1
|
Huang SK, Whitney PH, Dutta S, Shvartsman SY, Rushlow CA. Spatial organization of transcribing loci during early genome activation in Drosophila. Curr Biol 2021; 31:5102-5110.e5. [PMID: 34614388 DOI: 10.1016/j.cub.2021.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/19/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The early Drosophila embryo provides unique experimental advantages for addressing fundamental questions of gene regulation at multiple levels of organization, from individual gene loci to the entire genome. Using 1.5-h-old Drosophila embryos undergoing the first wave of genome activation,1 we detected ∼110 discrete "speckles" of RNA polymerase II (RNA Pol II) per nucleus, two of which were larger and localized to the histone locus bodies (HLBs).2,3 In the absence of the primary driver of Drosophila genome activation, the pioneer factor Zelda (Zld),1,4,5 70% fewer speckles were present; however, the HLBs tended to be larger than wild-type (WT) HLBs, indicating that RNA Pol II accumulates at the HLBs in the absence of robust early-gene transcription. We observed a uniform distribution of distances between active genes in the nuclei of both WT and zld mutant embryos, indicating that early co-regulated genes do not cluster into nuclear sub-domains. However, in instances whereby transcribing genes did come into close 3D proximity (within 400 nm), they were found to have distinct RNA Pol II speckles. In contrast to the emerging model whereby active genes are clustered to facilitate co-regulation and sharing of transcriptional resources, our data support an "individualist" model of gene control at early genome activation in Drosophila. This model is in contrast to a "collectivist" model, where active genes are spatially clustered and share transcriptional resources, motivating rigorous tests of both models in other experimental systems.
Collapse
Affiliation(s)
- Shao-Kuei Huang
- Department of Biology, New York University, New York, NY 10003, USA
| | - Peter H Whitney
- Department of Biology, New York University, New York, NY 10003, USA
| | - Sayantan Dutta
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Research Institute, New York, NY 10010, USA
| | | |
Collapse
|
2
|
Srikulnath K, Ahmad SF, Singchat W, Panthum T. Why Do Some Vertebrates Have Microchromosomes? Cells 2021; 10:2182. [PMID: 34571831 PMCID: PMC8466491 DOI: 10.3390/cells10092182] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
With more than 70,000 living species, vertebrates have a huge impact on the field of biology and research, including karyotype evolution. One prominent aspect of many vertebrate karyotypes is the enigmatic occurrence of tiny and often cytogenetically indistinguishable microchromosomes, which possess distinctive features compared to macrochromosomes. Why certain vertebrate species carry these microchromosomes in some lineages while others do not, and how they evolve remain open questions. New studies have shown that microchromosomes exhibit certain unique characteristics of genome structure and organization, such as high gene densities, low heterochromatin levels, and high rates of recombination. Our review focuses on recent concepts to expand current knowledge on the dynamic nature of karyotype evolution in vertebrates, raising important questions regarding the evolutionary origins and ramifications of microchromosomes. We introduce the basic karyotypic features to clarify the size, shape, and morphology of macro- and microchromosomes and report their distribution across different lineages. Finally, we characterize the mechanisms of different evolutionary forces underlying the origin and evolution of microchromosomes.
Collapse
Affiliation(s)
- Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (T.P.)
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Lu J, Wang X, Sun K, Lan X. Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data. Brief Bioinform 2021; 22:6278150. [PMID: 34013331 PMCID: PMC8574949 DOI: 10.1093/bib/bbab181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
Hi-C is a genome-wide assay based on Chromosome Conformation Capture and high-throughput sequencing to decipher 3D chromatin organization in the nucleus. However, computational methods to detect functional interactions utilizing Hi-C data face challenges including the correction for various sources of biases and the identification of functional interactions with low counts of interacting fragments. We present Chrom-Lasso, a lasso linear regression model that removes complex biases assumption-free and identifies functional interacting loci with increased power by combining information of local reads distribution surrounding the area of interest. We showed that interacting regions identified by Chrom-Lasso are more enriched for 5C validated interactions and functional GWAS hits than that of GOTHiC and Fit-Hi-C. To further demonstrate the ability of Chrom-Lasso to detect interactions of functional importance, we performed time-series Hi-C and RNA-seq during T cell activation and exhaustion. We showed that the dynamic changes in gene expression and chromatin interactions identified by Chrom-Lasso were largely concordant with each other. Finally, we experimentally confirmed Chrom-Lasso’s finding that Erbb3 was co-regulated with distinct neighboring genes at different states during T cell activation. Our results highlight Chrom-Lasso’s utility in detecting weak functional interaction between cis-regulatory elements, such as promoters and enhancers.
