1
|
Yi F, Zhang W, Feng L. Efficacy and safety of different options for liver regeneration of future liver remnant in patients with liver malignancies: a systematic review and network meta-analysis. World J Surg Oncol 2022; 20:399. [PMID: 36527081 PMCID: PMC9756618 DOI: 10.1186/s12957-022-02867-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Several treatments induce liver hypertrophy for patients with liver malignancies but insufficient future liver remnant (FLR). Herein, the aim of this study is to compare the efficacy and safety of existing surgical techniques using network meta-analysis (NMA). METHODS We searched PubMed, Web of Science, and Cochrane Library from databases for abstracts and full-text articles published from database inception through Feb 2022. The primary outcome was the efficacy of different procedures, including standardized FLR (sFLR) increase, time to hepatectomy, resection rate, and R0 resection margin. The secondary outcome was the safety of different treatments, including the rate of Clavien-Dindo≥3a and 90-day mortality. RESULTS Twenty-seven studies, including three randomized controlled trials (RCTs), three prospective trials (PTs), and twenty-one retrospective trials (RTs), and a total number of 2075 patients were recruited in this study. NMA demonstrated that the Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) had much higher sFLR increase when compared to portal vein embolization (PVE) (55.25%, 95% CI 45.27-65.24%), or liver venous deprivation(LVD) (43.26%, 95% CI 22.05-64.47%), or two-stage hepatectomy (TSH) (30.53%, 95% CI 16.84-44.21%), or portal vein ligation (PVL) (58.42%, 95% CI 37.62-79.23%). ALPPS showed significantly shorter time to hepatectomy when compared to PVE (-32.79d, 95% CI -42.92-22.66), or LVD (-34.02d, 95% CI -47.85-20.20), or TSH (-22.85d, 95% CI -30.97-14.72), or PVL (-43.37d, 95% CI -64.11-22.62); ALPPS was considered as the highest resection rate when compared to TSH (OR=6.09; 95% CI 2.76-13.41), or PVL (OR =3.52; 95% CI 1.16-10.72), or PVE (OR =4.12; 95% CI 2.19-7.77). ALPPS had comparable resection rate with LVD (OR =2.20; 95% CI 0.83-5.86). There was no significant difference between them when considering the R0 marge rate. ALPPS had a higher Clavien-Dindo≥3a complication rate and 90-day mortality compared to other treatments, although there were no significant differences between different procedures. CONCLUSIONS ALPPS demonstrated a higher regeneration rate, shorter time to hepatectomy, and higher resection rate than PVL, PVE, or TSH. There was no significant difference between them when considering the R0 marge rate. However, ALPPS developed the trend of higher Clavien-Dindo≥3a complication rate and 90-day mortality compared to other treatments.
Collapse
Affiliation(s)
- Fengming Yi
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, People's Republic of China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Long Feng
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
- JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Rogers MP, Mi Z, Li NY, Wai PY, Kuo PC. Tumor: Stroma Interaction and Cancer. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:59-87. [PMID: 35165860 DOI: 10.1007/978-3-030-91311-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The understanding of how normal cells transform into tumor cells and progress to invasive cancer and metastases continues to evolve. The tumor mass is comprised of a heterogeneous population of cells that include recruited host immune cells, stromal cells, matrix components, and endothelial cells. This tumor microenvironment plays a fundamental role in the acquisition of hallmark traits, and has been the intense focus of current research. A key regulatory mechanism triggered by these tumor-stroma interactions includes processes that resemble epithelial-mesenchymal transition, a physiologic program that allows a polarized epithelial cell to undergo biochemical and cellular changes and adopt mesenchymal cell characteristics. These cellular adaptations facilitate enhanced migratory capacity, invasiveness, elevated resistance to apoptosis, and greatly increased production of ECM components. Indeed, it has been postulated that cancer cells undergo epithelial-mesenchymal transition to invade and metastasize.In the following discussion, the physiology of chronic inflammation, wound healing, fibrosis, and tumor invasion will be explored. The key regulatory cytokines, transforming growth factor β and osteopontin, and their roles in cancer metastasis will be highlighted.
Collapse
Affiliation(s)
- Michael P Rogers
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Zhiyong Mi
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Neill Y Li
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Philip Y Wai
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul C Kuo
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
3
|
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ, Alexander JS. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 2019; 37:101421. [PMID: 30933723 DOI: 10.1016/j.scr.2019.101421] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (I/RI), produced by an initial interruption of organ blood flow and its subsequent restoration, contributes significantly to the pathophysiologies of stroke, myocardial infarction, renal I/RI, intestinal I/RI and liver I/RI, which are major causes of disability (including transplant failure) and even mortality. While the restoration of blood flow is required to restore oxygen and nutrient requirements, reperfusion often triggers local and systemic inflammatory responses and subsequently elevate the ischemic insult where the duration of ischemia determines the magnitude of I/RI damage. I/RI increases vascular leakage, changes transcriptional and cell death programs, drives leukocyte entrapment and inflammation and oxidative stress in tissues. Therapeutic approaches which reduce complications associated with I/RI are desperately needed to address the clinical and economic burden created by I/RI. Stem cells (SC) represent ubiquitous and uncommitted cell populations with the ability to self-renew and differentiate into one or more developmental 'fates'. Like immune cells, stem cells can home to and penetrate I/R-injured tissues, where they can differentiate into target tissues and induce trophic paracrine signaling which suppress injury and maintain tissue functions perturbed by ischemia-reperfusion. This review article summarizes the present use and possible protective mechanisms underlying stem cell protection in diverse forms of ischemia-reperfusion.
