1
|
Duncan JL, Bloomfield M, Swami N, Cimini D, Davalos RV. High-Frequency Dielectrophoresis Reveals That Distinct Bio-Electric Signatures of Colorectal Cancer Cells Depend on Ploidy and Nuclear Volume. MICROMACHINES 2023; 14:1723. [PMID: 37763886 PMCID: PMC10535145 DOI: 10.3390/mi14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Aneuploidy, or an incorrect chromosome number, is ubiquitous among cancers. Whole-genome duplication, resulting in tetraploidy, often occurs during the evolution of aneuploid tumors. Cancers that evolve through a tetraploid intermediate tend to be highly aneuploid and are associated with poor patient prognosis. The identification and enrichment of tetraploid cells from mixed populations is necessary to understand the role these cells play in cancer progression. Dielectrophoresis (DEP), a label-free electrokinetic technique, can distinguish cells based on their intracellular properties when stimulated above 10 MHz, but DEP has not been shown to distinguish tetraploid and/or aneuploid cancer cells from mixed tumor cell populations. Here, we used high-frequency DEP to distinguish cell subpopulations that differ in ploidy and nuclear size under flow conditions. We used impedance analysis to quantify the level of voltage decay at high frequencies and its impact on the DEP force acting on the cell. High-frequency DEP distinguished diploid cells from tetraploid clones due to their size and intracellular composition at frequencies above 40 MHz. Our findings demonstrate that high-frequency DEP can be a useful tool for identifying and distinguishing subpopulations with nuclear differences to determine their roles in disease progression.
Collapse
Affiliation(s)
- Josie L. Duncan
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nathan Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Khadilkar SV, Kamat S, Patel R. Nodo-paranodopathies: Concepts, Clinical Implications, and Management. Ann Indian Acad Neurol 2022; 25:1001-1008. [PMID: 36911467 PMCID: PMC9996523 DOI: 10.4103/aian.aian_382_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022] Open
Abstract
Peripheral neuropathies are traditionally categorized into demyelinating or axonal. It has been proposed that dysfunction at nodal/paranodal region may be a key for better understanding of pathophysiology in patients with immune mediated neuropathies. In last few years, antibodies targeting node and paranode of myelinated nerves have been increasingly detected in patients with immune mediated neuropathies. These patients have clinical phenotype similar common inflammatory neuropathies like Guillain Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy with some additional atypical neurological and systemic features, and they respond poorly to conventional first line immunotherapies like IVIG. This review summarizes the structure of the node, concept and pathophysiology of nodopathies. We provide an overview of clinical phenotypes in patients with specific nodal/paranodal antibodies, along with electrophysiological and other diagnostic features and suggest therapeutic line of management based on current evidence.
Collapse
Affiliation(s)
- Satish V. Khadilkar
- Departments of Neurology, Bombay Hospital Institute of Medical Sciences, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Saurabh Kamat
- Departments of Neurology, Bombay Hospital Institute of Medical Sciences, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Riddhi Patel
- Departments of Neurology, Bombay Hospital Institute of Medical Sciences, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Askland KD, Strong D, Wright MN, Moore JH. The Translational Machine: A novel machine-learning approach to illuminate complex genetic architectures. Genet Epidemiol 2021; 45:485-536. [PMID: 33942369 DOI: 10.1002/gepi.22383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
The Translational Machine (TM) is a machine learning (ML)-based analytic pipeline that translates genotypic/variant call data into biologically contextualized features that richly characterize complex variant architectures and permit greater interpretability and biological replication. It also reduces potentially confounding effects of population substructure on outcome prediction. The TM consists of three main components. First, replicable but flexible feature engineering procedures translate genome-scale data into biologically informative features that appropriately contextualize simple variant calls/genotypes within biological and functional contexts. Second, model-free, nonparametric ML-based feature filtering procedures empirically reduce dimensionality and noise of both original genotype calls and engineered features. Third, a powerful ML algorithm for feature selection is used to differentiate risk variant contributions across variant frequency and functional prediction spectra. The TM simultaneously evaluates potential contributions of variants operative under polygenic and heterogeneous models of genetic architecture. Our TM enables integration of biological information (e.g., genomic annotations) within conceptual frameworks akin to geneset-/pathways-based and collapsing methods, but overcomes some of these methods' limitations. The full TM pipeline is executed in R. Our approach and initial findings from its application to a whole-exome schizophrenia case-control data set are presented. These TM procedures extend the findings of the primary investigation and yield novel results.
Collapse
Affiliation(s)
- Kathleen D Askland
- Waypoint Centre for Mental Health Care Penetanguishene, University of Toronto, Toronto, Ontario, Canada
| | - David Strong
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, California, USA
| | - Marvin N Wright
- Department Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology - BIPS GmbH, Germany
| | - Jason H Moore
- Department of Biostatistics, Epidemiology, & Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
de Curtis M, Garbelli R, Uva L. A hypothesis for the role of axon demyelination in seizure generation. Epilepsia 2021; 62:583-595. [PMID: 33493363 DOI: 10.1111/epi.16824] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/06/2023]
Abstract
Loss of myelin and altered oligodendrocyte distribution in the cerebral cortex are commonly observed both in postsurgical tissue derived from different focal epilepsies (such as focal cortical dysplasias and tuberous sclerosis) and in animal models of focal epilepsy. Moreover, seizures are a frequent symptom in demyelinating diseases, such as multiple sclerosis, and in animal models of demyelination and oligodendrocyte dysfunction. Finally, the excessive activity reported in demyelinated axons may promote hyperexcitability. We hypothesize that the extracellular potassium rise generated during epileptiform activity may be amplified by the presence of axons without appropriate myelin coating and by alterations in oligodendrocyte function. This process could facilitate the triggering of recurrent spontaneous seizures in areas of altered myelination and could result in further demyelination, thus promoting epileptogenesis.