Collapse
Affiliation(s)
- Jingzhe Lu
- School of Medicine, Tsinghua University, Beijing, China
| | - Xu Wang
- School of Medicine and the Tsinghua-Peking Center for Life science, Tsinghua University, Beijing, China
| | - Keyong Sun
- School of Medicine and the Tsinghua-Peking Center for Life science, Tsinghua University, Beijing, China
| | - Xun Lan
- School of Medicine and the Tsinghua-Peking Center for Life science, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Bertero A. RNA Biogenesis Instructs Functional Inter-Chromosomal Genome Architecture. Front Genet 2021; 12:645863. [PMID: 33732290 PMCID: PMC7957078 DOI: 10.3389/fgene.2021.645863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) genome organization has emerged as an important layer of gene regulation in development and disease. The functional properties of chromatin folding within individual chromosomes (i.e., intra-chromosomal or in cis) have been studied extensively. On the other hand, interactions across different chromosomes (i.e., inter-chromosomal or in trans) have received less attention, being often regarded as background noise or technical artifacts. This viewpoint has been challenged by emerging evidence of functional relationships between specific trans chromatin interactions and epigenetic control, transcription, and splicing. Therefore, it is an intriguing possibility that the key processes involved in the biogenesis of RNAs may both shape and be in turn influenced by inter-chromosomal genome architecture. Here I present the rationale behind this hypothesis, and discuss a potential experimental framework aimed at its formal testing. I present a specific example in the cardiac myocyte, a well-studied post-mitotic cell whose development and response to stress are associated with marked rearrangements of chromatin topology both in cis and in trans. I argue that RNA polymerase II clusters (i.e., transcription factories) and foci of the cardiac-specific splicing regulator RBM20 (i.e., splicing factories) exemplify the existence of trans-interacting chromatin domains (TIDs) with important roles in cellular homeostasis. Overall, I propose that inter-molecular 3D proximity between co-regulated nucleic acids may be a pervasive functional mechanism in biology.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Laboratory Medicine and Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Aguilar M, Prieto P. Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:672489. [PMID: 34149773 PMCID: PMC8212018 DOI: 10.3389/fpls.2021.672489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/06/2021] [Indexed: 05/08/2023]
Abstract
Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
Collapse
Affiliation(s)
- Miguel Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
- *Correspondence: Pilar Prieto, ; orcid.org/0000-0002-8160-808X
| |
Collapse
|
6
|
Aygun N, Altungoz O. MYCN is amplified during S phase, and c‑myb is involved in controlling MYCN expression and amplification in MYCN‑amplified neuroblastoma cell lines. Mol Med Rep 2018; 19:345-361. [PMID: 30483774 PMCID: PMC6297758 DOI: 10.3892/mmr.2018.9686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma derived from primitive sympathetic neural precursors is a common type of solid tumor in infants. MYCN proto-oncogene bHLH transcription factor (MYCN) amplification and 1p36 deletion are important factors associated with the poor prognosis of neuroblastoma. Expression levels of MYCN and c-MYB proto-oncogene transcription factor (c-myb) decline during the differentiation of neuroblastoma cells; E2F transcription factor 1 (E2F1) activates the MYCN promoter. However, the underlying mechanism of MYCN overexpression and amplification requires further investigation. In the present study, potential c-Myb target genes, and the effect of c-myb RNA interference (RNAi) on MYCN expression and amplification were investigated in MYCN-amplified neuroblastoma cell lines. The mRNA expression levels and MYCN gene copy number in five neuroblastoma cell lines were determined by quantitative polymerase chain reaction. In addition, variations in potential target gene expression and MYCN gene copy number between pre- and post-c-myb RNAi treatment groups in MYCN-amplified Kelly, IMR32, SIMA and MHH-NB-11 cell lines, normalized to those of non-MYCN-amplified SH-SY5Y, were examined. To determine the associations between gene expression levels and chromosomal aberrations, MYCN amplification and 1p36 alterations in interphases/metaphases were analyzed using fluorescence in situ hybridization. Statistical analyses revealed correlations between 1p36 alterations and the expression of c-myb, MYB proto-oncogene like 2 (B-myb) and cyclin dependent kinase inhibitor 1A (p21). Additionally, the results of the present study also demonstrated that c-myb may be associated with E2F1 and L3MBTL1 histone methyl-lysine binding protein (L3MBTL1) expression, and that E2F1 may contribute to MYCN, B-myb, p21 and chromatin licensing and DNA replication factor 1 (hCdt1) expression, but to the repression of geminin (GMNN). On c-myb RNAi treatment, L3MBTL1 expression was silenced, while GMNN was upregulated, indicating G2/M arrest. In addition, MYCN gene copy number increased following treatment with c-myb RNAi. Notably, the present study also reported a 43.545% sequence identity between upstream of MYCN and Drosophila melanogaster amplification control element 3, suggesting that expression and/or amplification mechanisms of developmentally-regulated genes may be evolutionarily conserved. In conclusion, c-myb may be associated with regulating MYCN expression and amplification. c-myb, B-myb and p21 may also serve a role against chromosome 1p aberrations. Together, it was concluded that MYCN gene is amplified during S phase, potentially via a replication-based mechanism.
Collapse
Affiliation(s)
- Nevim Aygun
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Oguz Altungoz
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| |
Collapse
|
7
|
O'Connor RE, Kiazim L, Skinner B, Fonseka G, Joseph S, Jennings R, Larkin DM, Griffin DK. Patterns of microchromosome organization remain highly conserved throughout avian evolution. Chromosoma 2018; 128:21-29. [PMID: 30448925 PMCID: PMC6394684 DOI: 10.1007/s00412-018-0685-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Abstract
The structure and organization of a species genome at a karyotypic level, and in interphase nuclei, have broad functional significance. Although regular sized chromosomes are studied extensively in this regard, microchromosomes, which are present in many terrestrial vertebrates, remain poorly explored. Birds have more cytologically indistinguishable microchromosomes (~ 30 pairs) than other vertebrates; however, the degree to which genome organization patterns at a karyotypic and interphase level differ between species is unknown. In species where microchromosomes have fused to other chromosomes, they retain genomic features such as gene density and GC content; however, the extent to which they retain a central nuclear position has not been investigated. In studying 22 avian species from 10 orders, we established that, other than in species where microchromosomal fusion is obvious (Falconiformes and Psittaciformes), there was no evidence of microchromosomal rearrangement, suggesting an evolutionarily stable avian genome (karyotypic) organization. Moreover, in species where microchromosomal fusion has occurred, they retain a central nuclear location, suggesting that the nuclear position of microchromosomes is a function of their genomic features rather than their physical size.
Collapse
Affiliation(s)
- Rebecca E O'Connor
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK. r.o'
| | - Lucas Kiazim
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Ben Skinner
- Department of Pathology, Cambridge University, Cambridge, CB2 1QP, UK
| | - Gothami Fonseka
- Cytocell Ltd, 3-4 Technopark Newmarket Road Cambridge, Cambridge, CB5 8PB, UK
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Rebecca Jennings
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
8
|
Dynamic interplay between enhancer-promoter topology and gene activity. Nat Genet 2018; 50:1296-1303. [PMID: 30038397 PMCID: PMC6119122 DOI: 10.1038/s41588-018-0175-z] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/12/2018] [Indexed: 11/08/2022]
Abstract
A long-standing question in gene regulation is how remote enhancers communicate with their target promoters, and specifically how chromatin topology dynamically relates to gene activation. Here, we combine genome editing and multi-color live imaging to simultaneously visualize physical enhancer-promoter interaction and transcription at the single-cell level in Drosophila embryos. By examining transcriptional activation of a reporter by the endogenous even-skipped enhancers, which are located 150 kb away, we identify three distinct topological conformation states and measure their transition kinetics. We show that sustained proximity of the enhancer to its target is required for activation. Transcription in turn affects the three-dimensional topology as it enhances the temporal stability of the proximal conformation and is associated with further spatial compaction. Furthermore, the facilitated long-range activation results in transcriptional competition at the locus, causing corresponding developmental defects. Our approach offers quantitative insight into the spatial and temporal determinants of long-range gene regulation and their implications for cellular fates.