Collapse
Affiliation(s)
- M Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - G Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - C J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA.
| |
Collapse
|
4
|
Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods Mol Biol 2016; 1506:17-42. [PMID: 27830543 DOI: 10.1007/978-1-4939-6506-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.
Collapse
|
5
|
Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med 2015; 9:649-72. [PMID: 25372080 DOI: 10.2217/rme.14.35] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases. Various cell therapies have reached advanced clinical trial phases with potential marketing approvals in the near future, many of which are based on mesenchymal stem cells. Advances in pluripotent stem cell research hold great promise for regenerative medicine. The information presented in this review is based on the analysis of the cell therapy collection detailed in LifeMap Discovery(®) (LifeMap Sciences Inc., USA) the database of embryonic development, stem cell research and regenerative medicine.
Collapse
|
6
|
Cell-based therapy for acute and chronic liver failures: distinct diseases, different choices. Sci Rep 2014; 4:6494. [PMID: 25263068 PMCID: PMC4178291 DOI: 10.1038/srep06494] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapies (CBTs) are considered the effective approaches to treat liver failure. However, which cell type is the most suitable source of CBTs for acute liver failure (ALF) or chronic liver failure (CLF) remains unclear. To investigate this, mature hepatocytes in adult liver (adult HCs), fetal liver cells (FLCs), induced hepatic stem cells (iHepSCs) and bone marrow derived mesenchymal stromal cells (BMSCs) were used to CBTs for ConA-induced ALF and Fah-deficient induced CLF in mice. The results showed that only BMSCs remitted liver damage and rescued ALF in ConA-treated mice. In this process, BMSCs inhibited ConA-induced inflammatory response by decreasing the mRNA expressions of TNF-α, IFN-γ and FasL and increasing IL-10 mRNA expression. However, in the CLF model, not BMSCs but adult HCs transplantation lessened liver injury, recovered liver function and rescued the life of Fah-/- mice after NTBC withdrawal. Further study showed that adult HCs offered more effective liver regeneration compared to other cells in Fah-/- mice without NTBC. These results demonstrated that BMSCs and adult HCs are the optimal sources of CBTs for ConA-induced ALF and Fah-deficient induced CLF in mice, respectively. This finding deepens our understanding about how to select a proper CBT for different liver failure.
Collapse
|
7
|
Alfaro J, Grau M, Serrano M, Checa AI, Criado LM, Moreno E, Paz-Artal E, Mellado M, Serrano A. Blockade of endothelial G(i) protein enhances early engraftment in intraportal cell transplant to mouse liver. Cell Transplant 2013; 21:1383-96. [PMID: 22525519 DOI: 10.3727/096368912x640501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The limited availability of liver donors and recent progress in cell therapy technologies has centered interest on cell transplantation as a therapeutic alternative to orthotopic liver transplant for restoring liver function. Following transplant by intraportal perfusion, the main obstacle to cell integration in the parenchyma is the endothelial barrier. Transplanted cells form emboli in the portal branches, inducing ischemia and reperfusion injury, which cause disruption of endothelial impermeability and activate the immune system. Approximately 95% of transplanted cells fail to implant and die within hours by anoikis or are destroyed by the host immune system. Intravascular perfusion of Bordetella pertussis toxin (PTx) blocks endothelial G(i) proteins and acts as a reversible inducer of actin cytoskeleton reorganization, leading to interruption of cell confluence in vitro and increased vascular permeability in vivo. PTx treatment of the murine portal vascular tree 2 h before intraportal perfusion of embryonic stem cells facilitated rapid cell engraftment. By 2 h postperfusion, the number of implanted cells in treated mice was more than fivefold greater than in untreated controls, a difference that was maintained to at least 30 days posttransplant. We conclude that prior to cell transplant, PTx blockade of the G(i) protein pathway in liver endothelium promotes rapid, efficient cell implantation in liver parenchyma, and blocks chemokine receptor signaling, an essential step in early activation of the immune system.
