022 were enrolled and divided into active control group (Solution centered nursing interventions; homogenized medical and nursing professional teams; dedicated personnel responsible for "admission notices"; Regular follow-up after discharge) and mindfulness group (homogeneous medical concept + and concentrated solution + Mindfulness intervention) with 50 cases in each group according to different nursing methods. RESULTS After nursing, the physical function, emotional function, cognitive function, and social function of the patients in the mindfulness group were significantly higher than those in the active control group. However, the overall life and economic difficulties of the patients in the mindfulness group were significantly lower than those in the active control group (P < 0.05). After nursing, the observation score, description score, action score, intrinsic experience score, non-judgment score and non-reaction score of the mindfulness group were significantly higher than those of the active control group (P < 0.05). CONCLUSION The implementation of mindfulness intervention in colorectal cancer patients undergoing chemotherapy can alleviate the patients' negative emotions, improve the level of mindfulness, and improve the quality of life of patients.
Collapse
Affiliation(s)
- Yaning Feng
- Physical Examination Center, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Kuanlei Wang
- Hospital Office, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Jianchun Fan
- Graduate School, Hebei North University, Zhangjiakou, 075000, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Rd, Zhangjiakou, 075000, China.
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhili Yang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, 12 Changqing Rd, Zhangjiakou, 075000, China.
- Department of Anorectal Surgery, Xinchang Country People's Hospital, 117 Gushan Middle Road, Xinchang, Zhejiang Province, 312500, China.
| |
Collapse
|
22
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
23
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Tian Y, Xin S, Wan Z, Dong H, Liu L, Fan Z, Li T, Peng F, Xiong Y, Han Y. TCF19 promotes cell proliferation and tumor formation in lung cancer by activating the Raf/MEK/ERK signaling pathway. Transl Oncol 2024; 45:101978. [PMID: 38701650 PMCID: PMC11088346 DOI: 10.1016/j.tranon.2024.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE This study aimed to investigate TCF19's role in lung cancer development, specifically its involvement in the RAF/MEK/ERK signaling pathway. METHODS Lung cancer tissue analysis revealed significant TCF19 overexpression. In vitro experiments using A549 and Hop62 cells with TCF19 overexpression demonstrated enhanced cell growth. Transgenic mouse models confirmed TCF19's role in primary tumor development. Transcriptome sequencing identified altered gene expression profiles, linking TCF19 to RAF/MEK/ERK pathway activation. Functional assays elucidated underlying mechanisms, revealing increased phosphorylation of Raf1, MEK1/2, and ERK1/2. Inhibiting RAF1 or ERK through shRaf1 or ERK inhibitor reduced cell cycle-related proteins and inhibited TCF19-overexpressing cell growth. RESULTS TCF19 was identified as an oncogene in lung carcinoma, specifically impacting the RAF/MEK/ERK pathway. Elevated TCF19 levels in lung cancer suggest targeting TCF19 or its associated pathways as a promising strategy for disease management. CONCLUSION This study unveils TCF19's oncogenic role in lung cancer, emphasizing its modulation of the RAF/MEK/ERK pathway and presenting a potential therapeutic target for TCF19-overexpressing lung cancers.
Collapse
Affiliation(s)
- Yahui Tian
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China; School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Shaowei Xin
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China
| | - Zitong Wan
- College of life Science, Northwestern University, Xi'an, China
| | - Honghong Dong
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China
| | - Lu Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenzhen Fan
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yong Han
- Department of Thoracic Surgery, Air Force Medical Center, Air Force Medical University, 30 Fucheng Rd, Beijing 100142, China.
| |
Collapse
|
25
|
Ceresoli GL, Rossi G, Agustoni F, Bonomi L, Borghetti P, Bulotta A, Casartelli C, Cerea G, Colonese F, Del Signore E, Finocchiaro G, Gianoncelli L, Grisanti S, Maiolani M, Pagni F, Proto C, Rijavec E, Vittimberga I, Arcangeli S, Filippi AR. Management of patients with extensive small-cell lung cancer in the immunotherapy era: An Italian consensus through a Delphi approach. Crit Rev Oncol Hematol 2024; 199:104247. [PMID: 38307393 DOI: 10.1016/j.critrevonc.2023.104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Immunotherapy represented a turning point for treating extensive small-cell lung cancer (ES-SCLC). Although, many issues remain debated. METHODS A group of Italian medical and radiation oncologists with expertise in managing patients with ES-SCLC developed a list of statements divided in six areas of interest. The Delphi method was used to assess the consensus on the defined list of statements. RESULTS 32 statements were included in the final list to be voted by the Delphi panel, and 26 reached a consensus on the agreement. A prompt involvement of a multidisciplinary team is a priority to provide an integrated treatment strategy. First-line recommended treatment is immunotherapy in combination with platinum-based chemotherapy and etoposide for four cycles followed by maintenance immunotherapy. CONCLUSIONS While awaiting new data from clinical trials and real-world studies, these recommendations can represent a useful tool to guide the management of ES-SCLC patients in daily practice.