Collapse
|
9
|
Cairns J, Freire-Pritchett P, Wingett SW, Várnai C, Dimond A, Plagnol V, Zerbino D, Schoenfelder S, Javierre BM, Osborne C, Fraser P, Spivakov M. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol 2016; 17:127. [PMID: 27306882 PMCID: PMC4908757 DOI: 10.1186/s13059-016-0992-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022] Open
Abstract
Capture Hi-C (CHi-C) is a method for profiling chromosomal interactions involving targeted regions of interest, such as gene promoters, globally and at high resolution. Signal detection in CHi-C data involves a number of statistical challenges that are not observed when using other Hi-C-like techniques. We present a background model and algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments. We implement these procedures in CHiCAGO ( http://regulatorygenomicsgroup.org/chicago ), an open-source package for robust interaction detection in CHi-C. We validate CHiCAGO by showing that promoter-interacting regions detected with this method are enriched for regulatory features and disease-associated SNPs.
Collapse
Affiliation(s)
- Jonathan Cairns
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | - Steven W Wingett
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
- Bioinformatics Group, Babraham Institute, Cambridge, UK
| | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Andrew Dimond
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | - Daniel Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | | | - Cameron Osborne
- Department of Medical and Molecular Genetics, King's College, London, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
10
|
Fraser J, Williamson I, Bickmore WA, Dostie J. An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev 2015; 79:347-72. [PMID: 26223848 PMCID: PMC4517094 DOI: 10.1128/mmbr.00006-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In humans, nearly two meters of genomic material must be folded to fit inside each micrometer-scale cell nucleus while remaining accessible for gene transcription, DNA replication, and DNA repair. This fact highlights the need for mechanisms governing genome organization during any activity and to maintain the physical organization of chromosomes at all times. Insight into the functions and three-dimensional structures of genomes comes mostly from the application of visual techniques such as fluorescence in situ hybridization (FISH) and molecular approaches including chromosome conformation capture (3C) technologies. Recent developments in both types of approaches now offer the possibility of exploring the folded state of an entire genome and maybe even the identification of how complex molecular machines govern its shape. In this review, we present key methodologies used to study genome organization and discuss what they reveal about chromosome conformation as it relates to transcription regulation across genomic scales in mammals.
Collapse
Affiliation(s)
- James Fraser
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Josée Dostie
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Zhao Y, Zeng C, Tarasova NI, Chasovskikh S, Dritschilo A, Timofeeva OA. A new role for STAT3 as a regulator of chromatin topology. Transcription 2014; 4:227-31. [DOI: 10.4161/trns.27368] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Ghosh A, Gov NS. Dynamics of active semiflexible polymers. Biophys J 2014; 107:1065-1073. [PMID: 25185542 PMCID: PMC4156674 DOI: 10.1016/j.bpj.2014.07.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/10/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022] Open
Abstract
Active fluctuations, driven by processes that consume ATP, are prevalent in living cells and are mostly driven by different forms of molecular motors. Such motors often move and transmit forces along biopolymers, which in general can be treated as semiflexible chains. We present a theoretical analysis of the active (out of thermal equilibrium) fluctuation of semiflexible polymers, using both analytical and simulation methods. We find that enhanced diffusion, even superdiffusive, occurs in a well-defined temporal regime, defined by the thermal modes of the chain and the typical timescale of the activity. In addition, we find a dynamic resonance-like condition between the elastic modes of the chain and the duration of the active force, which leads to enhanced spatial correlation of local displacements. These results are in qualitative agreement with observations of cytoskeletal biopolymers, and were recently observed for the dynamics of chromatin in interphase cells. We therefore propose that the interplay between elasticity and activity is driving long-range correlations in our model system, and may also be manifest inside living cells.
Collapse
Affiliation(s)
- A Ghosh
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel
| | - N S Gov
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Harewood L, Fraser P. The impact of chromosomal rearrangements on regulation of gene expression. Hum Mol Genet 2014; 23:R76-82. [PMID: 24907073 DOI: 10.1093/hmg/ddu278] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The effects that coding region single-nucleotide polymorphisms or mutations have on gene expression have been well documented, predominantly owing to their association with disease. The effects of structural chromosomal rearrangements are also receiving increasing attention with the development of new techniques that allow accurate, high-resolution data, whether genomic interaction or transcriptome data, to be generated right down to the single-cell level. Over the past 18 months, these advances in experimental techniques have been used to further confirm and delineate the substantial effects that chromosome rearrangements can have on the regulation of gene expression and provide evidence of direct links between the two.
Collapse
Affiliation(s)
- Louise Harewood
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
16
|
Gushchanskaya ES, Artemov AV, Ulyanov SV, Logacheva MD, Penin AA, Kotova ES, Akopov SB, Nikolaev LG, Iarovaia OV, Sverdlov ED, Gavrilov AA, Razin SV. The clustering of CpG islands may constitute an important determinant of the 3D organization of interphase chromosomes. Epigenetics 2014; 9:951-63. [PMID: 24736527 DOI: 10.4161/epi.28794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used the 4C-Seq technique to characterize the genome-wide patterns of spatial contacts of several CpG islands located on chromosome 14 in cultured chicken lymphoid and erythroid cells. We observed a clear tendency for the spatial clustering of CpG islands present on the same and different chromosomes, regardless of the presence or absence of promoters within these CpG islands. Accordingly, we observed preferential spatial contacts between Sp1 binding motifs and other GC-rich genomic elements, including the DNA sequence motifs capable of forming G-quadruplexes. However, an anchor placed in a gene/CpG island-poor area formed spatial contacts with other gene/CpG island-poor areas on chromosome 14 and other chromosomes. These results corroborate the two-compartment model of the spatial organization of interphase chromosomes and suggest that the clustering of CpG islands constitutes an important determinant of the 3D organization of the eukaryotic genome in the cell nucleus. Using the ChIP-Seq technique, we mapped the genome-wide CTCF deposition sites in the chicken lymphoid and erythroid cells that were used for the 4C analysis. We observed a good correlation between the density of CTCF deposition sites and the level of 4C signals for the anchors located in CpG islands but not for an anchor located in a gene desert. It is thus possible that CTCF contributes to the clustering of CpG islands observed in our experiments.