Collapse
Affiliation(s)
- Javier Alfaro
- Cell Transplantation Unit, Department of Immunology Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gong P, Wang Y, Zhang J, Wang Z. Differential hepatic stem cell proliferation and differentiation after partial hepatectomy in rats. Mol Med Rep 2013; 8:1005-10. [PMID: 23903957 DOI: 10.3892/mmr.2013.1606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
Stem cell‑derived hepatocyte precursor cells represent a promising model for clinical transplantation to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology studies. The present study aimed to establish a new method of induction of hepatocyte differentiation using various factors and evaluate the effect of different partial hepatectomies and the duration of collagenase perfusion on hepatic stem cell proliferation and differentiation. A rat model of hepatic oval cell proliferation was established by partial hepatectomy (PH). Following 73.1 and 83.4% PH, rats underwent perfusion with IV collagenase for 10, 20 and 30 min. Density gradient centrifugation was performed and cells in the supernatant were cultured in various combinations of factors to induce oval cells to differentiate into mature hepatocytes. Cells were characterized for hepatocyte marker expression by morphology, flow cytometry, immunofluorescence and western blot analysis. Hepatic oval cells isolated from rats at 7 and 14 days post‑PH exhibited properties of hepatic stem/progenitor cells. Following culturing in RPMI‑1640 medium with hepatocyte growth factor and fibroblast growth factor‑4, the cells resembled primary human hepatocytes with regard to morphology and expression of the hepatocyte markers, cytokeratin 18 (CK‑18) and α‑1‑fetoprotein (AFP). Optimal differentiation of hepatic stem cells to CK‑18‑ and AFP‑positive cells was observed when stem cells isolated from 83.4% PH rats (7 days following surgery) were perfused with IV collagenase for 20 min. The results of this study provide novel insights into characteristics of rat hepatic stem cells.
Collapse
Affiliation(s)
- Peng Gong
- Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 110001, P.R. China.
| | | | | | | |
Collapse
|
9
|
Hepatogenic differentiation of mesenchymal stem cells in a rat model of thioacetamide-induced liver cirrhosis. Cell Biol Int 2012; 36:279-88. [PMID: 21966929 DOI: 10.1042/cbi20110325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Implantation of bone-marrow-derived MSCs (mesenchymal stem cells) has emerged as a potential treatment modality for liver failure, but in vivo differentiation of MSCs into functioning hepatocytes and its therapeutic effects have not yet been determined. We investigated MSC differentiation process in a rat model of TAA (thioacetamide)-induced liver cirrhosis. Male Sprague-Dawley rats were administered 0.04% TAA-containing water for 8 weeks, MSCs were injected into the spleen for transsplenic migration into the liver, and liver tissues were examined over 3 weeks. Ingestion of TAA for 8 weeks induced micronodular liver cirrhosis in 93% of rats. Injected MSCs were diffusely engrafted in the liver parenchyma, differentiated into CK19 (cytokeratin 19)- and thy1-positive oval cells and later into albumin-producing hepatocyte-like cells. MSC engraftment rate per slice was measured as 1.0-1.6%. MSC injection resulted in apoptosis of hepatic stellate cells and resultant resolution of fibrosis, but did not cause apoptosis of hepatocytes. Injection of MSCs treated with HGF (hepatocyte growth factor) in vitro for 2 weeks, which became CD90-negative and CK18-positive, resulted in chronological advancement of hepatogenic cellular differentiation by 2 weeks and decrease in anti-fibrotic activity. Early differentiation of MSCs to progenitor oval cells and hepatocytes results in various therapeutic effects, including repair of damaged hepatocytes, intracellular glycogen restoration and resolution of fibrosis. Thus, these results support that the in vivo hepatogenic differentiation of MSCs is related to the beneficial effects of MSCs rather than the differentiated hepatocytes themselves.
Collapse
|
10
|
Wai PY, Kuo PC. Intersecting pathways in inflammation and cancer: Hepatocellular carcinoma as a paradigm. World J Clin Oncol 2012; 3:15-23. [PMID: 22347691 PMCID: PMC3280348 DOI: 10.5306/wjco.v3.i2.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/29/2012] [Accepted: 02/06/2012] [Indexed: 02/06/2023] Open
Abstract
Viral infection and chemical carcinogens trigger somatic changes resulting in activation of oncogenes during tumor initiation in the development of cancer. However, a critical interaction resides in the synergism between these somatic changes and an inflamed tumor microenvironment where myeloid and hematopoietic cells are subverted to enhance tumor progression. The causative molecular mechanisms leading to the development of hepatocellular cancer remain incompletely understood but appear to result from multiple factors related to direct hepatocyte injury and the ensuing inflammatory changes mediated by the host response to tissue injury, DNA damage, repair of cellular damage, and chronic, repetitive injury. In this review, the molecular and cellular changes that regulate inflammation and tissue repair will be compared to the activated local tumor microenvironment. Cell-cell signaling within this microenvironment that enhances tumor progression and inhibits anti-tumor immunity will be discussed
Collapse
Affiliation(s)
- Philip Y Wai
- Philip Y Wai, Paul C Kuo, Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, United States
| | | |
Collapse
|
11
|
Abstract
Cell therapies, which include bioartificial liver support and hepatocyte transplantation, have emerged as potential treatments for a variety of liver diseases. Acute liver failure, acute-on-chronic liver failure, and inherited metabolic liver diseases are examples of liver diseases that have been successfully treated with cell therapies at centers around the world. Cell therapies also have the potential to be widely applied to other liver diseases, including noninherited liver diseases and liver cancer, and to improve the success of liver transplantation. Here we briefly summarize current concepts of cell therapy for liver diseases.