Collapse
Affiliation(s)
| | - Giulio Rossi
- Pathology Unit, Hospital Institute Fondazione Poliambulanza, Via Bissolati 57, 25124 Brescia, Italy
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lucia Bonomi
- Unit of Oncology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Paolo Borghetti
- Radiation Oncology Department, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Alessandra Bulotta
- Department of Oncology, IRCCS San Raffaele, via Olgettina 60, Milan, Italy
| | | | - Giulio Cerea
- Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology, IEO, Milan, Italy
| | - Giovanna Finocchiaro
- Medical Oncology and Hematologic Unit, Humanitas Cancer Center, Istituto Clinico Humanitas-IRCCS, Rozzano, Italy
| | - Letizia Gianoncelli
- Medical Oncology Unit, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martina Maiolani
- U.O.C Oncologia Medica ASST Valtellina e Alto Lario, Sondrio, Italy
| | - Fabio Pagni
- Pathology, Department of Medicine and Surgery, University Milan Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Erika Rijavec
- Unit of Medical Oncology, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | | | - Stefano Arcangeli
- Department of Radiation Oncology, University of Milan Bicocca, Milan, Italy
| | - Andrea Riccardo Filippi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
26
|
Wu X, Fan J, Zhang X, Li T, Song J. Global trends of single cell sequence associated in cancer from 2011 to 2024: A bibliometric analysis. Heliyon 2024; 10:e32847. [PMID: 38975217 PMCID: PMC11226897 DOI: 10.1016/j.heliyon.2024.e32847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Exploring the different molecular and clinicopathological features of nodal cancer based on single cell sequencing can reveal the intertumoral heterogeneity in cancer, and provide new ideas for early diagnosis, treatment and prognosis analysis of cancer. Methods The hotspots, the features of worldwide scientific output, and the frontiers concerning single cell sequence related to cancer from 2011 to 2024 were determined using our bibliometric analysis. Web of Science Core Collection (WOSCC) database was searched for publications on single cell sequence associated with cancer that were published between 2011 and 2024. According to the journals, keywords, number of records, affiliations, citations, and countries, we conducted a bibliometric analysis. With the use of the data gathered from the WOSCC, geographic distribution was visualized, keyword, affiliation, and author cluster analyses were conducted, and co-cited references were reviewed and a descriptive analysis was also performed. Results From the analysis, it was concluded that 6189 articles that were published between 2011 and 2024 in total were identified. Frontiers in immunology is the leading journal with the most publications in field of the research. The five clusters that were identified for hotspots included immunotherapy, single-cell RNA sequencing, hepatocellular carcinoma, proliferation, gene expression appeared the most frequently. Journals, nations, organizations, scholars with most contribution and most referenced publications globally were extracted. Studies have mostly concentrated on the spatial transcriptomics, pan-cancer analysis, hepatocellular carcinoma et al. Conclusion Single-cell sequencing plays a significant role in tumor diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, 075000, China
- Institute of Cancer, The First Affiliated Hospital of Hebei North University, 075000, China
| | - Jianchun Fan
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, 075000, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jichao Song
- Department of Gynaecology, Xinchang Country People's Hospital/Xinchang County Maternal and Child Health Hospital, 117 Gushan Middle Road, Xinchang, 312500, Zhejiang Province, China
| |
Collapse
|
27
|
Wang L, Dong Y. Peripheral blood immune cell parameters in patients with high-grade squamous intraepithelial lesion (HSIL) and cervical cancer and their clinical value: a retrospective study. PeerJ 2024; 12:e17499. [PMID: 38846752 PMCID: PMC11155673 DOI: 10.7717/peerj.17499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Objective The objective of this study was to delineate the profile of peripheral blood lymphocytic indices in patients afflicted with high-grade squamous intraepithelial lesions (HSIL) and cervical neoplasms, and to elucidate the correlation of these hematologic markers with the clinicopathological spectra in individuals diagnosed with cervical carcinoma. Methods We adopted a retrospective case-control modality for this investigation. An aggregate of 39 HSIL patients and 42 cervical carcinoma patients, who were treated in our facility from July 2020 to September 2023, were meticulously selected. Each case of cervical malignancy was confirmed through rigorous histopathological scrutiny. Concomitantly, 31 healthy female individuals, who underwent prophylactic health evaluations during the corresponding timeframe, were enlisted as the baseline control group. We systematically gathered and analyzed clinical demographics, as well as the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), from peripheral blood samples. Pearson's correlation coefficient was deployed to dissect the interrelation between peripheral NLR and PLR concentrations and the clinicopathological features in the cervical cancer group. Results Inter-group comparative analysis unveiled statistically substantial variances in the PLR and NLR values among the tripartite clusters (F = 36.941, 14.998, P < 0.001, respectively). Although discrepancy in NLR (P = 0.061) and PLR (P = 0.759) measures between the groups of cervical carcinoma and HSIL was not statistically appreciable, these indices were markedly elevated in the cervical carcinoma faction as juxtaposed with the normative control group (t = 5.094, 5.927; P < 0.001 for both parameters). A discernible gradation in peripheral blood PLR and NLR concentrations was noted when stratified by clinical stage and the profundity of myometrial invasion in cervical cancer subjects (P < 0.001). The correlation matrix demonstrated a positive liaison between peripheral blood PLR and the clinical gradation, as well as the invasiveness of the neoplastic cells into the muscularis propria (P < 0.05); a similar trend was observed with the NLR values (P < 0.05). Conclusion Augmented NLR and PLR levels in peripheral blood specimens are indicative of HSIL and cervical malignancy. These hematological parameters exhibit a pronounced interconnection with clinical staging and muscular wall penetration depth, serving as potential discriminative biomarkers for the diagnosis and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Ling Wang
- Medical Department, University Hospital, Qingdao Agriculture University, Qingdao, China
| | - Yuyan Dong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
28
|
Jimenez L, Stolzenbach V, Ozawa PMM, Ramirez-Solano M, Liu Q, Sage J, Weaver AM. Extracellular vesicles from non-neuroendocrine SCLC cells promote adhesion and survival of neuroendocrine SCLC cells. Proteomics 2024; 24:e2300030. [PMID: 37926756 DOI: 10.1002/pmic.202300030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells. Proteomic analysis of purified SEVs revealed that extracellular matrix (ECM) proteins and integrins are highly enriched in SEVs of non-NE cells whereas nucleic acid-binding proteins are enriched in SEVs purified from NE cells. Addition of select purified ECM proteins identified in purified extracellular vesicles (EVs), specifically fibronectin, laminin 411, and laminin 511, were able to substitute for the role of non-NE-derived SEVs in promoting adhesion and survival of NE SCLC cells. Those same proteins were differentially expressed by human SCLC subtypes. These data suggest that ECM-carrying SEVs secreted by non-NE cells play a key role in supporting the growth and survival of NE SCLC cells.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Victor Stolzenbach
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Marisol Ramirez-Solano
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julien Sage
- Department of Pediatrics, Stanford Medicine, Stanford, California, USA
- Department of Genetics, Stanford Medicine, Stanford, California, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Wang Y, Zhu Z, Luo R, Chen W. Single-cell transcriptome analysis reveals heterogeneity of neutrophils in non-small cell lung cancer. J Gene Med 2024; 26:e3690. [PMID: 38735760 DOI: 10.1002/jgm.3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Lung cancer stands out as a highly perilous malignant tumor with severe implications for human health. There has been a growing interest in neutrophils as a result of their role in promoting cancer in recent years. Thus, the present study aimed to investigate the heterogeneity of neutrophils in non-small cell lung cancer (NSCLC). METHODS Single-cell RNA sequencing of tumor-associated neutrophils (TANs) and polymorphonuclear neutrophils sourced from the Gene Expression Omnibus database was analyzed. Moreover, cell-cell communication, differentiation trajectories and transcription factor analyses were performed. RESULTS Neutrophils were found to be closely associated with macrophages. Four major types of TANs were identified: a transitional subcluster that migrated from blood to tumor microenvironment (TAN-0), an inflammatory subcluster (TAN-1), a subpopulation that displayed a distinctive transcriptional signature (TAN-2) and a final differentiation state that promoted tumor formation (TAN-3). Meanwhile, TAN-3 displayed a marked increase in glycolytic activity. Finally, transcription factors were analyzed to uncover distinct TAN cluster-specific regulons. CONCLUSIONS The discovery of the dynamic characteristics of TANs in the present study is anticipated to contribute to yielding a better understanding of the tumor microenvironment and advancing the treatment of NSCLC.