Collapse
Affiliation(s)
- Marco de Curtis
- Epilepsy Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Rita Garbelli
- Epilepsy Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Laura Uva
- Epilepsy Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
5
|
Roggenbuck D, Delmont E, Reinhold D, Schierack P, Conrad K, Boucraut J. Autoimmune Peripheral Neuropathies and Contribution of Antiganglioside/Sulphatide Autoantibody Testing. Mediterr J Rheumatol 2020; 31:10-18. [PMID: 32411930 PMCID: PMC7219652 DOI: 10.31138/mjr.31.1.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral immune-mediated polyneuropathies (IMPN) are a diverse group of rare neurological illnesses characterized by nerve damage. Leading morphological features are mostly nerve fibre demyelination or combination of axonal damage and demyelination. There has been remarkable progress in the clinical and electrophysiological categorization of acute (fulminant, life-threatening) and chronic (progressive/remitting-relapsing) immune-mediated neuropathies recently. Besides electrophysiological and morphological makers, autoantibodies against glycolipids or paranodal/nodal molecules have been recommended as candidate markers for IMPN. The progress in testing for autoantibodies (autoAbs) to glycolipids such as gangliosides and sulfatide may have significant implications on the stratification of patients and their treatment response. Thus, this topic was reviewed in a presentation held during the 1st Panhellenic Congress of Autoimmune Diseases, Rheumatology and Clinical Immunology in Portaria, Pelion, Greece. For acute IMPN, often referred to as Guillain-Barré syndrome and its variants, several serological markers including autoAbs to gangliosides and sulphatide have been employed successfully in clinical routine. However, the evolution of serological diagnosis of chronic variants, such as chronic inflammatory demyelinating polyneuropathy or multifocal motor neuropathy, is less satisfactory. Serological diagnostic markers could, therefore, help in the differential diagnosis due to their assumed pathogenic role. Additionally, stratification of patients to improve their response to treatment may be possible. In general, a majority of patients respond well to causal therapy that includes intravenous immunoglobulins and plasmapheresis. As second line therapy options, biologicals (e.g., rituximab) and immunosuppressant or immunomodulatory drugs may be considered when patients do not respond adequately.
Collapse
Affiliation(s)
- Dirk Roggenbuck
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.,Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus Senftenberg, Senftenberg, Germany
| | - Emilien Delmont
- Referral Center for Neuromuscular Diseases and ALS, La Timone Hospital, AP-HM, Marseille France
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter Schierack
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.,Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus Senftenberg, Senftenberg, Germany
| | - Karsten Conrad
- Institute of Immunology, Medical Faculty of the Technical University Dresden, Dresden, Germany
| | - Joseph Boucraut
- Aix Marseille Université, Institut de Neurosciences de la Timone, Medicine Faculty, Marseille, France.,Immunology laboratory, Conception Hospital, AP-HM, Marseille, France
| |
Collapse
|
6
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
7
|
Roggenbuck JJ, Boucraut J, Delmont E, Conrad K, Roggenbuck D. Diagnostic insights into chronic-inflammatory demyelinating polyneuropathies. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:337. [PMID: 30306076 DOI: 10.21037/atm.2018.07.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated neuropathy with demyelination of nerve fibers as leading morphological feature. The course of disease can be chronic progressive or remitting relapsing. Whereas for acute immune-mediated neuropathies several serological markers have been identified and used successfully in clinical routine, the serological diagnosis of chronic variants such as CIDP has not yet been evolved satisfactory. The typical CIDP and its various atypical variants are characterized by a certain diversity of clinical phenotype and response to treatment. Thus, diagnostic markers could aid in the differential diagnosis of CIDP variants and stratification of patients for a better treatment response. Most patients respond well to a causal therapy including steroids, intravenous immunoglobulins and plasmapheresis. Apart from electrophysiological and morphological markers, several autoantibodies have been reported as candidate markers for CIDP, including antibodies against glycolipids or paranodal/nodal molecules. The present review provides a summary of the progress in autoantibody testing in CIDP and its possible implication on the stratification of the CIDP variants and treatment response.
Collapse
Affiliation(s)
| | - Joseph Boucraut
- Institut de Neurosciences de la Timone, Medicine Faculty, Aix Marseille University, Marseille, France.,Immunology laboratory, Conception Hospital, AP-HM, Marseille, France
| | - Emilien Delmont
- Referral Center for Neuromuscular Diseases and ALS, La Timone Hospital, AP-HM, Marseille, France
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Dirk Roggenbuck
- GA Generic Assays GmbH, Dahlewitz/Berlin, Germany.,Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Senftenberg, Germany
| |
Collapse
|
8
|
Schlüter A, Del Turco D, Deller T, Gutzmann A, Schultz C, Engelhardt M. Structural Plasticity of Synaptopodin in the Axon Initial Segment during Visual Cortex Development. Cereb Cortex 2018; 27:4662-4675. [PMID: 28922860 DOI: 10.1093/cercor/bhx208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
The axon initial segment (AIS) is essential for action potential generation. Recently, the AIS was identified as a site of neuronal plasticity. A subpopulation of AIS in cortical principal neurons contains stacks of endoplasmic reticulum (ER) forming the cisternal organelle (CO). The function of this organelle is poorly understood, but roles in local Ca2+-trafficking and AIS plasticity are discussed. To investigate whether the presence and/or the size of COs are linked to the development and maturation of AIS of cortical neurons, we analyzed the relationship between COs and the AIS during visual cortex development under control and visual deprivation conditions. In wildtype mice, immunolabeling for synaptopodin, ankyrin-G, and ßIV-spectrin were employed to label COs and the AIS, respectively. Dark rearing resulted in an increase in synaptopodin cluster sizes, suggesting a homeostatic function of the CO in this cellular compartment. In line with this observation, synaptopodin-deficient mice lacking the CO showed AIS shortening in the dark. Collectively, these data demonstrate that the CO is an essential part of the AIS machinery required for AIS plasticity during a critical developmental period of the visual cortex.