Collapse
Affiliation(s)
- Ekaterina S Gushchanskaya
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; Department of Molecular Biology; Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| | - Artem V Artemov
- Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow, Russia; Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow, Russia
| | - Sergey V Ulyanov
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia
| | - Maria D Logacheva
- Laboratory of Evolutionary Genomics; Lomonosov Moscow State University; Moscow, Russia
| | - Aleksey A Penin
- Laboratory of Evolutionary Genomics; Lomonosov Moscow State University; Moscow, Russia
| | - Elena S Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Sergey B Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Lev G Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Olga V Iarovaia
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| | - Eugene D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology; Russian Academy of Sciences; Moscow, Russia; Department of Molecular Biology; Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Villejuif, France and Moscow, Russia
| |
Collapse
|
17
|
A genetic program theory of aging using an RNA population model. Ageing Res Rev 2014; 13:46-54. [PMID: 24263168 DOI: 10.1016/j.arr.2013.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
Aging is a common characteristic of multicellular eukaryotes. Copious hypotheses have been proposed to explain the mechanisms of aging, but no single theory is generally acceptable. In this article, we refine the RNA population gene activating model (Lv et al., 2003) based on existing reports as well as on our own latest findings. We propose the RNA population model as a genetic theory of aging. The new model can also be applied to differentiation and tumorigenesis and could explain the biological significance of non-coding DNA, RNA, and repetitive sequence DNA. We provide evidence from the literature as well as from our own findings for the roles of repetitive sequences in gene activation. In addition, we predict several phenomena related to aging and differentiation based on this model.
Collapse
|
18
|
Jerabek H, Heermann DW. How chromatin looping and nuclear envelope attachment affect genome organization in eukaryotic cell nuclei. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:351-81. [PMID: 24380599 DOI: 10.1016/b978-0-12-800046-5.00010-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To understand how interphase chromatin is organized in eukaryotic cell nuclei, it is essential to understand what kind of interactions influence the nuclear architecture and to what extent. Using a mesoscale model that incorporates chromatin-chromatin interactions as well as binding of chromatin to the nuclear envelope, we can show that chromatin loops and envelope bonds are major players in genome organization because they largely affect the entropy of the chromatin fibres. The model allows us to consistently reproduce multiple characteristic chromatin parameters in agreement with experimental data. We focus on the question of how an inversion of the nuclear architecture, in the course of which the highly active euchromatin changes its preferential position from the nuclear center to the periphery, can be achieved. We find that the transition between the common and inverted organization is driven by the strength of the envelope interaction and the nuclear chromatin density.
Collapse
Affiliation(s)
- Hansjoerg Jerabek
- Institute for Theoretical Physics, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany; The Jackson Laboratory, Bar Harbor, Maine, USA; Shanghai Center for Bioinformation Technology (SCBIT), Shanghai, PR China.
| |
Collapse
|
19
|
Razin SV, Gavrilov AA, Ioudinkova ES, Iarovaia OV. Communication of genome regulatory elements in a folded chromosome. FEBS Lett 2013; 587:1840-7. [PMID: 23651551 DOI: 10.1016/j.febslet.2013.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The most popular model of gene activation by remote enhancers postulates that the enhancers interact directly with target promoters via the looping of intervening DNA fragments. This interaction is thought to be necessary for the stabilization of the Pol II pre-initiation complex and/or for the transfer of transcription factors and Pol II, which are initially accumulated at the enhancer, to the promoter. The direct interaction of enhancer(s) and promoter(s) is only possible when these elements are located in close proximity within the nuclear space. Here, we discuss the molecular mechanisms for maintaining the close proximity of the remote regulatory elements of the eukaryotic genome. The models of an active chromatin hub (ACH) and an active nuclear compartment are considered, focusing on the role of chromatin folding in juxtaposing remote DNA sequences. The interconnection between the functionally dependent architecture of the interphase chromosome and nuclear compartmentalization is also discussed.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia.
| | | | | | | |
Collapse
|
20
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
21
|
Abstract
There is considerable evidence that transcription does not occur homogeneously or diffusely throughout the nucleus, but rather at a number of specialized, discrete sites termed transcription factories. The factories are composed of ~4–30 RNA polymerase molecules, and are associated with many other molecules involved in transcriptional activation and mRNA processing. Some data suggest that the polymerase molecules within a factory remain stationary relative to the transcribed DNA, which is thought to be reeled through the factory site. There is also some evidence that transcription factories could help organize chromatin and nuclear structure, contributing to both the formation of chromatin loops and the clustering of active and co-regulated genes.
Collapse
Affiliation(s)
- Dietmar Rieder
- Division of Bioinformatics, Biocenter, Innsbruck Medical University Innsbruck, Austria
| | | | | |
Collapse
|
22
|
Jerabek H, Heermann DW. Expression-dependent folding of interphase chromatin. PLoS One 2012; 7:e37525. [PMID: 22649534 PMCID: PMC3359300 DOI: 10.1371/journal.pone.0037525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/24/2012] [Indexed: 12/18/2022] Open
Abstract
Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology.
Collapse
|
23
|
Smigová J, Juda P, Cmarko D, Raška I. Fine structure of the "PcG body" in human U-2 OS cells established by correlative light-electron microscopy. Nucleus 2012; 2:219-28. [PMID: 21818415 DOI: 10.4161/nucl.2.3.15737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 02/02/2023] Open
Abstract
Polycomb group (PcG) proteins of the Polycomb repressive complex 1 (PRC1) are found to be diffusely distributed in nuclei of cells from various species. However they can also be localized in intensely fluorescent foci, whether imaged using GFP fusions to proteins of PRC1 complex, or by conventional immunofluorescence microscopy. Such foci are termed PcG bodies, and are believed to be situated in the nuclear intechromatin compartment. However, an ultrastructural description of the PcG body has not been reported to date. To establish the ultrastructure of PcG bodies in human U-2 OS cells stably expressing recombinant polycomb BMI1-GFP protein, we used correlative light-electron microscopy (CLEM) implemented with high-pressure freezing, cryosubstitution and on-section labeling of BMI1 protein with immunogold. This approach allowed us to clearly identify fluorescent PcG bodies, not as distinct nuclear bodies, but as nuclear domains enriched in separated heterochromatin fascicles. Importantly, high-pressure freezing and cryosubstitution allowed for a high and clear-cut immunogold BMI1 labeling of heterochromatin structures throughout the nucleus. The density of immunogold labeled BMI1 in the heterochromatin fascicles corresponding to fluorescent "PcG bodies" did not differ from the density of labeling of heterochromatin fascicles outside of the "PcG bodies". Accordingly, an appearance of the fluorescent "PcG bodies" seems to reflect a local accumulation of the labeled heterochromatin structures in the investigated cells. The results of this study should allow expansion of the knowledge about the biological relevance of the "PcG bodies" in human cells.