Collapse
Affiliation(s)
- Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Raojun Luo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Chen
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Yang C, Xuan T, Gong Q, Dai X, Wang C, Zhang R, Zhao W, Wang J, Yue W, Li J. Efficacy and safety of novel immune checkpoint inhibitor-based combinations versus chemotherapy as first-line treatment for patients with extensive-stage small cell lung cancer: A network meta-analysis. Thorac Cancer 2024; 15:1246-1262. [PMID: 38623838 PMCID: PMC11128374 DOI: 10.1111/1759-7714.15310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Patients with extensive-stage small cell lung cancer (ES-SCLC) have an exceptionally poor prognosis and immune checkpoint inhibitors (ICIs) combined with etoposide-platinum is recommended as standard first-line therapy. However, which combination pattern is the best still remains unknown. This network meta-analysis was performed to compare the efficacy and safety of currently available patterns including an antiangiogenic agent containing regimen and probed into the most appropriate therapy for patients. METHODS Hazard ratios (HRs) and odds ratios (ORs) were generated using R software. The outcomes of overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events of grade 3 or higher (grade ≥ 3 adverse events [AEs]) were analyzed. RESULTS A total of 10 randomized controlled trials (RCTs) involving 5544 patients were included for analysis. Drug combination patterns included adebrelimab, atezolizumab, durvalumab, durvalumab plus tremelimumab, ipilimumab, pembrolizumab, serplulimab, benmelstobart plus anlotinib, tislelizumab, tiragolumab plus atezolizumab and toripalimab in combination with chemotherapy. The novel antiangiogenic agent containing regimen benmelstobart + anlotinib + chemotherapy showed the highest possibility to present the best PFS and OS versus chemotherapy. Compared with ICI plus chemotherapy, it also achieved significantly better PFS and presented a tendency of OS benefit. As for safety and toxicity, patients treated with benmelstobart + anlotinib + chemotherapy and durvalumab + tremelimumab + chemotherapy suffered a higher likelihood of more grade ≥ 3 AEs without unexpected AEs. CONCLUSION PD-1/PD-L1 inhibitors-based combinations are associated with significant improvement in both PFS and OS for treatment-naïve ES-SCLC patients. Benmelstobart plus anlotinib with chemotherapy (CT) yielded better survival benefit versus CT alone or other ICIs + CT with caution for more adverse effects along with the addition of an antiangiogenic agent.
Collapse
Affiliation(s)
- Chuang Yang
- Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Tiantian Xuan
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of MedicineShandong UniversityQingdaoChina
| | - Qing Gong
- Department of Respiratory Oncology, Wendeng District People's HospitalWeihaiChina
| | - Xin Dai
- Department of Medical Oncology, Shandong Provincial Hospital of Traditional Chinese MedicineJinanChina
| | - Chengjun Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Rongyu Zhang
- Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Wen Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jian Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
31
|
Wang Y, Zhou C, Li T, Luo J. Prognostic value of CDKN2A in head and neck squamous cell carcinoma via pathomics and machine learning. J Cell Mol Med 2024; 28:e18394. [PMID: 38751024 PMCID: PMC11096642 DOI: 10.1111/jcmm.18394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024] Open
Abstract
This study aims to enhance the prognosis prediction of Head and Neck Squamous Cell Carcinoma (HNSCC) by employing artificial intelligence (AI) to analyse CDKN2A gene expression from pathology images, directly correlating with patient outcomes. Our approach introduces a novel AI-driven pathomics framework, delineating a more precise relationship between CDKN2A expression and survival rates compared to previous studies. Utilizing 475 HNSCC cases from the TCGA database, we stratified patients into high-risk and low-risk groups based on CDKN2A expression thresholds. Through pathomics analysis of 271 cases with available slides, we extracted 465 distinctive features to construct a Gradient Boosting Machine (GBM) model. This model was then employed to compute Pathomics scores (PS), predicting CDKN2A expression levels with validation for accuracy and pathway association analysis. Our study demonstrates a significant correlation between higher CDKN2A expression and improved median overall survival (66.73 months for high expression vs. 42.97 months for low expression, p = 0.013), establishing CDKN2A's prognostic value. The pathomic model exhibited exceptional predictive accuracy (training AUC: 0.806; validation AUC: 0.710) and identified a strong link between higher Pathomics scores and cell cycle activation pathways. Validation through tissue microarray corroborated the predictive capacity of our model. Confirming CDKN2A as a crucial prognostic marker in HNSCC, this study advances the existing literature by implementing an AI-driven pathomics analysis for gene expression evaluation. This innovative methodology offers a cost-efficient and non-invasive alternative to traditional diagnostic procedures, potentially revolutionizing personalized medicine in oncology.
Collapse
Affiliation(s)
- Yandan Wang
- Department of Otolaryngology, Huaihe HospitalHenan UniversityKaifengChina
| | - Chaoqun Zhou
- Department of Pathology, Huaihe HospitalHenan UniversityKaifengChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Junpeng Luo
- Translational Medical Center of Huaihe HospitalHenan UniversityKaifengChina
| |
Collapse
|
32
|
Liu L, He Z, Jiang Z, Liu Z, Zhuang X. Acidity-induced ITGB6 promote migration and invasion of lung cancer cells by epithelial-mesenchymal transition and focal adhesion. Exp Cell Res 2024; 436:113962. [PMID: 38316250 DOI: 10.1016/j.yexcr.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent tumor and acidic tumor microenvironment provides an energy source driving tumor progression. We previously demonstrated significantly upregulated Integrin β6 (ITGB6) in NSCLC cells. This study was designed to investigate the role of ITGB6 in NSCLC metastasis and explore the potential mechanisms. The expression of ITGB6 was evaluated in patients with NSCLC. Migration and invasion assays were utilized to investigate the role of ITGB6, and ChIP-qPCR and dual-luciferase reporter experiments preliminarily analyzed the relationship between ETS proto-oncogene 1 (ETS1) and ITGB6. Bioinformatics analysis and rescue models were performed to explore the underlying mechanisms. The results demonstrated that ITGB6 was upregulated in NSCLC patients and the difference was even more pronounced in patients with poor prognosis. Functionally, acidity-induced ITGB6 promoted migration and invasion of NSCLC cells in vitro, and epithelial-mesenchymal transition (EMT) and focal adhesion were the important mechanisms responsible for ITGB6-involved metastasis. Mechanistically, we revealed ETS1 enriched in the ITGB6 promoter region and promoted transcription to triggered the activation of subsequent signaling pathways. Moreover, ChIP-qPCR and dual-luciferase reporter experiments demonstrated that ETS1 played an important role in directly mediating ITGB6 expression. Furthermore, we found ITGB6 was responsible for the acidic microenvironment-mediated migration and invasion processes in NSCLC by performing rescue experiments with ITGB6 knockdown. Our findings indicated acidic microenvironment directly induced ETS1 to regulate the expression of ITGB6, and then the highly expressed ITGB6 further mediate EMT and activates the downstream focal adhesion pathways, eventually promotes the invasion and migration in NSCLC progression and metastasis.