Collapse
Affiliation(s)
- Yue Yu
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN,Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - James E. Fisher
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | - Joseph B. Lillegard
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | - Brian Rodysill
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| | | | - Scott L. Nyberg
- Department of Surgery, Division of Experimental Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Castilho-Fernandes A, de Almeida DC, Fontes AM, Melo FUF, Picanço-Castro V, Freitas MC, Orellana MD, Palma PVB, Hackett PB, Friedman SL, Covas DT. Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells. Exp Mol Pathol 2011; 91:664-72. [PMID: 21930125 DOI: 10.1016/j.yexmp.2011.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 12/13/2022]
Abstract
The LX-2 cell line has characteristics of hepatic stellate cells (HSCs), which are considered pericytes of the hepatic microcirculatory system. Recent studies have suggested that HSCs might have mesenchymal origin. We have performed an extensive characterization of the LX-2 cells and have compared their features with those of mesenchymal cells. Our data show that LX-2 cells have a phenotype resembling activated HSCs as well as bone marrow-derived mesenchymal stem cells (BM-MSCs). Our immunophenotypic analysis showed that LX-2 cells are positive for activated HSC markers (αSMA, GFAP, nestin and CD271) and classical mesenchymal makers (CD105, CD44, CD29, CD13, CD90, HLA class-I, CD73, CD49e, CD166 and CD146) but negative for the endothelial marker CD31 and endothelial progenitor cell marker CD133 as well as hematopoietic markers (CD45 and CD34). LX-2 cells also express the same transcripts found in immortalized and primary BM-MSCs (vimentin, annexin 5, collagen 1A, NG2 and CD140b), although at different levels. We show that LX-2 cells are capable to differentiate into multilineage mesenchymal cells in vitro and can stimulate new blood vessel formation in vivo. LX-2 cells appear not to possess tumorigenic potential. Thus, the LX-2 cell line behaves as a multipotent cell line with similarity to BM-MSCs. This line should be useful for further studies to elucidate liver regeneration mechanisms and be the foundation for development of hepatic cell-based therapies.
Collapse
Affiliation(s)
- Andrielle Castilho-Fernandes
- Faculty of Medicine of Ribeirão Preto, Department of Clinical Medicine, University of São Paulo, Av. Bandeirantes, 3900 (6° andar do HC) Ribeirão Preto 14048-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang DW, Yao P. Cell transplantation for hepatic disease: current research status. Shijie Huaren Xiaohua Zazhi 2011; 19:1720-1725. [DOI: 10.11569/wcjd.v19.i16.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell transplantation is a promising way to restore liver function. Treatment of end-stage liver disease with stem cells, especially bone marrow stem cells, has attracted wild attention. There is ongoing research to use mature hepatocytes, liver progenitor cells, bone marrow stem cells and embryonic stem cells to restore liver function in patient with hepatic disease. Here we review the current research status of cell transplantation for hepatic disease in terms of cell biology, animal models and clinical trials.
Collapse
|
14
|
Kumar A, Pati NT, Sarin SK. Use of stem cells for liver diseases-current scenario. J Clin Exp Hepatol 2011; 1:17-26. [PMID: 25755306 PMCID: PMC3940313 DOI: 10.1016/s0973-6883(11)60114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 12/12/2022] Open
Abstract
End-stage liver disease and liver failure are major health problems worldwide leading to high mortality and morbidity and high healthcare costs. Currently, orthotropic liver transplantation is the only effective treatment available to the patients of end-stage liver disease. However, a serious shortage of liver donors, high cost, and risk of organ rejection are the major obstacles to liver transplantation. Because of the ability of stem cells for differentiation into any tissue type, they have huge potential in therapy of various end-stage or degenerative diseases and traumatic injuries. Stem cell therapy has the potential to provide a valuable adjunct and alternative to liver transplantation and has immense potential in the management of end stage liver disease and liver failure. Stem cell therapy can be mediated by either a direct contribution to the functional hepatocyte population with embryonic, induced pluripotent, or adult stem cells or by promotion of endogenous regenerative processes with bone marrow-derived stem cells. Initial translational studies have been encouraging and have suggested improved liver function in advanced chronic liver disease and enhanced liver regeneration after portal vein embolization and partial hepatic resection. Stem cells infusion in cirrhotic patients has improved liver parameters and could form a viable bridge to transplantation. The present review summarizes basic of stem cell biology relevant to clinicians and an update on recent advances on the management of liver diseases using stem cells.
Collapse
Key Words
- AFP, alpha (α)-fetoprotein
- BM, bone marrow
- EPCAM, epithelial cell adhesion molecule
- ES, embryonic stem
- FSCs, fetal stem cells
- HPC, hepatic progenitor cells
- HSC, hematopoietic stem cells
- Hepatocyte transplantation
- ICAM, intercellular adhesion molecule
- MSCs, mesenchymal stem cells
- NCAM, neural cell adhesion molecule
- UCB, umbilical cord blood
- hAECs, human amniotic epithelial cells
- iPSCs, induced pluripotent stem cells
- liver transplantation
- stem cell
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- Address for correspondence: Dr Ashish Kumar MD DM, Associate Professor, Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi-110070, India
| | - Nirupama Trehan Pati
- Department of Research, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Abstract
Liver progenitor cells are activated in most human liver diseases. The dynamics, and therefore subpopulations, of progenitor cells are, however, different in acute versus chronic hepatocytic diseases and in biliary diseases. The role of Wnt and Notch signaling pathways in activation and differentiation of human hepatic progenitor cells holds great promise because they can be manipulated by drugs. Hepatocytic differentiation requires inhibition of Notch (numb switched on), whereas cholangiocytic differentiation requires Notch activation. In this way, the patients' own regenerative response could be supported, which could eventually even avoid the need for transplantation in several patients.