Collapse
Affiliation(s)
- Annabelle Schlüter
- Institute of Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany.,Department of Neurobiology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Annika Gutzmann
- Institute of Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Christian Schultz
- Institute of Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Fehmi J, Scherer SS, Willison HJ, Rinaldi S. Nodes, paranodes and neuropathies. J Neurol Neurosurg Psychiatry 2018; 89:61-71. [PMID: 28819062 DOI: 10.1136/jnnp-2016-315480] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
This review summarises recent evidence supporting the involvement of the specialised nodal and perinodal domains (the paranode and juxtaparanode) of myelinated axons in the pathology of acquired, inflammatory, peripheral neuropathies.The identification of new target antigens in the inflammatory neuropathies heralds a revolution in diagnosis, and has already begun to inform increasingly targeted and individualised therapies. Rapid progress in our basic understanding of the highly specialised nodal regions of peripheral nerves serves to strengthen the links between their unique microstructural identities, functions and pathologies. In this context, the detection of autoantibodies directed against nodal and perinodal targets is likely to be of increasing clinical importance. Antiganglioside antibodies have long been used in clinical practice as diagnostic serum biomarkers, and associate with specific clinical variants but not to the common forms of either acute or chronic demyelinating autoimmune neuropathy. It is now apparent that antibodies directed against several region-specific cell adhesion molecules, including neurofascin, contactin and contactin-associated protein, can be linked to phenotypically distinct peripheral neuropathies. Importantly, the immunological characteristics of these antibodies facilitate the prediction of treatment responsiveness.
Collapse
Affiliation(s)
- Janev Fehmi
- Department of Neurology, Southmead Hospital, Bristol, UK
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hugh J Willison
- Department of Neuroimmunology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Rinaldi
- Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
10
|
van Coevorden-Hameete MH, van Beuningen SFB, Perrenoud M, Will LM, Hulsenboom E, Demonet JF, Sabater L, Kros JM, Verschuuren JJGM, Titulaer MJ, de Graaff E, Sillevis Smitt PAE, Hoogenraad CC. Antibodies to TRIM46 are associated with paraneoplastic neurological syndromes. Ann Clin Transl Neurol 2017; 4:680-686. [PMID: 28904989 PMCID: PMC5590547 DOI: 10.1002/acn3.396] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 11/09/2022] Open
Abstract
Paraneoplastic neurological syndromes (PNS) are often characterized by the presence of antineuronal antibodies in patient serum or cerebrospinal fluid. The detection of antineuronal antibodies has proven to be a useful tool in PNS diagnosis and the search for an underlying tumor. Here, we describe three patients with autoantibodies to several epitopes of the axon initial segment protein tripartite motif 46 (TRIM46). We show that anti‐TRIM46 antibodies are easy to detect in routine immunohistochemistry screening and can be confirmed by western blotting and cell‐based assay. Anti‐TRIM46 antibodies can occur in patients with diverse neurological syndromes and are associated with small‐cell lung carcinoma.
Collapse
Affiliation(s)
- Marleen H van Coevorden-Hameete
- Cell Biology Department of Biology Faculty of Science Utrecht University Padualaan 83584 CH Utrecht The Netherlands.,Department of Neurology Erasmus University Medical Center Dr. Molewaterplein 403015 GD Rotterdam The Netherlands
| | - Sam F B van Beuningen
- Cell Biology Department of Biology Faculty of Science Utrecht University Padualaan 83584 CH Utrecht The Netherlands
| | - Matthieu Perrenoud
- Service of Neurology Centre Hospitalier Universitaire Vaudois (CHUV) Chemin du Mont-Paisible 16CH 1011 Lausanne Switzerland
| | - Lena M Will
- Cell Biology Department of Biology Faculty of Science Utrecht University Padualaan 83584 CH Utrecht The Netherlands
| | - Esther Hulsenboom
- Department of Neurology Erasmus University Medical Center Dr. Molewaterplein 403015 GD Rotterdam The Netherlands
| | - Jean-Francois Demonet
- Leenaards Memory Centre Department of Clinical Neurosciences Centre Hospitalier Universitaire Vaudois (CHUV) Chemin du Mont-Paisible 16CH 1011 Lausanne Switzerland
| | - Lidia Sabater
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS) Carrer del Rosselló 14908036 Barcelona Spain
| | - Johan M Kros
- Department of Pathology Erasmus University Medical Center Dr. Molewaterplein 403015 GD Rotterdam The Netherlands
| | - Jan J G M Verschuuren
- Department of Neurology Leiden University Medical Center Albinusdreef 22333 ZA Leiden The Netherlands
| | - Maarten J Titulaer
- Department of Neurology Erasmus University Medical Center Dr. Molewaterplein 403015 GD Rotterdam The Netherlands
| | - Esther de Graaff
- Cell Biology Department of Biology Faculty of Science Utrecht University Padualaan 83584 CH Utrecht The Netherlands
| | - Peter A E Sillevis Smitt
- Department of Neurology Erasmus University Medical Center Dr. Molewaterplein 403015 GD Rotterdam The Netherlands
| | - Casper C Hoogenraad
- Cell Biology Department of Biology Faculty of Science Utrecht University Padualaan 83584 CH Utrecht The Netherlands
| |
Collapse
|
11
|
|
12
|
Functional Mechanisms of Recovery after Chronic Stroke: Modeling with the Virtual Brain. eNeuro 2016; 3:eN-NWR-0158-15. [PMID: 27088127 PMCID: PMC4819288 DOI: 10.1523/eneuro.0158-15.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