Collapse
Affiliation(s)
- Linxin Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuoru He
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhangyu Jiang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
33
|
Guan X, Liang J, Xiang Y, Li T, Zhong X. BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma. Int J Biol Macromol 2024; 261:129717. [PMID: 38290639 DOI: 10.1016/j.ijbiomac.2024.129717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Underlying molecular mechanisms of BARX homeobox 1 (BARX1) in lung adenocarcinoma (LUAD) remain elusive. METHODS Abnormally expressed genes in LUAD tissues were analyzed by RNA-sequencing. CCK-8, colony formation, transwell, and wound healing assays examined proliferation, colony formation, invasion, and migration of LUAD cells, respectively. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay examined the interaction between BARX1 and Forkhead Box F1 (FOXF1). Xenograft mouse model of LUAD was constructed to monitor the growth and metastasis of tumor. RESULTS BARX1 was upregulated, FOXF1 was downregulated in LUAD tissues and cells. There was a negative correlation between BARX1 and FOXF1 expression. BARX1 deficiency limited malignant phenotypes of LUAD cells, including proliferation, invasion, migration and EMT. In vivo, BARX1 knockdown suppressed tumor growth and metastasis in A549-drove xenograft mouse model. BARX1 interacted with FOXF1 promoter and repressed FOXF1 expression. Upregulation of BARX1 promoted the expression of Wnt5a, β-catenin, and phosphorylated-glycogen synthase kinase-3 beta (p-GSK3β), whereas inhibited FOXF1, p-β-catenin, and GSK3β in LUAD cells. BARX1 knockdown caused an opposite result. Rescue assays uncovered that FOXF1 reversed the impact of BARX1 on malignant phenotypes and Wnt/β-catenin of LUAD cells. CONCLUSION BARX1 repressed FOXF1 expression and activated Wnt/β-catenin signaling pathway to drive lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaojiao Guan
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Liang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yifan Xiang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xinwen Zhong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
34
|
Guo H, Zhang J, Qin C, Yan H, Luo X, Zhou H. Advances and challenges of first-line immunotherapy for non-small cell lung cancer: A review. Medicine (Baltimore) 2024; 103:e36861. [PMID: 38241591 PMCID: PMC10798763 DOI: 10.1097/md.0000000000036861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024] Open
Abstract
The current use of immune checkpoint inhibitors (ICIs) for the treatment of lung cancer has dramatically changed the clinical strategy for metastatic non-small cell lung cancer (mNSCLC). As a result of great achievements in clinical trials, 6 programmed death-1 inhibitors (sintilimab, camrelizumab, tislelizumab, pembrolizumab, cemiplimab, and nivolumab), 2 programmed death-ligand 1 inhibitors (sugemalimab and atezolizumab), and 1 cytotoxic T lymphocyte-associated antigen-4 inhibitor (ipilimumab) have been approved as first-line treatment for mNSCLC by the US Food and Drug Administration. Recently, research on ICIs has shifted from a large number of second-line to first-line settings in clinical trials. Results from first-line trials have shown that almost all driver-negative mNSCLC are treated with ICIs and significantly prolong patient survival; however, the low response rate and adverse reactions to immunotherapy remain to be addressed. Here, we summarize the use of ICIs, including monotherapy and combination therapy, in the first-line treatment of mNSCLC in recent years and discuss the low response rate and adverse reactions of ICIs as well as the challenges and expectations for the first-line treatment of mNSCLC in the future.
Collapse
Affiliation(s)
- Haiyang Guo
- Institute of Surgery, School of Medicine and Life Sciences, Chengdu University of TCM, Chengdu, China
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Jun Zhang
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Chao Qin
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Hang Yan
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| | - Xinyue Luo
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Institute of Surgery, School of Medicine and Life Sciences, Chengdu University of TCM, Chengdu, China
- Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Institute of Surgery, Graduate School, Zunyi Medical University, Zunyi, China
| |
Collapse
|
35
|
Zeng J, Cheng Y, Xie W, Lin X, Ding C, Xu H, Cui B, Chen Y, Gao S, Zhang S, Liu K, Lu Y, Zhou J, Shi Z, Sun Y. Calcium-sensing receptor and NF-κB pathways in TN breast cancer contribute to cancer-induced cardiomyocyte damage via activating neutrophil extracellular traps formation. Cell Mol Life Sci 2024; 81:19. [PMID: 38196005 PMCID: PMC11073098 DOI: 10.1007/s00018-023-05051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/11/2024]
Abstract
Cardiovascular disorders are commonly prevalent in cancer patients, yet the mechanistic link between them remains poorly understood. Because neutrophil extracellular traps (NETs) have implications not just in cardiovascular diseases (CVD), but also in breast cancer (BC), it was hypothesized to contribute to CVD in the context of oncogenesis. We established a mouse model using nude mice to simulate liver metastasis of triple-negative BC (TNBC) through the injection of MDA-MB-231 cells. Multiple imaging and analysis techniques were employed to assess the cardiac function and structure, including echocardiography, HE staining, Masson staining, and transmission electron microscopy (TEM). MDA-MB-231 cells underwent treatment with a CaSR inhibitor, CaSR agonist, and NF-κB channel blocker. The phosphorylation of NF-κB channel protein p65 and the expression and secretion of IL-8 were assessed using qRT-PCR, Western Blot, and ELISA, respectively. In addition, MDA-MB-231 cells were co-cultured with polymorphonuclear neutrophils (PMN) under varying conditions. The co-localization of PMN extracellular myeloperoxidase (MPO) and DNA were observed by cellular immunofluorescence staining to identify the formation of NETs. Then, the cardiomyocytes were co-cultured with the above medium that contains NETs or not, respectively; the effects of NETs on cardiomyocytes apoptosis were perceived by flow cytometry. The ultrastructural changes of myocardial cells were perceived by TEM, and ELISA detected the levels of myocardial enzyme (LDH, MDA and SOD). Overall, according to our research, CaSR has been found to have a regulatory role in IL-8 secretion in MDA-MB-231 cells, as well as in the formation of NETs by PMN cells. These findings suggest CaSR-mediated stimulation in PMN can lead to increased NETs formation and subsequently to cytotoxicity in cardiomyocytes, which potentially via activation of the NF-κB signaling cascade of BC cell.