Collapse
|
16
|
Sangan CB, Tosh D. Hepatic progenitor cells. Cell Tissue Res 2010; 342:131-7. [PMID: 20957497 DOI: 10.1007/s00441-010-1055-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/09/2010] [Indexed: 12/11/2022]
Abstract
Liver diseases are associated with a marked reduction in the viable mass of hepatocytes. The most severe cases of liver disease (liver failure) are treated by orthotopic liver transplantation. One alternative to whole organ transplantation for patients with hepatic failure (and hereditary liver disease) is hepatocyte transplantation. However, there is a serious limitation to the treatment of liver diseases either by whole organ or hepatocyte transplantation, and that is the shortage of organ donors. Therefore, to overcome the problem of organ shortage, additional sources of hepatocytes must be found. Alternative sources of cells for transplantation have been proposed including embryonic stem cells, immortalised liver cells and differentiated cells. One other source of cells for transplantation found in the adult liver is the progeny of stem cells. These cells are termed hepatic progenitor cells (HPCs). The therapeutic potential of HPCs lies in their ability to proliferate and differentiate into hepatocytes and cholangiocytes. However, using HPCs as a cell therapy cannot be exploited fully until the mechanisms governing hepatocyte differentiation are elucidated. Here, we discuss the fundamental cellular and molecular elements required for HPC differentiation to hepatocytes.
Collapse
Affiliation(s)
- Caroline Beth Sangan
- Centre of Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
17
|
Hu MD, Guo GH. Advances in hepatic stellate cell-targeted treatment of hepatic fibrosis with bone marrow-derived mesenchymal stem cells. Shijie Huaren Xiaohua Zazhi 2010; 18:2558-2562. [DOI: 10.11569/wcjd.v18.i24.2558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is one of the most serious diseases that pose a great threat to human health. Liver transplantation is currently the most effective treatment for these patients. However, the worldwide shortage of donor livers has greatly limited the use of this treatment. As a result, searching for alternative cell therapy has attracted great interest in preclinical studies. The transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) holds great promise for treating hepatic fibrosis because experimental and clinical studies have shown that it has beneficial effects on hepatic fibrosis. However, the precise cellular and molecular mechanisms behind such treatment remain to be elucidated. In this article, we will review the advances in treatment of hepatic fibrosis with BMSCs using hepatic stellate cells (HSCs) as a target.
Collapse
|
18
|
Gennero L, Roos MA, Sperber K, Denysenko T, Bernabei P, Calisti GF, Papotti M, Cappia S, Pagni R, Aimo G, Mengozzi G, Cavallo G, Reguzzi S, Pescarmona GP, Ponzetto A. Pluripotent plasticity of stem cells and liver repopulation. Cell Biochem Funct 2010; 28:178-89. [PMID: 20232487 DOI: 10.1002/cbf.1630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra-hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self-repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio-artificial liver-assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver.
Collapse
Affiliation(s)
- Luisa Gennero
- Department of Internal Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Hepatocyte transplantation has shown potential as an additional treatment modality for certain diseases of the liver. To date, patients with liver-based metabolic disorders or acute liver failure have undergone hepatocyte transplantation in several centers around the world. Results from individual patients are promising, especially for the treatment of liver-based metabolic disorders, but the lack of controlled trials makes the interpretation of the findings difficult. The current source of isolated hepatocytes is donor organs that are unused or deemed unsuitable for liver transplantation. Hence the major challenge that this field is facing is the limited supply of donor organs that can provide good quality cells. Alternative sources of cells, including stem cells, are under investigation. This Review discusses the current bench-to-bedside issues and future challenges that need to be faced to allow the wider application of hepatocyte transplantation.
Collapse
|
20
|
Song L, Wang H, Gao X, Shen K, Niu W, Qin X. Proliferation and differentiation potential of mouse adult hepatic progenitor cells cultured in vitro. Acta Biochim Biophys Sin (Shanghai) 2010; 42:122-8. [PMID: 20119623 DOI: 10.1093/abbs/gmp112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to isolate the stem cells or progenitors, if exist, from normal adult mouse liver and investigate their potential of proliferation and differentiation. Hepatocytes were isolated by modified two-step liver perfusion method and centrifugation, and then cultured in modified serumcontaining DMEM for observation more than 60 days. Immunofluorescence technique was applied to check the hepatocytes and to examine the formation of colonies with albumin, alpha-fetoprotein (AFP) and cytokeratin 19 (CK19). Results showed that some hepatocytes that were strongly positive for hepatocyte specific markers albumin on Day 1 in culture, could be activated at Days 2-3, followed by rapid proliferation and formation of colonies. The colonies could expand continually for more than 60 days. On Day 5, all the cells in the colony expressed hepatic stem cell (HSC) markers AFP. With the time of culture, some cells in colonies lost ability to divide at Days 13-15, and differentiated into cells which had a large cytoplasm and some two nuclei, similar to the appearance of mature hepatocytes morphologically. These differentiated cells demonstrated strong expression of albumin. Around Day 30, some big cells appeared in colonies and expressed bile duct cell marker CK19. Therefore, this subpopulation of mouse hepatocytes could acquire some characteristics of immature hepatocytes and showed the profile of hepatic progenitor cells with a high proliferating ability and bi-potential of differentiation. They were isolated from normal adult mouse, hence, named adult hepatic progenitor cells (AHPCs). Mouse AHPCs may be used as an HSC model for hepatocytes transplantation and hepatopathy study.