We have seen important strides in our understanding of mechanisms underlying stroke recovery, yet effective translational links between basic and applied sciences, as well as from big data to individualized therapies, are needed to truly develop a cure for stroke. We present such an approach using The Virtual Brain (TVB), a neuroinformatics platform that uses empirical neuroimaging data to create dynamic models of an individual’s human brain; specifically, we simulate fMRI signals by modeling parameters associated with brain dynamics after stroke. In 20 individuals with stroke and 11 controls, we obtained rest fMRI, T1w, and diffusion tensor imaging (DTI) data. Motor performance was assessed pre-therapy, post-therapy, and 6–12 months post-therapy. Based on individual structural connectomes derived from DTI, the following steps were performed in the TVB platform: (1) optimization of local and global parameters (conduction velocity, global coupling); (2) simulation of BOLD signal using optimized parameter values; (3) validation of simulated time series by comparing frequency, amplitude, and phase of the simulated signal with empirical time series; and (4) multivariate linear regression of model parameters with clinical phenotype. Compared with controls, individuals with stroke demonstrated a consistent reduction in conduction velocity, increased local dynamics, and reduced local inhibitory coupling. A negative relationship between local excitation and motor recovery, and a positive correlation between local dynamics and motor recovery were seen. TVB reveals a disrupted post-stroke system favoring excitation-over-inhibition and local-over-global dynamics, consistent with existing mammal literature on stroke mechanisms. Our results point to the potential of TVB to determine individualized biomarkers of stroke recovery.
Collapse
|
13
|
Das HK, Das D, Doley R, Sahu PP. Quantifying Demyelination in NK venom treated nerve using its electric circuit model. Sci Rep 2016; 6:22385. [PMID: 26932543 PMCID: PMC4773768 DOI: 10.1038/srep22385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.
Collapse
Affiliation(s)
- H. K. Das
- Department of Electronics and Communication Engg., Tezpur University, Tezpur-784028, Assam, India
| | - D. Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784028, Assam, India
| | - R. Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784028, Assam, India
| | - P. P. Sahu
- Department of Electronics and Communication Engg., Tezpur University, Tezpur-784028, Assam, India
| |
Collapse
|
14
|
Selective Loss of Presynaptic Potassium Channel Clusters at the Cerebellar Basket Cell Terminal Pinceau in Adam11 Mutants Reveals Their Role in Ephaptic Control of Purkinje Cell Firing. J Neurosci 2015; 35:11433-44. [PMID: 26269648 DOI: 10.1523/jneurosci.1346-15.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED A specialized axonal ending, the basket cell "pinceau," encapsulates the Purkinje cell axon initial segment (AIS), exerting final inhibitory control over the integrated outflow of the cerebellar cortex. This nonconventional axo-axonic contact extends beyond the perisomatic chemical GABAergic synaptic boutons to the distal AIS, lacks both sodium channels and local exocytotic machinery, and yet contains a dense cluster of voltage-gated potassium channels whose functional contribution is unknown. Here, we show that ADAM11, a transmembrane noncatalytic disintegrin, is the first reported Kv1-interacting protein essential for localizing Kv1.1 and Kv1.2 subunit complexes to the distal terminal. Selective absence of these channels at the pinceau due to mutation of ADAM11 spares spontaneous GABA release from basket cells at the perisomatic synapse yet eliminates ultrarapid ephaptic inhibitory synchronization of Purkinje cell firing. Our findings identify a critical role for presynaptic K(+) channels at the pinceau in ephaptic control over the speed and stability of spike rate coding at the Purkinje cell AIS in mice. SIGNIFICANCE STATEMENT This study identifies ADAM11 as the first essential molecule for the proper localization of potassium ion channels at presynaptic nerve terminals, where they modulate excitability and the release of neural transmitters. Genetic truncation of the transmembrane disintegrin and metalloproteinase protein ADAM11 resulted in the absence of Kv1 channels that are normally densely clustered at the terminals of basket cell axons in the cerebellar cortex. These specialized terminals are responsible for the release of the neurotransmitter GABA onto Purkinje cells and also display electrical signaling. In the ADAM11 mutant, GABAergic release was not altered, but the ultrarapid electrical signal was absent, demonstrating that the dense presynaptic cluster of Kv1 ion channels at these terminals mediate electrical transmission. Therefore, ADAM11 plays a critical role at this central synapse.
Collapse
|
15
|
Uncini A, Kuwabara S. Nodopathies of the peripheral nerve: an emerging concept. J Neurol Neurosurg Psychiatry 2015; 86:1186-95. [PMID: 25699569 DOI: 10.1136/jnnp-2014-310097] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/31/2015] [Indexed: 12/17/2022]
Abstract
Peripheral nerve diseases are traditionally classified as demyelinating or axonal. It has been recently proposed that microstructural changes restricted to the nodal/paranodal region may be the key to understanding the pathophysiology of antiganglioside antibody mediated neuropathies. We reviewed neuropathies with different aetiologies (dysimmune, inflammatory, ischaemic, nutritional, toxic) in which evidence from nerve conductions, excitability studies, pathology and animal models, indicate the involvement of the nodal region in the pathogenesis. For these neuropathies, the classification in demyelinating and axonal is inadequate or even misleading, we therefore propose a new category of nodopathy that has the following features: (1) it is characterised by a pathophysiological continuum from transitory nerve conduction block to axonal degeneration; (2) the conduction block may be due to paranodal myelin detachment, node lengthening, dysfunction or disruption of Na(+) channels, altered homeostasis of water and ions, or abnormal polarisation of the axolemma; (3) the conduction block may be promptly reversible without development of excessive temporal dispersion; (4) axonal degeneration, depending on the specific disorder and its severity, eventually follows the conduction block. The term nodopathy focuses to the site of primary nerve injury, avoids confusion with segmental demyelinating neuropathies and circumvents the apparent paradox that something axonal may be reversible and have a good prognosis.