Collapse
Affiliation(s)
- Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yangyang Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Wanlin Xie
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Xin Lin
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Chenglong Ding
- Department of Pathology, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154003, Heilongjiang, China
| | - Huimin Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Baohong Cui
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yixin Chen
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Song Gao
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Siwen Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Kaiyue Liu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yue Lu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Jialing Zhou
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Zhongxiang Shi
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yihua Sun
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
36
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
37
|
Shen W, Lyu Q, Yi R, Sun Y, Zhang W, Wei T, Zhang Y, Shi J, Zhang J. HMGB1 promotes chemoresistance in small cell lung cancer by inducing PARP1-related nucleophagy. J Adv Res 2023:S2090-1232(23)00407-1. [PMID: 38159843 DOI: 10.1016/j.jare.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is prone to chemoresistance, which is closely related to genome homeostasis-related processes, such as DNA damage and repair. Nucleophagy is the elimination of specific nuclear substances by cells themselves and is responsible for maintaining genome and chromosome stability. However, the roles of nucleophagy in tumour chemoresistance have not been investigated. OBJECTIVES The aim of this work was to elucidate the mechanism of chemoresistance in SCLC and reverse this chemoresistance. METHODS RNA-seq data from SCLC cohorts, chemosensitive SCLC cells and the corresponding chemoresistant cells were used to discover genes associated with chemoresistance and patient prognosis. In vitro and in vivo experiments were performed to verify the effect of high-mobility group box 1 (HMGB1) knockdown or overexpression on the chemotherapeutic response in SCLC. The regulatory effect of HMGB1 on nucleophagy was then investigated by coimmunoprecipitation (co-IP) and mass spectrometry (MS), and the underlying mechanism was explored using pharmacological inhibitors and mutant proteins. RESULTS HMGB1 is a factor indicating poor prognosis and promotes chemoresistance in SCLC. Mechanistically, HMGB1 significantly increases PARP1-LC3 binding to promote nucleophagy via PARP1 PARylation, which leads to PARP1 turnover from DNA lesions and chemoresistance. Furthermore, chemoresistance in SCLC can be attenuated by blockade of the PARP1-LC3 interaction or PARP1 inhibitor (PARPi) treatment. CONCLUSIONS HMGB1 can induce PARP1 self-modification, which promotes the interaction of PARP1 with LC3 to promote nucleophagy and thus chemoresistance in SCLC. HMGB1 could be a predictive biomarker for the PARPi response in patients with SCLC. Combining chemotherapy with PARPi treatment is an effective therapeutic strategy for overcoming SCLC chemoresistance.
Collapse
Affiliation(s)
- Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiong Lyu
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ruibin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yueqin Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Sheng B, Zhao B, Dong Y, Zhang J, Wu S, Ji H, Zhu X. Copine 1 predicts poor clinical outcomes by promoting M2 macrophage activation in ovarian cancer. Carcinogenesis 2023; 44:748-759. [PMID: 37747823 PMCID: PMC10773812 DOI: 10.1093/carcin/bgad067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Copine 1 (CPNE1), a membrane-binding protein, influences the prognosis of various cancers. According to cBioPortal, CPNE1 amplification is a prevalent genetic mutation in ovarian cancer but with unknown oncogenic mechanism. METHODS This study analysed the CPNE1 expression in ovarian cancer using online datasets, as validated by immunohistochemistry (IHC), quantitative polymerase chain reaction (qPCR) and western blotting. Concurrently, the prognostic value of CPNE1 was accessed. Cell Counting Kit-8, colony formation, transwells and xenograft experiments were performed to evaluate the functions of CPNE1 during ovarian cancer carcinogenesis. CPNE1 and its related genes were analysed by g:Profiler and Tumour Immune Estimation Resource. Furthermore, human monocytic THP-1 cells were co-cultured with ES2 cells to investigate the effect of CPNE1 on macrophage polarization. RESULTS The results of bioinformatic analysis, IHC, qPCR and western blotting indicated a higher CPNE1 in ovarian cancer. CPNE1 overexpression demonstrated an association with a poor prognosis of ovarian cancer. Functionally, CPNE1 overexpression increased ES2 and SKOV3 cell proliferation, invasion and migration in vitro and promoted ovarian tumour xenograft growth in vivo, while CPNE1 knockdown led to opposite effects. Additionally, CPNE1 expression demonstrated an association with immune cell infiltration in ovarian cancer, especially macrophage. CPNE1 promoted protumour M2 macrophage polarization by upregulating cluster of differentiation 163 (CD163), CD206 and interleukin-10. CONCLUSIONS Our study revealed that CPNE1 mediated M2 macrophage polarization and provided a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Bo Sheng
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yue Dong
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiamin Zhang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Suni Wu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
39
|
Li T, Giaccone G. Advances in biology and novel treatments of SCLC. Semin Cancer Biol 2023; 96:1-2. [PMID: 37611726 DOI: 10.1016/j.semcancer.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Giuseppe Giaccone
- Department of Hematology and Medical Oncology, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
40
|
Zhao B, Wang S, Xue L, Wang Q, Liu Y, Xu Q, Xue Q. EFHD1 expression is correlated with tumor-infiltrating neutrophils and predicts prognosis in gastric cancer. Heliyon 2023; 9:e21062. [PMID: 37876466 PMCID: PMC10590971 DOI: 10.1016/j.heliyon.2023.e21062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Background Gastric cancer (GC) ranks third in terms of mortality worldwide. The tumor microenvironment is critical for the progression of gastric cancer. This study investigated the association between EF-hand domain containing 1 (EFHD1) expression and its clinical significance in the tumor microenvironment (TME) of gastric cancer. Methods We used bioinformatic analyses to assess the relevance of EFHD1 mRNA in the TME of gastric carcinoma tissues and its relationship with clinical features. Therefore, we performed multiplex immunohistochemistry analyses to determine the potential role of the EFHD1 protein in the TME of gastric cancer. Results EFHD1 expression increased dramatically in gastric cancer tissues compared to levels in non-cancerous tissue samples (t = 6.246, P < 0.001). The EFHD1 protein presentation was associated with invasion depth (χ2 = 19.120, P < 0.001) and TNM stages (χ2 = 14.468, P = 0.002). Notably, EFHD1 protein expression was significantly related to CD66b + neutrophil infiltration of the intratumoral (r = 0.420, P < 0.001) and stromal (r = 0.367, P < 0.001) TME in gastric cancer. Additionally, Cox regression analysis revealed that EFHD1 was an independent prognostic predictor (hazard ratio [HR] = 2.262, P < 0.001) in patients with gastric cancer. Conclusions Our study revealed the pattern of EFHD1 overexpression in the TME of patients with gastric cancer and demonstrated its utility as a biomarker for unfavorable clinical outcomes, thereby providing a potential immunotherapy target.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Shanshan Wang