Collapse
|
24
|
Fedoriw AM, Starmer J, Yee D, Magnuson T. Nucleolar association and transcriptional inhibition through 5S rDNA in mammals. PLoS Genet 2012; 8:e1002468. [PMID: 22275877 PMCID: PMC3261910 DOI: 10.1371/journal.pgen.1002468] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022] Open
Abstract
Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. Eukaryotic genomes are compartmentalized within nuclei such that physiological events, including transcription and DNA replication, can efficiently occur. The mechanisms that regulate this organization represent an exciting, and equally enigmatic, subject of research. In mammals, the identification of elements that influence these associations has been impeded by the complex nature of the genomes. Here, we report the identification and characterization of such an element. We demonstrate that the integration of a 5S rDNA gene, a 119 base pair noncoding RNA transcribed by RNA polymerase III, into a new genomic location can significantly influence the association of the host region with the nucleolus. This positioning has drastic, inhibitory effects on the transcription of a neighboring protein coding gene transcribed by RNA polymerase II, demonstrating a functional relationship between localization and gene expression. We also provide data that suggest this may be an endogenous phenomenon, through a class of repetitive sequences derived from 5S rDNA. Together, our data not only demonstrate a structural role for 5S rDNA but also suggest that nuclear organization of mammalian genomes may be strongly influenced by repetitive sequences.
Collapse
Affiliation(s)
- Andrew M. Fedoriw
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joshua Starmer
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Della Yee
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
Structural variation, whether it is caused by copy number variants or present in a balanced form, such as reciprocal translocations and inversions, can have a profound and dramatic effect on the expression of genes mapping within and close to the rearrangement, as well as affecting others genome wide. These effects can be caused by altering the copy number of one or more genes or regulatory elements (dosage effect) or from physical disruption of links between regulatory elements and their associated gene or genes, resulting in perturbation of expression. Similarly, large-scale structural variants can result in genome-wide expression changes by altering the positions that chromosomes occupy within the nucleus, potentially disrupting not only local cis interactions, but also trans interactions that occur throughout the genome. Structural variation is, therefore, a significant factor in the study of gene expression and is discussed here in more detail.
Collapse
Affiliation(s)
- Louise Harewood
- The Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
26
|
Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 2011; 43:1059-65. [PMID: 22001755 DOI: 10.1038/ng.947] [Citation(s) in RCA: 433] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/25/2011] [Indexed: 12/13/2022]
Abstract
Hi-C experiments measure the probability of physical proximity between pairs of chromosomal loci on a genomic scale. We report on several systematic biases that substantially affect the Hi-C experimental procedure, including the distance between restriction sites, the GC content of trimmed ligation junctions and sequence uniqueness. To address these biases, we introduce an integrated probabilistic background model and develop algorithms to estimate its parameters and renormalize Hi-C data. Analysis of corrected human lymphoblast contact maps provides genome-wide evidence for interchromosomal aggregation of active chromatin marks, including DNase-hypersensitive sites and transcriptionally active foci. We observe extensive long-range (up to 400 kb) cis interactions at active promoters and derive asymmetric contact profiles next to transcription start sites and CTCF binding sites. Clusters of interacting chromosomal domains suggest physical separation of centromere-proximal and centromere-distal regions. These results provide a computational basis for the inference of chromosomal architectures from Hi-C experiments.
Collapse
|
27
|
Wan J, Gao Y, Zhao X, Wu Q, Fu X, Shao Y, Yang H, Guan M, Yu B, Zhang W. The association between the copy-number variations of ZMAT4 and hematological malignancy. ACTA ACUST UNITED AC 2011; 16:20-3. [PMID: 21269563 DOI: 10.1179/102453311x12902908411751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copy-number variations (CNVs) have been found in association with various types of diseases, including hematological malignancies. A recent array-based study implicated the presence of CNVs of ZMAT4 in the genome of acute myelogenous leukemia. In our study, we collected 617 bone marrow samples from multitypes of hematological malignancies as well as healthy controls. We found significant association between the CNVs of ZMAT4 and these hematological malignancies, including acute lymphoblastic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, multiple myeloma, and myelodysplastic syndrome. We also examined the expression of ZMAT4 mRNA in the samples with 1 or 2 copies of DNA, and observed a weak yet positive correlation between the relative expression level and gene dosage. In conclusion, the CNVs of ZMAT4 have the potential to serve as a diagnostic indicator, alone or in combination with other markers, for hematological malignancies.
Collapse
Affiliation(s)
- Jun Wan
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kang J, Xu B, Yao Y, Lin W, Hennessy C, Fraser P, Feng J. A dynamical model reveals gene co-localizations in nucleus. PLoS Comput Biol 2011; 7:e1002094. [PMID: 21760760 PMCID: PMC3131386 DOI: 10.1371/journal.pcbi.1002094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/03/2011] [Indexed: 01/08/2023] Open
Abstract
Co-localization of networks of genes in the nucleus is thought to play an important role in determining gene expression patterns. Based upon experimental data, we built a dynamical model to test whether pure diffusion could account for the observed co-localization of genes within a defined subnuclear region. A simple standard Brownian motion model in two and three dimensions shows that preferential co-localization is possible for co-regulated genes without any direct interaction, and suggests the occurrence may be due to a limitation in the number of available transcription factors. Experimental data of chromatin movements demonstrates that fractional rather than standard Brownian motion is more appropriate to model gene mobilizations, and we tested our dynamical model against recent static experimental data, using a sub-diffusion process by which the genes tend to colocalize more easily. Moreover, in order to compare our model with recently obtained experimental data, we studied the association level between genes and factors, and presented data supporting the validation of this dynamic model. As further applications of our model, we applied it to test against more biological observations. We found that increasing transcription factor number, rather than factory number and nucleus size, might be the reason for decreasing gene co-localization. In the scenario of frequency- or amplitude-modulation of transcription factors, our model predicted that frequency-modulation may increase the co-localization between its targeted genes.