Collapse
Affiliation(s)
- Antonino Uncini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G d'Annunzio", Chieti-Pescara, Chieti, Italy
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
Rosenzweig S, Carmichael ST. The axon-glia unit in white matter stroke: mechanisms of damage and recovery. Brain Res 2015; 1623:123-34. [PMID: 25704204 PMCID: PMC4545468 DOI: 10.1016/j.brainres.2015.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
Approximately one quarter of all strokes in humans occur in white matter, and the progressive nature of white matter lesions often results in severe physical and mental disability. Unlike cortical grey matter stroke, the pathology of white matter stroke revolves around disrupted connectivity and injured axons and glial cells, rather than neuronal cell bodies. Consequently, the mechanisms behind ischemic damage to white matter elements, the regenerative responses of glial cells and their signaling pathways, all differ significantly from those in grey matter. Development of effective therapies for white matter stroke would require an enhanced understanding of the complex cellular and molecular interactions within the white matter, leading to the identification of new therapeutic targets. This review will address the unique properties of the axon-glia unit during white matter stroke, describe the challenging process of promoting effective white matter repair, and discuss recently-identified signaling pathways which may hold potential targets for repair in this disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The axon plays a central role in both the injury and repair phases after stroke. This review highlights emerging principles in the study of axonal injury in stroke and the role of the axon in neural repair after stroke. RECENT FINDINGS Ischemic stroke produces a rapid and significant loss of axons in the acute phase. This early loss of axons results from a primary ischemic injury that triggers a wave of calcium signaling, activating proteolytic mechanisms and downstream signaling cascades. A second progressive phase of axonal injury occurs during the subacute period and damages axons that survive the initial ischemic insult but go on to experience a delayed axonal degeneration driven in part by changes in axoglial contact and axonal energy metabolism. Recovery from stroke is dependent on axonal sprouting and reconnection that occurs during a third degenerative/regenerative phase. Despite this central role played by the axon, comparatively little is understood about the molecular pathways that contribute to early and subacute axonal degeneration after stroke. Recent advances in axonal neurobiology and signaling suggest new targets that hold promise as potential molecular therapeutics including axonal calcium signaling, axoglial energy metabolism and cell adhesion as well as retrograde axonal mitogen-activated protein kinase pathways. These novel pathways must be modeled appropriately as the type and severity of axonal injury vary by stroke subtype. SUMMARY Stroke-induced injury to axons occurs in three distinct phases each with a unique molecular underpinning. A wealth of new data about the molecular organization and molecular signaling within axons is available but not yet robustly applied to the study of axonal injury after stroke. Identifying the spatiotemporal patterning of molecular pathways within the axon that contribute to injury and repair may offer new therapeutic strategies for the treatment of stroke.
Collapse
|
18
|
Trimmer JS. Subcellular localization of K+ channels in mammalian brain neurons: remarkable precision in the midst of extraordinary complexity. Neuron 2015; 85:238-56. [PMID: 25611506 DOI: 10.1016/j.neuron.2014.12.042] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium channels (KChs) are the most diverse ion channels, in part due to extensive combinatorial assembly of a large number of principal and auxiliary subunits into an assortment of KCh complexes. Their structural and functional diversity allows KChs to play diverse roles in neuronal function. Localization of KChs within specialized neuronal compartments defines their physiological role and also fundamentally impacts their activity, due to localized exposure to diverse cellular determinants of channel function. Recent studies in mammalian brain reveal an exquisite refinement of KCh subcellular localization. This includes axonal KChs at the initial segment, and near/within nodes of Ranvier and presynaptic terminals, dendritic KChs found at sites reflecting specific synaptic input, and KChs defining novel neuronal compartments. Painting the remarkable diversity of KChs onto the complex architecture of mammalian neurons creates an elegant picture of electrical signal processing underlying the sophisticated function of individual neuronal compartments, and ultimately neurotransmission and behavior.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA; Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
19
|
King AN, Manning CF, Trimmer JS. A unique ion channel clustering domain on the axon initial segment of mammalian neurons. J Comp Neurol 2015; 522:2594-608. [PMID: 24477962 DOI: 10.1002/cne.23551] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/11/2023]
Abstract
The axon initial segment (AIS) plays a key role in initiation of action potentials and neuronal output. The plasma membrane of the AIS contains high densities of voltage-gated ion channels required for these electrical events, and much recent work has focused on defining the mechanisms for generating and maintaining this unique neuronal plasma membrane domain. The Kv2.1 voltage-gated potassium channel is abundantly present in large clusters on the soma and proximal dendrites of mammalian brain neurons. Kv2.1 is also a component of the ion channel repertoire at the AIS. Here we show that Kv2.1 clusters on the AIS of brain neurons across diverse mammalian species including humans define a noncanonical ion channel clustering domain deficient in Ankyrin-G. The sites of Kv2.1 clustering on the AIS are sites where cisternal organelles, specialized intracellular calcium release membranes, come into close apposition with the plasma membrane, and are also sites of clustering of γ-aminobutyric acid (GABA)ergic synapses. Using an antibody specific for a single Kv2.1 phosphorylation site, we find that the phosphorylation state differs between Kv2.1 clusters on the proximal and distal portions of the AIS. Together, these studies show that the sites of Kv2.1 clustering on the AIS represent specialized domains containing components of diverse neuronal signaling pathways that may contribute to local regulation of Kv2.1 function and AIS membrane excitability.