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University and Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, China
| | - Li Xue
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu, 226001, China
| | - Yushan Liu
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Qiang Xu
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Qiu Xue
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| |
Collapse
|
41
|
Zhang J, Liu S, Chen X, Xu X, Xu F. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy. Biomed Pharmacother 2023; 166:115336. [PMID: 37591126 DOI: 10.1016/j.biopha.2023.115336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide, with a significant morbidity and mortality rate, endangering human life and health. The introduction of immunotherapies has significantly altered existing cancer treatment strategies and is expected to improve immune responses, objective response rates, and survival rates. However, a better understanding of the complex immunological networks of LC is required to improve immunotherapy efficacy further. Tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) are significantly expressed by LC cells, which activate dendritic cells, initiate antigen presentation, and activate lymphocytes to exert antitumor activity. However, as tumor cells combat the immune system, an immunosuppressive microenvironment forms, enabling the enactment of a series of immunological escape mechanisms, including the recruitment of immunosuppressive cells and induction of T cell exhaustion to decrease the antitumor immune response. In addition to the direct effect of LC cells on immune cell function, the secreting various cytokines, chemokines, and exosomes, changes in the intratumoral microbiome and the function of cancer-associated fibroblasts and endothelial cells contribute to LC cell immune escape. Accordingly, combining various immunotherapies with other therapies can elicit synergistic effects based on the complex immune network, improving immunotherapy efficacy through multi-target action on the tumor microenvironment (TME). Hence, this review provides guidance for understanding the complex immune network in the TME and designing novel and effective immunotherapy strategies for LC.
Collapse
Affiliation(s)
- Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
42
|
Guo W, Ying P, Ma R, Jing Z, Ma G, Long J, Li G, Liu Z. Liquid biopsy analysis of lipometabolic exosomes in pancreatic cancer. Cytokine Growth Factor Rev 2023; 73:69-77. [PMID: 37684117 DOI: 10.1016/j.cytogfr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Pancreatic cancer is characterized by its high malignancy, insidious onset and poor prognosis. Most patients with pancreatic cancer are usually diagnosed at advanced stage or with the distant metastasis due to the lack of an effective early screening method. Liquid biopsy technology is promising in studying the occurrence, progression, and early metastasis of pancreatic cancer. In particular, exosomes are pivotal biomarkers in lipid metabolism and liquid biopsy of blood exosomes is valuable for the evaluation of pancreatic cancer. Lipid metabolism is crucial for the formation and activity of exosomes in the extracellular environment. Exosomes and lipids have a complex relationship of mutual influence. Furthermore, spatial metabolomics can quantify the levels and spatial locations of individual metabolites in cancer tissue, cancer stroma, and para-cancerous tissue in pancreatic cancer. However, the relationship among exosomes, lipid metabolism, and pancreatic cancer is also worth considering. This study mainly updates the research progress of metabolomics in pancreatic cancer, their relationship with exosomes, an important part of liquid biopsy, and their lipometabolic roles in pancreatic cancer. We also discuss the mechanisms by which possible metabolites, especially lipid metabolites through exosome transport and other processes, contribute to the recurrence and metastasis of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Peiyao Ying
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Zuoqian Jing
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Gang Ma
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jin Long
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
43
|
Xu Y, Liu Y, Ge Y, Li H, Zhang Y, Wang L. Drug resistance mechanism and reversal strategy in lung cancer immunotherapy. Front Pharmacol 2023; 14:1230824. [PMID: 37795038 PMCID: PMC10546211 DOI: 10.3389/fphar.2023.1230824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
Among all malignant tumors, lung cancer has the highest mortality and morbidity rates. The non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the most common histological subtypes. Although there are a number of internationally recognized lung cancer therapy regimens, their therapeutic effects remain inadequate. The outlook for individuals with lung carcinoma has ameliorated partly thanks to the intensive study of the tumor microenvironment and immune checkpoint inhibitors. Numerous cancers have been effectively treated with immunotherapy, which has had positive therapeutic results. Global clinical trials have validated that PD-1/PD-L1 inhibitors are effective and safe for treating lung cancer either independently or in combination, and they are gradually being recommended as systemic treatment medications by numerous guidelines. However, the immunotherapy resistance restricts the immunotherapy efficacy due to the formation of tumor immunosuppressive microenvironment and tumor mutations, and immunotherapy is only effective for a small percentage of lung cancer patients. To summarize, while tumor immunotherapy is benefiting an increasing number of lung cancer patients, most of them still develop natural or acquired resistance during immunotherapy. Consequently, a crucial and urgent topic is understanding and tackling drug resistance triggered by immunotherapy in lung cancer treatment. This review will outline the presently recognized mechanisms of immunotherapy resistance and reversal strategies in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yi Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Shen K, Wang Q, Wang L, Yang Y, Ren M, Li Y, Gao Z, Zheng S, Ding Y, Ji J, Wei C, Zhang T, Zhu Y, Feng J, Qin F, Yang Y, Wei C, Gu J. Prediction of survival and immunotherapy response by the combined classifier of G protein-coupled receptors and tumor microenvironment in melanoma. Eur J Med Res 2023; 28:352. [PMID: 37716991 PMCID: PMC10504724 DOI: 10.1186/s40001-023-01346-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest form of skin tumor, and G protein-coupled receptors (GPCRs) play crucial roles in its carcinogenesis. Furthermore, the tumor microenvironment (TME) affects the overall survival (OS) and the response to immunotherapy. The combination of GPCRs and TME from a multi-omics perspective may help to predict the survival of the melanoma patients and their response to immunotherapy. METHODS Bulk-seq, single-cell RNA sequencing (scRNA-seq), gene mutations, immunotherapy responses, and clinicopathologic feature data were downloaded from public databases, and prognostic GPCRs and immune cells were screened using multiple machine learning algorithms. The expression levels of GPCRs were detected using real-time quantitative polymerase chain reaction (qPCR) in A375 and HaCaT cell lines. The GPCR-TME classifier was constructed and verified