Collapse
Affiliation(s)
- Jing Kang
- Nuclear Dynamics Laboratory, The Babraham Institute, Cambridge, United Kingdom
- Centre for Scientific Computing, Warwick University, Coventry, United Kingdom
| | - Bing Xu
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Ye Yao
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Wei Lin
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
| | - Conor Hennessy
- Nuclear Dynamics Laboratory, The Babraham Institute, Cambridge, United Kingdom
| | - Peter Fraser
- Nuclear Dynamics Laboratory, The Babraham Institute, Cambridge, United Kingdom
- * E-mail: (PF); (JF)
| | - Jianfeng Feng
- Centre for Scientific Computing, Warwick University, Coventry, United Kingdom
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
- * E-mail: (PF); (JF)
| |
Collapse
|
29
|
Abstract
Although the nonrandom nature of interphase chromosome arrangement is widely accepted, how nuclear organization relates to genomic function remains unclear. Nuclear subcompartments may play a role by offering rich microenvironments that regulate chromatin state and ensure optimal transcriptional efficiency. Technological advances now provide genome-wide and four-dimensional analyses, permitting global characterizations of nuclear order. These approaches will help uncover how seemingly separate nuclear processes may be coupled and aid in the effort to understand the role of nuclear organization in development and disease.
Collapse
Affiliation(s)
- Indika Rajapakse
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
30
|
Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJG, Zhu Y, Kaaij LJT, van Ijcken W, Gribnau J, Heard E, de Laat W. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 2011; 25:1371-83. [PMID: 21690198 DOI: 10.1101/gad.633311] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.
Collapse
Affiliation(s)
- Erik Splinter
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Razin SV, Gavrilov AA, Yarovaya OV. Transcription factories and spatial organization of eukaryotic genomes. BIOCHEMISTRY (MOSCOW) 2011; 75:1307-15. [PMID: 21314597 DOI: 10.1134/s0006297910110015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phenomenon of association of transcribed genes into so-called transcription factories and also the role of these associations in spatial organization of the eukaryotic genome are actively discussed in the modern literature. Some authors think that the association of transcribed genes into transcription factories constitutes a major factor supporting the function-dependent three-dimensional organization of the interphase genome. In spite of the obvious interest in the problem of spatial organization of transcription in the eukaryotic cell nucleus, the number of experimental studies of transcriptional factories remains rather limited and the results of these studies are often contradictory. In the current review we have tried to critically re-evaluate the published experimental results that constitute the basis for current models and also the models themselves. We have especially analyzed the existing contradictions and attempted to explain them whenever possible. We also discuss new models that can explain the biological significance of clustering of transcribed genes and show possible mechanisms of the origin of transcription factories in the course of evolution.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | | | | |
Collapse
|
32
|
Abstract
Chromatin is by its very nature a repressive environment which restricts the recruitment of transcription factors and acts as a barrier to polymerases. Therefore the complex process of gene activation must operate at two levels. In the first instance, localized chromatin decondensation and nucleosome displacement is required to make DNA accessible. Second, sequence-specific transcription factors need to recruit chromatin modifiers and remodellers to create a chromatin environment that permits the passage of polymerases. In this review I will discuss the chromatin structural changes that occur at active gene loci and at regulatory elements that exist as DNase I hypersensitive sites.
Collapse
Affiliation(s)
- Peter N Cockerill
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, UK.
| |
Collapse
|
33
|
Chu F, Feng Q, Qian Y, Zhang C, Fang Z, Shen G. ERBB2 gene amplification in oral squamous cell malignancies: a correlation with tumor progression and gene expression. ACTA ACUST UNITED AC 2011; 112:90-5. [PMID: 21531597 DOI: 10.1016/j.tripleo.2011.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Chromosomal instability is hallmark of carcinoma. Amplification of chromosome 17q11-q12 is present in some oral squamous cell cancer (OSCC) cases. In this study, we investigated the copy number variations of ERBB2 gene, which is located at this locus in collected OSCC samples and their correlation with tumor progression and gene expression. STUDY DESIGN Quantitative real-time polymerase chain reaction was performed to detect the copy number of ERBB2 gene and the mRNA expression in 92 OSCC samples with matched adjacent normal tissues (ANTs). Proportional odds regression and 2-way repeated measurement analysis of variance were used to analyze the association between copy number variations and mRNA expression of the targeted gene. RESULTS Copy number gains of ERBB2 were detected in some of the OSCCs (19.6%, 18/92) and correlated with tumor stage (P < .001). Copy number gains of ERBB2 also showed a positive correlation with mRNA overexpression in OSCCs (P < .001). However, enhanced ERBB2 mRNA expression was also detected in a group of OSCC samples with unaltered copy number of ERBB2 gene (P < .05). CONCLUSIONS Copy number increase of ERBB2 is observed in OSCCs and correlates with gene overexpression in these tumors. In addition, overexpression of ERBB2 is also observed in some OSCCs that lack copy number changes, indicating involvement of another mechanism.
Collapse
Affiliation(s)
- Fengting Chu
- Department of Orthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Xiong Y, Fang Z, Zhang C, Qi G, Liu W, Zhang W, Wan J. Copy number increase of HER-2 in colorectal cancers. Oncol Lett 2011; 2:331-335. [PMID: 22866086 DOI: 10.3892/ol.2010.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/25/2010] [Indexed: 11/05/2022] Open
Abstract
HER-2 is involved in genetic instability and is overexpressed in a number of human carcinomas, including colorectal cancer (CRC). The choromosomal locus of HER-2, 17q21, is frequently amplified in breast cancer, but the correlation between copy-number variations and HER-2 overexpression in CRC has yet to be elucidated. The functional impact of such regions requires extensive investigation in large numbers of CRC samples. Case-matched tissues of colorectal adenocarcinomas and adjacent normal epithelia (n=134) were included in this study. Quantitative PCR was performed to examine the copy number and mRNA expression of HER-2 in CRC. The results showed that copy number gains of HER-2 were detected in a relatively high percentage of CRC samples (35.1%, 47 out of 134). A positive correlation was noted between the copy number increase of HER-2 and tumor progression. Furthermore, copy number gains of HER-2 showed a positive correlation with mRNA overexpression in CRC. However, the expression levels of HER-2 mRNA were also enhanced in the group of CRC samples with unaltered copy numbers. In conclusion, the findings suggest that a copy number increase of HER-2 is a potential diagnostic indicator for CRC; whether alone or in combination with other markers.