Collapse
Affiliation(s)
- Lujun Song
- Department of General Surgery, Zhongshan Hospital, Institute of General Surgery, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
21
|
Huang J, Bi Y, Zhu GH, He Y, Su Y, He BC, Wang Y, Kang Q, Chen L, Zuo GW, Luo Q, Shi Q, Zhang BQ, Huang A, Zhou L, Feng T, Luu HH, Haydon RC, He TC, Tang N. Retinoic acid signalling induces the differentiation of mouse fetal liver-derived hepatic progenitor cells. Liver Int 2009; 29:1569-81. [PMID: 19737349 DOI: 10.1111/j.1478-3231.2009.02111.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Hepatic progenitor cells (HPCs) can be isolated from fetal liver and extrahepatic tissues. Retinoic acid (RA) signalling plays an important role in development, although the role of RA signalling in liver-specific progenitors is poorly understood. AIMS We sought to determine the role of RA in regulating hepatic differentiation. METHODS RNA was isolated from liver tissues of various developmental stages. Liver marker expression was assessed by reverse transcriptase-polymerase chain reaction and immunofluorescence staining. Reversibly immortalized HPCs derived from mouse embryonic day 14.5 (E14.5) liver (aka, HP14.5) were established. Albumin promoter-driven reporter (Alb-GLuc) was used to monitor hepatic differentiation. Glycogen synthesis was assayed as a marker for terminal hepatic differentiation. RESULTS Retinoic acid receptor (RAR)-alpha, retinoid X receptor (RXR)-alpha and RXR-gamma expressed in E12.5 to postnatal day 28 liver samples. Expression of RAR-beta and RXR-beta was low perinatally, whereas RAR-gamma was undetectable in prenatal tissues and increased postnatally. Retinal dehydrogenase 1 and 2 (Raldh1 and Raldh2) were expressed in all tissues, while Raldh3 was weakly expressed in prenatal samples but was readily detected postnatally. Nuclear receptor corepressors were highly expressed in all tissues, while expression of nuclear co-activators decreased in perinatal tissues and increased after birth. HP14.5 cells expressed high levels of early liver stem cell markers. Expression of RA signalling components and coregulators was readily detected in HP14.5. RA was shown to induce Alb-GLuc activity and late hepatocyte markers. RA was further shown to induce glycogen synthesis in HP14.5 cells, an important function of mature hepatocytes. CONCLUSIONS Our results strongly suggest that RA signalling may play an important role in regulating hepatic differentiation.
Collapse
Affiliation(s)
- Jiayi Huang
- Key Laboratory of Diagnostic Medicine designated by the Ministry of Education of China, The Affiliated Hospitals of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsuchiya A, Kamimura H, Takamura M, Yamagiwa S, Matsuda Y, Sato Y, Nomoto M, Ichida T, Aoyagi Y. Clinicopathological analysis of CD133 and NCAM human hepatic stem/progenitor cells in damaged livers and hepatocellular carcinomas. Hepatol Res 2009; 39:1080-90. [PMID: 19619253 DOI: 10.1111/j.1872-034x.2009.00559.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Hepatic stem cells are capable of dramatically changing and differentiating to form mature hepatocytes in acute and chronically damaged livers; however, the clinicopathological characteristics of these heterogeneous cell populations have not been sufficiently analyzed. METHODS In this study, cells in tissue sections from 12 cases of acute damaged livers and 31 cases of hepatocellular carcinomas (HCC), and the surrounding chronically damaged liver tissues, were analyzed by immunohistochemistry using the previously reported hepatic stem/progenitor cell marker CD133 (AC133) and the neural cell adhesion molecule (NCAM) marker. RESULTS In both the acute and chronically damaged livers, CD133(+) cells and NCAM(+) cells were present in ductular reactions (DR), which include hepatic stem/progenitor cells, and became more apparent in proportion to the degree of fibrosis or histological damage. Analysis of their distribution and morphological similarities revealed that the NCAM(+) cell population included cells that were closer to, and morphologically more similar to, hepatocytes than were CD133(+) cells. Analysis of HCC using these markers revealed that 9.7% of HCC expressed NCAM (two cases had abundant NCAM(+) cells), while CD133(+) HCC were not detected. CONCLUSION These results suggest that CD133 and NCAM can be employed to enrich for hepatic stem/progenitor cells and that DR can be distinguished in greater detail using these markers. NCAM(+) HCC were detected, but their function remains unresolved. Expression of CD133, a potent stem cell marker, may be extremely rare in the common human HCC examined.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Chuo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Hepatocyte transplantation is making its transition from bench to bedside for liver-based metabolic disorders and acute liver failure. Over eighty patients have now been transplanted world wide and the safety of the procedure together with medium-term success has been established. A major limiting factor in the field is the availability of good quality cells as hepatocytes are derived from grafts that are deemed unsuitable for transplantation. Alternative sources of cell, including stem cells may provide a sustainable equivalent to primary hepatocytes. There is also a need to develop techniques that will improve the engraftment, survival and function of transplanted hepatocytes. Such developments may allow hepatocyte transplantation to become an accepted and practical alternative to liver transplantation in the near future.