using different cohorts and multi-omics. Gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and tracking tumor immunophenotype (TIP) were used to identify the key biological pathways among the GPCR-TME subgroups. Then, tumor mutational burden (TMB), vital mutant genes, antigen presentation genes, and immune checkpoints were compared among the subgroups. Finally, the differences in immunotherapy response rates among the GPCR-TME subgroups were investigated. RESULTS A total of 12 GPCRs and five immune cell types were screened to establish the GPCR-TME classifier. No significant differences in the expression levels of the 12 GPCRs were found in the two cell lines. Patients with high GPCR score or low TME score had a poor OS; thus, the GPCRlow/TMEhigh subgroup had the most favorable OS. The scRNA-seq result revealed that immune cells had a higher GPCR score than tumor and stromal cells. The GPCR-TME classifier acted as an independent prognostic factor for melanoma. GSEA, WGCNA, and TIP demonstrated that the GPCRlow/TMEhigh subgroup was related to the activation and recruitment of anti-tumor immune cells and the positive regulation of the immune response. From a genomic perspective, the GPCRlow/TMEhigh subgroup had higher TMB, and different mutant genes. Ultimately, higher expression levels of antigen presentation genes and immune checkpoints were observed in the GPCRlow/TMEhigh subgroup, and the melanoma immunotherapy cohorts confirmed that the response rate was highest in the GPCRlow/TMEhigh cohort. CONCLUSIONS We have developed a GPCR-TME classifier that could predict the OS and immunotherapy response of patients with melanoma highly effectively based on multi-omics analysis.
Collapse
Affiliation(s)
- Kangjie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Qiangcheng Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yang Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Min Ren
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yanlin Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yiteng Ding
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jiani Ji
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chenlu Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tianyi Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yu Zhu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jia Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Feng Qin
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| |
Collapse
|
45
|
Yang L, Zhang Z, Dong J, Zhang Y, Yang Z, Guo Y, Sun X, Li J, Xing P, Ying J, Zhou M. Multi-dimensional characterization of immunological profiles in small cell lung cancer uncovers clinically relevant immune subtypes with distinct prognoses and therapeutic vulnerabilities. Pharmacol Res 2023; 194:106844. [PMID: 37392900 DOI: 10.1016/j.phrs.2023.106844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Small-cell lung cancer (SCLC) is generally considered a 'homogenous' disease, with little documented inter-tumor heterogeneity in treatment guidance or prognosis evaluation. The precise identification of clinically relevant molecular subtypes remains incomplete and their translation into clinical practice is limited. In this retrospective cohort study, we comprehensively characterized the immune microenvironment in SCLC by integrating transcriptional and protein profiling of formalin-fixation-and-paraffin-embedded (FFPE) samples from 29 patients. We identified two distinct disease subtypes: immune-enriched (IE-subtype) and immune-deprived (ID-subtype), displaying heterogeneity in immunological, biological, and clinical features. The IE-subtype was characterized by abundant immune infiltrate and elevated levels of interferon-alpha/gamma (IFNα/IFNγ) and inflammatory response, while the ID-subtype featured a complete lack of immune infiltration and a more proliferative phenotype. These two immune subtypes are associated with clinical benefits in SCLC patients treated with adjuvant therapy, with the IE-subtype exhibiting a more favorable response leading to improved survival and reduced disease recurrence risk. Additionally, we identified and validated a personalized prognosticator of immunophenotyping, the CCL5/CXCL9 chemokine index (CCI), using machine learning. The CCI demonstrated superior predictive abilities for prognosis and clinical benefits in SCLC patients, validated in our institute immunohistochemistry cohort and multicenter bulk transcriptomic data cohorts. In conclusion, our study provides a comprehensive and multi-dimensional characterization of the immune architecture of SCLC using clinical FFPE samples and proposes a new immune subtyping conceptual framework enabling risk stratification and the appropriate selection of individualized therapy.
Collapse
Affiliation(s)
- Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Zicheng Zhang
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Jiyan Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yibo Zhang
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Zijian Yang
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China
| | - Yiying Guo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xujie Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Meng Zhou
- School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, PR China.
| |
Collapse
|
46
|
van Niekerk A, Wrzesinski K, Steyn D, Gouws C. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening. Cells 2023; 12:1980. [PMID: 37566059 PMCID: PMC10416941 DOI: 10.3390/cells12151980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Small-cell lung cancer is a fast-growing carcinoma with a poor prognosis and a high level of relapse due to multi-drug resistance (MDR). Genetic mutations that lead to the overexpression of efflux transporter proteins can contribute to MDR. In vitro cancer models play a tremendous role in chemotherapy development and the screening of possible anti-cancer molecules. Low-cost and simple in vitro models are normally used. Traditional two-dimensional (2D) models have numerous shortcomings when considering the physiological resemblance of an in vivo setting. Three-dimensional (3D) models aim to bridge the gap between conventional 2D models and the in vivo setting. Some of the advantages of functional 3D spheroids include better representation of the in vivo physiology and tumor characteristics when compared to traditional 2D cultures. During this study, an NCI-H69AR drug-resistant mini-tumor model (MRP1 hyperexpressive) was developed by making use of a rotating clinostat bioreactor system (ClinoStar®; CelVivo ApS, Odense, Denmark). Spheroid growth and viability were assessed over a 25-day period to determine the ideal experimental period with mature and metabolically stable constructs. The applicability of this model for anti-cancer research was evaluated through treatment with irinotecan, paclitaxel and cisplatin for 96 h, followed by a 96 h recovery period. Parameters measured included planar surface area measurements, estimated glucose consumption, soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase levels, histology and efflux transporter gene expression. The established functional spheroid model proved viable and stable during the treatment period, with retained relative hyperexpression of the MRP1 efflux transporter gene but increased expression of the P-gp transporter gene compared to the cells cultured in 2D. As expected, treatment with the abovementioned anti-cancer drugs at clinical doses (100 mg/m2 irinotecan, 80 mg/m2 paclitaxel and 75 mg/m2 cisplatin) had minimal impact on the drug-resistant mini-tumors, and the functional spheroid models were able to recover following the removal of treatment.