Collapse
Affiliation(s)
- Yi Xiong
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong
| | | | | | | | | | | | | |
Collapse
|
35
|
Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G. Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 2011; 144:214-26. [DOI: 10.1016/j.cell.2010.12.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/22/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
36
|
Zhang C, Fang Z, Xiong Y, Li J, Liu L, Li M, Zhang W, Wan J. Copy number increase of aurora kinase A in colorectal cancers: a correlation with tumor progression. Acta Biochim Biophys Sin (Shanghai) 2010; 42:834-8. [PMID: 20929925 DOI: 10.1093/abbs/gmq088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The centrosome-associated kinase aurora A (AURKA) is involved in genetic instability and is over-expressed in several human carcinomas including colorectal cancer (CRC). The choromosome locus of AURKA, 20q13, is frequently amplified in CRC, and the functional impact of such regions needs to be extensively investigated in large amount of clinical samples. Case-matched tissues of colorectal adenocarcinomas and adjacent normal epithelium (n= 134) were included in this study. Quantitative PCR was carried out to examine the copy number and mRNA level of AURKA in CRC. Our results showed that copy number gains of AUKRA were detected in a relative high percentage of CRC samples (32.4%, 43 of 134). There was a positive correlation between copy number increase of AURKA and tumor progression. And copy number gains of AURKA also showed a positive correlation with mRNA over-expression in CRC. However, the expression level of AURKA mRNA was also enhanced in the group of CRC samples with unaltered copy numbers. These findings indicated that sporadic colorectal cancers exhibit different mechanisms of aurora A regulation and this may impact the efficacy of aurora-targeted therapies.
Collapse
Affiliation(s)
- Chao Zhang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Investigation of copy-number variations of C8orf4 in hematological malignancies. Med Oncol 2010; 28 Suppl 1:S647-52. [PMID: 20878554 DOI: 10.1007/s12032-010-9698-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
C8orf4, thyroid cancer-1 (TC1), was first identified in papillary thyroid carcinoma and encodes a nucleus-localized protein. A recent array-based study implicated the presence of copy-number variations (CNVs) of C8orf4 in the genomes of acute myelogenous leukemia. However, the functional impact of such regions needs to be extensively investigated in large amount of clinical samples. The purpose of this study is to confirm the relationship between C8orf4 CNVs and hematological malignancies. In our study, we collected bone marrow samples from 515 hematological malignancies and 102 healthy controls. And the CNVs of C8orf4 were detected by real-time PCR. We found significant association between the copy-number deletions of C8orf4 and the risk of these hematological malignancies including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), multiple myeloma (MM), and myelodysplastic syndrome (MDS). We also found that the expression of C8orf4 mRNA was relatively lower in the samples with 1 copy of DNA than those with 2 copies of DNA. The CNVs of C8orf4 were associated with the risk of hematological malignancies.
Collapse
|
38
|
Pink RC, Eskiw CH, Caley DP, Carter DRF. Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv. PLoS One 2010; 5. [PMID: 20927371 PMCID: PMC2947503 DOI: 10.1371/journal.pone.0013045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/07/2010] [Indexed: 12/13/2022] Open
Abstract
Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.
Collapse
Affiliation(s)
- Ryan C Pink
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | | | | |
Collapse
|
39
|
Fang Z, Xiong Y, Zhang C, Li J, Liu L, Li M, Zhang W, Wan J. Coexistence of copy number increases of ZNF217 and CYP24A1 in colorectal cancers in a Chinese population. Oncol Lett 2010; 1:925-930. [PMID: 22966406 DOI: 10.3892/ol_00000163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/19/2010] [Indexed: 01/03/2023] Open
Abstract
Evidence suggests that the amplification of chromosome 20q13 is common in colorectal cancers (CRCs). Certain candidate oncogenes located in this region are reported to be associated with tumorigenesis of the gastrointestinal tract. The functional impact of such regions should be extensively investigated in a large number of clinical samples. In this study, 145 CRC samples with matched adjacent normal tissues were collected from a Chinese population for copy number variation (CNV) analysis. Our results showed that both the copy numbers of 25-hydroxy vitamin D3 24-hydroxylase (CYP24A1) and zinc-finger protein 217 (ZNF217) were amplified in a relatively high percentage of CRC samples (51.1 and 60%, respectively). The mRNA expression levels of both CYP24A1 and ZNF217 were found to have increased in the collected CRC samples as compared to the matched adjacent normal tissues. ZNF217, but not CYP24A1, showed a positive correlation between copy number increases and mRNA overexpression. These findings suggest the potential role of CNVs of certain oncogenes in CRCs.
Collapse
Affiliation(s)
- Zhengyu Fang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center and Shenzhen Hospital, Peking University, Guangdong, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Eeckhoute J, Métivier R, Salbert G. Defining specificity of transcription factor regulatory activities. J Cell Sci 2010; 122:4027-34. [PMID: 19910494 DOI: 10.1242/jcs.054916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian transcription factors (TFs) are often involved in differential cell-type- and context-specific transcriptional responses. Recent large-scale comparative studies of TF recruitment to the genome, and of chromatin structure and gene expression, have allowed a better understanding of the general rules that underlie the differential activities of a given TF. It has emerged that chromatin structure dictates the differential binding of a given TF to cell-type-specific cis-regulatory elements. The subsequent regulation of TF activity then ensures the functional activation of only the precise subset of all regulatory sites bound by the TF that are required to mediate appropriate gene expression. Ultimately, the organization of the genome within the nucleus, and crosstalk between different cis-regulatory regions involved in gene regulation, also participate in establishing a specific transcriptional program. In this Commentary, we discuss how the integration of these different and probably intimately linked regulatory mechanisms allow for TF cell-type- and context-specific modulation of gene expression.