Collapse
Affiliation(s)
- E Fitzpatrick
- Paediatric Liver Centre, King's College London School of Medicine at King's College Hospital, UK
| | | | | |
Collapse
|
24
|
Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C, Camussi G. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 2009; 14:1605-18. [PMID: 19650833 PMCID: PMC3060338 DOI: 10.1111/j.1582-4934.2009.00860.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an alpha(4)-integrin-dependent mechanism. However, MVs pre-treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA-dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre-treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets.
Collapse
Affiliation(s)
- M B Herrera
- Department of Internal Medicine, Research Center for Experimental Medicine (CeRMS), and Center for Molecular Biotechnology, Torino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fellous TG, Islam S, Tadrous PJ, Elia G, Kocher HM, Bhattacharya S, Mears L, Turnbull DM, Taylor RW, Greaves LC, Chinnery PF, Taylor G, McDonald SAC, Wright NA, Alison MR. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology 2009; 49:1655-63. [PMID: 19309719 DOI: 10.1002/hep.22791] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED We have used immunohistochemical and histochemical techniques to identify patches of hepatocytes deficient in the enzyme cytochrome c oxidase, a component of the electron transport chain and encoded by mitochondrial DNA (mtDNA). These patches invariably abutted the portal tracts and expanded laterally as they spread toward the hepatic veins. Here we investigate, using mtDNA mutations as a marker of clonal expansion, the clonality of these patches. Negative hepatocytes were laser-capture microdissected and mutations identified by polymerase chain reaction sequencing of the entire mtDNA genome. Patches of cytochrome c oxidase-deficient hepatocytes were clonal, suggesting an origin from a long-lived cell, presumably a stem cell. Immunohistochemical analysis of function and proliferation suggested that these mutations in cytochrome c oxidase-deficient hepatocytes were nonpathogenic. CONCLUSION These data show, for the first time, that clonal proliferative units exist in the human liver, an origin from a periportal niche is most likely, and that the trajectory of the units is compatible with a migration of cells from the periportal regions to the hepatic veins.
Collapse
Affiliation(s)
- Tariq G Fellous
- Centre for Diabetes and Metabolic Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Donato MT, Lahoz A, Montero S, Bonora A, Pareja E, Mir J, Castell JV, Gómez-Lechón MJ. Functional assessment of the quality of human hepatocyte preparations for cell transplantation. Cell Transplant 2009; 17:1211-9. [PMID: 19181215 DOI: 10.3727/096368908787236620] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte transplantation is an alternative therapy to orthotopic liver transplantation for the treatment of liver diseases. Good quality freshly isolated or cryopreserved human hepatocytes are needed for clinical transplantation. However, isolation, cryopreservation, and thawing processes can seriously impair hepatocyte viability and functionality. The aim of the present study was to develop a fast and sensitive procedure to estimate the quality of hepatocyte preparations prior to clinical cell infusion. To this end, cell viability, attachment efficiency, and metabolic competence (urea synthesis and drug-metabolizing P450 activities) were selected as objective criteria. Viability of hepatocyte suspension was estimated by trypan blue staining. DNA content of attached cells 50 min after hepatocyte platting to fibronectin/collagen-coated dishes was quantified to estimate adherence capacity. Urea production was determined after incubating hepatocyte suspensions with 2 mM C1NH4 for 30 min. The cytochrome P450 function was assayed by a 30-min incubation of hepatocyte suspension with a cocktail mixture containing selective substrates for seven individual P450 activities (CYP1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4). The assay can be applied to both freshly isolated and cryopreserved hepatocyte suspensions, and the results are available within 1 h, which could help to make short-term decisions: 1) to assess the suitability for cell transplantation of a preparation of freshly isolated hepatocytes or a particular batch of thawed cells, or 2) to estimate the convenience of banking a particular cell preparation.
Collapse
Affiliation(s)
- María Teresa Donato
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217:282-98. [PMID: 18991329 DOI: 10.1002/path.2453] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver diseases, such as acute liver failure, cirrhosis and hepatocellular carcinoma (HCC). Under normal circumstances the liver undergoes a low rate of hepatocyte 'wear and tear' renewal, but can mount a brisk regenerative response to the acute loss of two-thirds or more of the parenchymal mass. A body of evidence favours placement of a stem cell niche in the periportal regions, although the identity of such stem cells in rodents and man is far from clear. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted hepatocytes has proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells (HPCs) is clearly vital for survival in many cases of acute liver failure, and the signals that promote such reactions are being elucidated. Bone marrow cells (BMCs) make, at best, a trivial contribution to hepatocyte replacement after damage, but other BMCs contribute to the hepatic collagen-producing cell population, resulting in fibrotic disease; paradoxically, BMC transplantation may help alleviate established fibrotic disease. HCC may have its origins in either hepatocytes or HPCs, and HCCs, like other solid tumours appear to be sustained by a minority population of cancer stem cells.