Collapse
Affiliation(s)
- Anna N King
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | | | | |
Collapse
|
20
|
Stathopoulos P, Alexopoulos H, Dalakas MC. Autoimmune antigenic targets at the node of Ranvier in demyelinating disorders. Nat Rev Neurol 2015; 11:143-56. [DOI: 10.1038/nrneurol.2014.260] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
CK2 accumulation at the axon initial segment depends on sodium channel Nav1. FEBS Lett 2014; 588:3403-8. [PMID: 25109776 DOI: 10.1016/j.febslet.2014.07.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022]
Abstract
Accumulation of voltage-gated sodium channel Nav1 at the axon initial segment (AIS), results from a direct interaction with ankyrin G. This interaction is regulated in vitro by the protein kinase CK2, which is also highly enriched at the AIS. Here, using phosphospecific antibodies and inhibition/depletion approaches, we showed that Nav1 channels are phosphorylated in vivo in their ankyrin-binding motif. Moreover, we observed that CK2 accumulation at the AIS depends on expression of Nav1 channels, with which CK2 forms tight complexes. Thus, the CK2-Nav1 interaction is likely to initiate an important regulatory mechanism to finely control Nav1 phosphorylation and, consequently, neuronal excitability.
Collapse
|
22
|
The node of Ranvier in CNS pathology. Acta Neuropathol 2014; 128:161-75. [PMID: 24913350 PMCID: PMC4102831 DOI: 10.1007/s00401-014-1305-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K+ channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders.
Collapse
|
23
|
Kegel L, Jaegle M, Driegen S, Aunin E, Leslie K, Fukata Y, Watanabe M, Fukata M, Meijer D. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination. Development 2014; 141:1749-56. [PMID: 24715463 DOI: 10.1242/dev.107995] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution.
Collapse
Affiliation(s)
- Linde Kegel
- Erasmus University Medical Center, Biomedical Sciences, Departments of Genetics and Cell Biology, Rotterdam 3015GE, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gutzmann A, Ergül N, Grossmann R, Schultz C, Wahle P, Engelhardt M. A period of structural plasticity at the axon initial segment in developing visual cortex. Front Neuroanat 2014; 8:11. [PMID: 24653680 PMCID: PMC3949221 DOI: 10.3389/fnana.2014.00011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/20/2014] [Indexed: 01/09/2023] Open
Abstract
Cortical networks are shaped by sensory experience and are most susceptible to modifications during critical periods characterized by enhanced plasticity at the structural and functional level. A system particularly well-studied in this context is the mammalian visual system. Plasticity has been documented for the somatodendritic compartment of neurons in detail. A neuronal microdomain not yet studied in this context is the axon initial segment (AIS) located at the proximal axon segment. It is a specific electrogenic axonal domain and the site of action potential (AP) generation. Recent studies showed that structure and function of the AIS can be dynamically regulated. Here we hypothesize that the AIS shows a dynamic regulation during maturation of the visual cortex. We therefore analyzed AIS length development from embryonic day (E) 12.5 to adulthood in mice. A tri-phasic time course of AIS length remodeling during development was observed. AIS first appeared at E14.5 and increased in length throughout the postnatal period to a peak between postnatal day (P) 10 to P15 (eyes open P13–14). Then, AIS length was reduced significantly around the beginning of the critical period for ocular dominance plasticity (CP, P21). Shortest AIS were observed at the peak of the CP (P28), followed by a moderate elongation toward the end of the CP (P35). To test if the dynamic maturation of the AIS is influenced by eye opening (onset of activity), animals were deprived of visual input before and during the CP. Deprivation for 1 week prior to eye opening did not affect AIS length development. However, deprivation from P0 to 28 and P14 to 28 resulted in AIS length distribution similar to the peak at P15. In other words, deprivation from birth prevents the transient shortening of the AIS and maintains an immature AIS length. These results are the first to suggest a dynamic maturation of the AIS in cortical neurons and point to novel mechanisms in the development of neuronal excitability.
Collapse
Affiliation(s)
- Annika Gutzmann
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Nursah Ergül
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Rebecca Grossmann
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Christian Schultz
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| | - Petra Wahle
- AG Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Germany
| | - Maren Engelhardt
- CBTM, Medical Faculty Mannheim, Institute of Neuroanatomy, Heidelberg University Heidelberg, Germany
| |
Collapse
|
25
|
Bagchi B, Al-Sabi A, Kaza S, Scholz D, O'Leary VB, Dolly JO, Ovsepian SV. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination. PLoS One 2014; 9:e87736. [PMID: 24498366 PMCID: PMC3912067 DOI: 10.1371/journal.pone.0087736] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice. Immuno-fluorescence confocal analysis of the expression and distribution of voltage-activated K⁺ channels (K(V)1.1 and 1.2 α subunits) revealed their spread from typical juxta-paranodal (JXP) sites to nodes in demyelinated axons, albeit with a disproportionate increase in the level of K(V)1.1 subunit. Functionally, in contrast to monophasic compound action potentials (CAPs) recorded in controls, responses derived from optic nerves of cuprizone-treated mice displayed initial synchronous waveform followed by a dispersed component. Partial restoration of CAPs by broad spectrum (4-aminopyridine) or K(V)1.1-subunit selective (dendrotoxin K) blockers of K⁺ currents suggest enhanced K(V)1.1-mediated conductance in the demyelinated optic nerve. Biophysical profiling of K⁺ currents mediated by recombinant channels comprised of different K(V)1.1 and 1.2 stoichiometries revealed that the enrichment of K(V)1 channels K(V)1.1 subunit endows a decrease in the voltage threshold and accelerates the activation kinetics. Together with the morphometric data, these findings provide important clues to a molecular basis for temporal dispersion of CAPs and reduced excitability of demyelinated optic nerves, which could be of potential relevance to the patho-physiology of MS and related disorders.