Collapse
Affiliation(s)
- Alandi van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
- CelVivo ApS, 5491 Blommenslyst, Denmark
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| |
Collapse
|
47
|
Zeng L, Liang L, Fang X, Xiang S, Dai C, Zheng T, Li T, Feng Z. Glycolysis induces Th2 cell infiltration and significantly affects prognosis and immunotherapy response to lung adenocarcinoma. Funct Integr Genomics 2023; 23:221. [PMID: 37400733 DOI: 10.1007/s10142-023-01155-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Glycolysis has a major role in cancer progression and can affect the tumor immune microenvironment, while its specific role in lung adenocarcinoma (LUAD) remains poorly studied. We obtained publicly available data from The Cancer Genome Atlas and Gene Expression Omnibus databases and used R software to analyze the specific role of glycolysis in LUAD. The Single Sample Gene Set Enrichment Analysis (ssGSEA) indicated a correlation between glycolysis and unfavorable clinical outcome, as well as a repression effect on the immunotherapy response of LUAD patients. Pathway enrichment analysis revealed a significant enrichment of MYC targets, epithelial-mesenchymal transition (EMT), hypoxia, G2M checkpoint, and mTORC1 signaling pathways in patients with higher activity of glycolysis. Immune infiltration analysis showed a higher infiltration of M0 and M1 macrophages in patients with elevated activity of glycolysis. Moreover, we developed a prognosis model based on six glycolysis-related genes, including DLGAP5, TOP2A, KIF20A, OIP5, HJURP, and ANLN. Both the training and validation cohorts demonstrated the high efficiency of prognostic prediction in this model, which identified that patients with high risk may have a poorer prognosis and lower sensitivity to immunotherapy. Additionally, we also found that Th2 cell infiltration may predict poorer survival and resistance to immunotherapy. The study indicated that glycolysis is significantly associated with poor prognosis in patients with LUAD and immunotherapy resistance, which might be partly dependent on the Th2 cell infiltration. Additionally, the signature comprised of six genes related to glycolysis showed promising predictive value for LUAD prognosis.
Collapse
Affiliation(s)
- Liping Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- College of Basic Medicine, Hunan University of Medicine, 492 Jinxi South Rd, Huaihua, 418000, China
| | - Lu Liang
- Department of Pathology, The First Affiliated Hospital of Hunan University of Medicine, Yushi RD, Huaihua, 418000, China
| | - Xianlei Fang
- College of Basic Medicine, Hunan University of Medicine, 492 Jinxi South Rd, Huaihua, 418000, China
| | - Sha Xiang
- College of Basic Medicine, Hunan University of Medicine, 492 Jinxi South Rd, Huaihua, 418000, China
| | - Chenglong Dai
- Department of Physical Diagnosis, The First Affiliated Hospital of Hunan University of Medicine, 383 Yushi RD, Huaihua, 418000, China
| | - Tao Zheng
- Department of Radiotherapy Oncology, The No. 2 People's Hospital of Huaihua, Huaihua, 418000, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
48
|
Giaccone G, He Y. Current Knowledge of Small Cell Lung Cancer Transformation from Non-Small Cell Lung Cancer. Semin Cancer Biol 2023:S1044-579X(23)00078-0. [PMID: 37244438 DOI: 10.1016/j.semcancer.2023.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Lung cancer is the leading cause of cancer related death, and is divided into two major histological subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Histological transformation from NSCLC to SCLC has been reported as a mechanism of treatment resistance in patients who received tyrosine kinase inhibitors (TKIs) targeting EGFR, ALK and ROS1 or immunotherapies. The transformed histology could be due to therapy-induced lineage plasticity or clonal selection of pre-existing SCLC cells. Evidence supporting either mechanism exist in the literature. Here, we discuss potential mechanisms of transformation and review the current knowledge about cell of origin of NSCLC and SCLC. In addition, we summarize genomic alterations that are frequently observed in both "De novo" and transformed SCLC, such as TP53, RB1 and PIK3CA. We also discuss treatment options for transformed SCLC, including chemotherapy, radiotherapy, TKIs, immunotherapy and anti-angiogenic agents.
Collapse
Affiliation(s)
- Giuseppe Giaccone
- Sandra and Edward Meyer Cancer Center, Weill-Cornell Medicine, New York, NY
| | - Yongfeng He
- Sandra and Edward Meyer Cancer Center, Weill-Cornell Medicine, New York, NY.
| |
Collapse
|
49
|
Li L, Liang Y, Yu M, Zhao L, Mei Q, Yu Y, Wang N, Zhang D, Wang Z, Jia Y, Kong F. Advances in immune checkpoint inhibitors therapy for small cell lung cancer. Cancer Med 2023; 12:11097-11106. [PMID: 36880420 PMCID: PMC10242320 DOI: 10.1002/cam4.5659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND As one of the most aggressive neuroendocrine tumors, small cell lung cancer (SCLC) has the most disappointing prognosis of all lung cancers. Although SCLC responds well to initial chemotherapy, the majority of patients experience disease recurrence within one year, and patient survival is poor. It is still necessary to explore the application of ICIs in SCLC since the beginning of the road to immunotherapy, which broke the 30-year treatment deadlock of SCLC. METHODS We searched PubMed, Web of Science, and Embase with search terms such as "SCLC", "ES-SCLC", "ICIs", and "ICBs", and categorized and summarized the relevant literature obtained, and we compiled the latest progress about the application of ICIs in SCLC. RESULTS We listed 14 clinical trials on ICIs, including 8 clinical trials on first-line SCLC treatment, 2 clinical trials on second-line SCLC treatment, 3 clinical trials on third-line SCLC treatment, and 1 clinical trial on SCLC maintenance treatment. CONCLUSION ICIs in combination with chemotherapy can improve OS in SCLC patients, but the extent to which SCLC patients can benefit from ICIs is limited, and ICIs' combination treatment strategies still need to be continuously explored.
Collapse
Affiliation(s)
- Longhui Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Yangyueying Liang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Minghui Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lu Zhao
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Qingyun Mei
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Yongchao Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Na Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Dou Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Ziwei Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Yingjie Jia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Fanming Kong
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
50
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041 China.
| |
Collapse
|