Collapse
Affiliation(s)
- M R Alison
- Centre for Diabetes and Metabolic Medicine, St Bartholomew's Hospital and the London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
29
|
Chhabra P, Mirmira RG, Brayman KL. Regenerative medicine and tissue engineering: contribution of stem cells in organ transplantation. Curr Opin Organ Transplant 2009; 14:46-50. [PMID: 19337146 DOI: 10.1097/mot.0b013e328322f989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Abstract
PURPOSE OF REVIEW Cell transplantation to restore liver function as an alternative to whole liver transplantation has thus far not been successful in humans. RECENT FINDINGS Adult mature hepatocytes and various populations of liver progenitors and stem cells are being studied for their regenerative capabilities. Hepatocyte transplantation to treat metabolic deficiencies has shown promising early improvement in liver function; however, long-term success has not been achieved. Liver progenitor cells can now be identified and were shown to be capable to differentiate into a hepatocyte-like phenotype. Despite evidence of mesenchymal stem cell fusion in animal models of liver regeneration, encouraging results were seen in a small group of patients receiving autologous transplantation of CD133 mesenchymal stem cells to repopulate the liver after extensive hepatectomy for liver masses. Ethical issues, availability, potential rejection and limited understanding of the totipotent capabilities of embryonic stem cells are the limitations that prevent their use for restoration of liver function. The effectiveness of embryonic stem cells to support liver function has been proven with their application in the bioartificial liver model in rodents. SUMMARY There is ongoing research to restore liver function in cell biology, animal models and clinical trials using mature hepatocytes, liver progenitor cells, mesenchymal stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Tanya R Flohr
- Department of Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
31
|
Khoo CP, Pozzilli P, Alison MR. Endothelial progenitor cells and their potential therapeutic applications. Regen Med 2009; 3:863-76. [PMID: 18947309 DOI: 10.2217/17460751.3.6.863] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are derived from the bone marrow (BM) and peripheral blood (PB), contributing to tissue repair in various pathological conditions via the formation of new blood vessels, that is, neovascularization. EPCs can be mobilized into the circulation in response to growth factors and cytokines released following stimuli such as vascular trauma, wounding and cancer. EPCs are involved in vasculogenesis during embryogenesis, but are now recognized to have a significant bearing upon disease outcome through their contribution to neovascularization in a variety of pathological states in adulthood. EPCs exist in very small numbers, especially in circulating blood in adults where they only account for 0.01% of all cells. We discuss the contribution and potential therapeutic applications of EPCs in disease, also noting the prognostic value of PB EPC numbers, especially in heart disease and cancer.
Collapse
Affiliation(s)
- Cheen P Khoo
- ICMS, Centre for Diabetes & Metabolic Medicine (DMM), Barts & The London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E12AT, UK.
| | | | | |
Collapse
|
32
|
Transplantation of monocyte-derived hepatocyte-like cells (NeoHeps) improves survival in a model of acute liver failure. Ann Surg 2009; 249:149-54. [PMID: 19106691 DOI: 10.1097/sla.0b013e31818a1543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Investigation of the efficacy of implantation of monocyte-derived hepatocyte-like cells (NeoHeps) in acute liver failure. SUMMARY BACKGROUND DATA Extended liver resection or split liver transplantation is still associated with high morbidity and mortality because of postoperative liver insufficiency. In view of liver support systems, implantation of isolated hepatocytes or hepatocyte-like cells such as NeoHeps is increasingly under discussion. METHODS Twenty-four hours before subtotal hepatectomy, cells of different origin [A: human mononuclear cells (24 x 10(6)); B: NeoHeps (16 x 10(6)); C: NeoHeps (24 x 10(6)); D: rat hepatocytes (24 x 10(6))] were injected into the spleen of Wistar rats. After an observation period of 5 days, animal survival, postoperative weight, and signs of encephalopathy were recorded. At the end of the observation period, blood was collected for laboratory analysis. RESULTS Transplantation of both rat hepatocytes and NeoHeps significantly improved animal survival when compared with control animals (group A: 21%), reaching 72% in group D (P = 0.001), 50% in group C (P = 0.04), and 36% in group B (P = 0.22). Moreover, animals in these groups postoperatively experienced less frequently signs of encephalopathy, as well as earlier weight increase when compared with group A. DISCUSSION Hepatocyte transplantation is a practicable and successful treatment option in case of liver insufficiency because implantation of NeoHeps or primary rat hepatocytes had an improving effect on survival. The promising data of the present study warrants further analysis to elucidate the role of NeoHeps in treatment of acute postoperative liver failure to a greater extent.
Collapse
|