Collapse
Affiliation(s)
- Bandita Bagchi
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Ahmed Al-Sabi
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Seshu Kaza
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - Dimitri Scholz
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Valerie B. O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
| | - J. Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- * E-mail: (SVO); (JOD)
| | - Saak V. Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- Department of Biotechnology, Dublin City University, Glasnevin, Dublin, Republic of Ireland
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ludwig-Maximilians-Universität München, Zentrum für Neuropathologie, Feodor-Lynen-Str. 23, Munich, Germany
- * E-mail: (SVO); (JOD)
| |
Collapse
|
26
|
Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 2013; 60:61-79. [PMID: 23969238 PMCID: PMC3882011 DOI: 10.1016/j.nbd.2013.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.
Collapse
Affiliation(s)
- Marek Ma
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Abstract
Dysfunction and/or disruption of nodes of Ranvier are now recognized as key contributors to the pathophysiology of various neurological diseases. One reason is that the excitable nodal axolemma contains a high density of Nav (voltage-gated Na+ channels) that are required for the rapid and efficient saltatory conduction of action potentials. Nodal physiology is disturbed by altered function, localization, and expression of voltage-gated ion channels clustered at nodes and juxtaparanodes, and by disrupted axon–glial interactions at paranodes. This paper reviews recent discoveries in molecular/cellular neuroscience, genetics, immunology, and neurology that highlight the critical roles of nodes of Ranvier in health and disease.
Collapse
|
28
|
Eshed-Eisenbach Y, Peles E. The making of a node: a co-production of neurons and glia. Curr Opin Neurobiol 2013; 23:1049-56. [PMID: 23831261 DOI: 10.1016/j.conb.2013.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
Nodes of Ranvier are specialized axonal domains formed in response to a glial signal. Recent research advances have revealed that both CNS and PNS nodes form by several overlapping molecular mechanisms. However, the precise nature of these mechanisms and the hierarchy existing between them is considerably different in CNS versus PNS nodes. Namely, the Schwann cells of the PNS, which directly contact the nodal axolemma, secrete proteins that cluster axonodal components at the edges of the growing myelin segment. In contrast, the formation of CNS nodes, which are not contacted by the myelinating glia, is surprisingly similar to the assembly of the axon initial segment and depends largely on axonal diffusion barriers.
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
29
|
Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 2013; 126:59-74. [PMID: 23595276 DOI: 10.1007/s00401-013-1119-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/27/2022]
Abstract
Traumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI), and is associated with much of its morbidity. Increasingly, it has also been recognized as a major pathology of mild TBI (mTBI). In terms of its pathogenesis, numerous studies have investigated the susceptibility of the nodes of Ranvier, the paranode and internodal regions to TAI. The nodes of Ranvier, with their unique composition and concentration of ion channels, have been suggested as the primary site of injury, initiating a cascade of abnormalities in the related paranodal and internodal domains that lead to local axonal swellings and detachment. No investigation, however, has determined the effect of TAI upon the axon initial segment (AIS), a segment critical to regulating polarity and excitability. The current study sought to identify the susceptibility of these different axon domains to TAI within the neocortex, where each axonal domain could be simultaneously assessed. Utilizing a mouse model of mTBI, a temporal and spatial heterogeneity of axonal injury was found within the neocortical gray matter. Although axonal swellings were found in all domains along myelinated neocortical axons, the majority of TAI occurred within the AIS, which progressed without overt structural disruption of the AIS itself. The finding of primary AIS involvement has important implications regarding neuronal polarity and the fate of axotomized processes, while also raising therapeutic implications, as the mechanisms underlying such axonal injury in the AIS may be distinct from those described for nodal/paranodal injury.
Collapse
|
30
|
Enneking EM, Kudumala SR, Moreno E, Stephan R, Boerner J, Godenschwege TA, Pielage J. Transsynaptic coordination of synaptic growth, function, and stability by the L1-type CAM Neuroglian. PLoS Biol 2013; 11:e1001537. [PMID: 23610557 PMCID: PMC3627646 DOI: 10.1371/journal.pbio.1001537] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
Experiments in peripheral and central synapses reveal the regulatory mechanisms that enable trans-synaptic control of synapse development and maintenance by the L1-type CAM Neuroglian. The precise control of synaptic connectivity is essential for the development and function of neuronal circuits. While there have been significant advances in our understanding how cell adhesion molecules mediate axon guidance and synapse formation, the mechanisms controlling synapse maintenance or plasticity in vivo remain largely uncharacterized. In an unbiased RNAi screen we identified the Drosophila L1-type CAM Neuroglian (Nrg) as a central coordinator of synapse growth, function, and stability. We demonstrate that the extracellular Ig-domains and the intracellular Ankyrin-interaction motif are essential for synapse development and stability. Nrg binds to Ankyrin2 in vivo and mutations reducing the binding affinities to Ankyrin2 cause an increase in Nrg mobility in motoneurons. We then demonstrate that the Nrg–Ank2 interaction controls the balance of synapse growth and stability at the neuromuscular junction. In contrast, at a central synapse, transsynaptic interactions of pre- and postsynaptic Nrg require a dynamic, temporal and spatial, regulation of the intracellular Ankyrin-binding motif to coordinate pre- and postsynaptic development. Our study at two complementary model synapses identifies the regulation of the interaction between the L1-type CAM and Ankyrin as an important novel module enabling local control of synaptic connectivity and function while maintaining general neuronal circuit architecture. The function of neuronal circuits relies on precise connectivity, and processes like learning and memory involve refining this connectivity through the selective formation and elimination of synapses. Cell adhesion molecules (CAMs) that directly mediate cell–cell interactions at synaptic contacts are thought to mediate this structural synaptic plasticity. In this study, we used an unbiased genetic screen to identify the Drosophila L1-type CAM Neuroglian as a central regulator of synapse formation and maintenance. We show that the intracellular Ankyrin interaction motif, which links Neuroglian to the cytoskeleton, is an essential regulatory site for Neuroglian mobility, adhesion, and synaptic function. In motoneurons, the strength of Ankyrin binding directly controls the balance between synapse formation and maintenance. At a central synapse, however, a dynamic regulation of the Neuroglian–Ankyrin interaction is required to coordinate transsynaptic development. Our study identifies the interaction of the L1-type CAM with Ankyrin as a novel regulatory module enabling local and precise control of synaptic connectivity without altering general neuronal circuit architecture. This interaction is relevant for normal nervous system development and disease as mutations in L1-type CAMs cause mental retardation and psychiatric diseases in humans.