Collapse
Affiliation(s)
- Jéröme Eeckhoute
- Université de Rennes I, CNRS, UMR 6026, Equipe SPARTE, 35042 Rennes Cedex, France.
| | | | | |
Collapse
|
41
|
Papantonis A, Larkin JD, Wada Y, Ohta Y, Ihara S, Kodama T, Cook PR. Active RNA polymerases: mobile or immobile molecular machines? PLoS Biol 2010; 8:e1000419. [PMID: 20644712 PMCID: PMC2903595 DOI: 10.1371/journal.pbio.1000419] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/02/2010] [Indexed: 12/22/2022] Open
Abstract
It is widely assumed that active RNA polymerases track along their templates to produce a transcript. We test this using chromosome conformation capture and human genes switched on rapidly and synchronously by tumour necrosis factor alpha (TNFalpha); one is 221 kbp SAMD4A, which a polymerase takes more than 1 h to transcribe. Ten minutes after stimulation, the SAMD4A promoter comes together with other TNFalpha-responsive promoters. Subsequently, these contacts are lost as new downstream ones appear; contacts are invariably between sequences being transcribed. Super-resolution microscopy confirms that nascent transcripts (detected by RNA fluorescence in situ hybridization) co-localize at relevant times. Results are consistent with an alternative view of transcription: polymerases fixed in factories reel in their respective templates, so different parts of the templates transiently lie together.
Collapse
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Joshua D. Larkin
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Youichiro Wada
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Ohta
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sigeo Ihara
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Peter R. Cook
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure.
Collapse
Affiliation(s)
- Angela Taddei
- UMR 218, Centre National de la Recherche Scientifique, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
44
|
Yang H, Zhang C, Zhao X, Wu Q, Fu X, Yu B, Shao Y, Guan M, Zhang W, Wan J, Huang X. Analysis of copy number variations of BS69 in multiple types of hematological malignancies. Ann Hematol 2010; 89:959-64. [DOI: 10.1007/s00277-010-0966-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
|
45
|
Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol 2010; 395:1-10. [PMID: 19852969 DOI: 10.1016/j.jmb.2009.10.031] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/26/2022]
Abstract
A model for all genomes involving one major architectural motif is presented: DNA or chromatin loops are tethered to "factories" through the transcription machinery-a polymerase (active or inactive) or its transcription factors (activators or repressors). These loops appear and disappear as polymerases initiate and terminate (and as factors bind and dissociate), so the structure is ever-changing and self-organizing. This model is parsimonious, detailed (and so easily tested), and incorporates elements found in various other models.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
46
|
Pai DA, Engelke DR. Spatial organization of genes as a component of regulated expression. Chromosoma 2009; 119:13-25. [PMID: 19727792 DOI: 10.1007/s00412-009-0236-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 12/15/2022]
Abstract
The DNA of living cells is highly compacted. Inherent in this spatial constraint is the need for cells to organize individual genetic loci so as to facilitate orderly retrieval of information. Complex genetic regulatory mechanisms are crucial to all organisms, and it is becoming increasingly evident that spatial organization of genes is one very important mode of regulation for many groups of genes. In eukaryotic nuclei, it appears not only that DNA is organized in three-dimensional space but also that this organization is dynamic and interactive with the transcriptional state of the genes. Spatial organization occurs throughout evolution and with genes transcribed by all classes of RNA polymerases in all eukaryotic nuclei, from yeast to human. There is an increasing body of work examining the ways in which this organization and consequent regulation are accomplished. In this review, we discuss the diverse strategies that cells use to preferentially localize various classes of genes.
Collapse
Affiliation(s)
- Dave A Pai
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109-0606, USA
| | | |
Collapse
|
47
|
Percipalle P. The long journey of actin and actin-associated proteins from genes to polysomes. Cell Mol Life Sci 2009; 66:2151-65. [PMID: 19300907 PMCID: PMC11115535 DOI: 10.1007/s00018-009-0012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/13/2009] [Accepted: 02/24/2009] [Indexed: 12/11/2022]
Abstract
During gene expression, multiple regulatory steps make sure that alterations of chromatin structure are synchronized with RNA synthesis, co-transcriptional assembly of ribonucleoprotein complexes, transport to the cytoplasm and localized translation. These events are controlled by large multiprotein complexes commonly referred to as molecular machines, which are specialized and at the same time display a highly dynamic protein composition. The crosstalk between these molecular machines is essential for efficient RNA biogenesis. Actin has been recently proposed to be an important factor throughout the entire RNA biogenesis pathway as a component of chromatin remodeling complexes, associated with all eukaryotic RNA polymerases as well as precursor and mature ribonucleoprotein complexes. The aim of this review is to present evidence on the involvement of actin and actin-associated proteins in RNA biogenesis and propose integrative models supporting the view that actin facilitates coordination of the different steps in gene expression.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 171 77, Stockholm, Sweden.
| |
Collapse
|
48
|
Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription. Mol Cell Biol 2009; 29:3556-68. [PMID: 19380483 DOI: 10.1128/mcb.01748-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference in the association of 32A and 32B with chromatin was noted. We identified 1,820 BEAF peaks and found that more than 85% were less than 300 bp from transcription start sites. Half are between head-to-head gene pairs. BEAF-associated genes are transcriptionally active as judged by the presence of RNA polymerase II, dimethylated histone H3 K4, and the alternative histone H3.3. Forty percent of these genes are also associated with the polymerase negative elongation factor NELF. Like NELF-associated genes, most BEAF-associated genes are highly expressed. Using quantitative reverse transcription-PCR, we found that the expression levels of most BEAF-associated genes decrease in embryos and cultured cells lacking BEAF. These results provide an unexpected link between BEAF and transcription, suggesting that BEAF plays a role in maintaining most associated promoter regions in an environment that facilitates high transcription levels.
Collapse
|
49
|
Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet 2009; 18:R1-8. [PMID: 19297395 DOI: 10.1093/hmg/ddp011] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Copy number variation (CNV) has recently gained considerable interest as a source of genetic variation likely to play a role in phenotypic diversity and evolution. Much effort has been put into the identification and mapping of regions that vary in copy number among seemingly normal individuals in humans and a number of model organisms, using bioinformatics or hybridization-based methods. These have allowed uncovering associations between copy number changes and complex diseases in whole-genome association studies, as well as identify new genomic disorders. At the genome-wide scale, however, the functional impact of CNV remains poorly studied. Here we review the current catalogs of CNVs, their association with diseases and how they link genotype and phenotype. We describe initial evidence which revealed that genes in CNV regions are expressed at lower and more variable levels than genes mapping elsewhere, and also that CNV not only affects the expression of genes varying in copy number, but also have a global influence on the transcriptome. Further studies are warranted for complete cataloguing and fine mapping of CNVs, as well as to elucidate the different mechanisms by which they influence gene expression.
Collapse
Affiliation(s)
- Charlotte N Henrichsen
- The Center for Integrative Genomics, Genopode Building, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|