Collapse
Affiliation(s)
- Eva-Maria Enneking
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raiko Stephan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jana Boerner
- Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Tanja A. Godenschwege
- Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail: (JP); (TAG)
| | - Jan Pielage
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail: (JP); (TAG)
| |
Collapse
|
31
|
Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 2013; 53 Suppl 9:21-31. [PMID: 23216576 DOI: 10.1111/epi.12032] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K(+) (Kv) and Na(+) (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials. Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes give rise to a variety of seizure-related "channelopathies," and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes.
Collapse
Affiliation(s)
- Helene Vacher
- CRN2M CNRS UMR7286, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
32
|
Farrar MA, Park SB, Lin CSY, Kiernan MC. Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability. J Physiol 2013; 591:273-86. [PMID: 23006483 PMCID: PMC3630785 DOI: 10.1113/jphysiol.2012.240820] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/19/2012] [Indexed: 11/08/2022] Open
Abstract
While substantial alterations in myelination and axonal growth have been described during maturation, their interactions with the configuration and activity of axonal membrane ion channels to achieve impulse conduction have not been fully elucidated. The present study utilized axonal excitability techniques to compare the changes in nerve function across healthy infants, children, adolescents and adults. Multiple excitability indices (stimulus-response curve, strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle) combined with conventional neurophysiological measures were investigated in 57 subjects (22 males, 35 females; age range 0.46-24 years), stimulating the median motor nerve at the wrist. Maturational changes in conduction velocity were paralleled by significant alterations in multiple excitability parameters, similarly reaching steady values in adolescence. Maturation was accompanied by reductions in threshold (P < 0.005) and rheobase (P = 0.001); depolarizing and hyperpolarizing electrotonus progressively reduced (P < 0.001), or 'fanned-in'; resting current-threshold slope increased (P < 0.0001); accommodation to depolarizing currents prolonged (P < 0.0001); while greater threshold changes in refractoriness (P = 0.001) and subexcitability (P < 0.01) emerged. Taken together, the present findings suggest that passive membrane conductances and the activity of K(+) conductances decrease with formation of the axo-glial junction and myelination. In turn, these functional alterations serve to enhance the efficiency and speed of impulse conduction concurrent with the acquisition of motor skills during childhood, and provide unique insight into the evolution of postnatal human peripheral nerve function. Significantly, these findings bring the dynamics of axonal development to the clinical domain and serve to further illuminate pathophysiological mechanisms that occur during development.
Collapse
Affiliation(s)
- Michelle A Farrar
- Neuroscience Research Australia, Barker St, Randwick, Sydney, NSW 2031, Australia
| | | | | | | |
Collapse
|
33
|
Rosenbluth J, Bobrowski-Khoury N. Structural bases for central nervous system malfunction in the quaking mouse: dysmyelination in a potential model of schizophrenia. J Neurosci Res 2012; 91:374-81. [PMID: 23224912 DOI: 10.1002/jnr.23167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/20/2012] [Accepted: 10/08/2012] [Indexed: 11/07/2022]
Abstract
The dysmyelinating mouse mutant quaking (qk) is thought to be a model of schizophrenia based on diminution of CNS myelin (Andreone et al., 2007) and downregulation of the Qk gene (Haroutunian et al., 2006) in the brains of schizophrenic patients. The purpose of this study was to identify specific structural defects in the qk mouse CNS that could compromise physiologic function and that in humans might account for some of the cognitive defects characteristic of schizophrenia. Ultrastructural analysis of qk mouse CNS myelinated fibers shows abnormalities in nodal, internodal, and paranodal regions, including marked variation in myelin thickness among neighboring fibers, spotty disruption of paranodal junctions, abnormal distribution of nodal and paranodal ion channel complexes, generalized thinning and incompactness of myelin, and on many axonal profiles complete absence of myelin. These structural defects are likely to cause abnormalities in conduction velocity, synchrony of activation, temporal ordering of signals, and other physiological parameters. We conclude that the structural abnormalities described are likely to be responsible for significant functional impairment both in the qk mouse CNS and in the human CNS with comparable myelin pathology.
Collapse
Affiliation(s)
- J Rosenbluth
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
34
|
Ankyrin-B structurally defines terminal microdomains of peripheral somatosensory axons. Brain Struct Funct 2012; 218:1005-16. [DOI: 10.1007/s00429-012-0443-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023]
|
35
|
Buchner DA, Geisinger JM, Glazebrook PA, Morgan MG, Spiezio SH, Kaiyala KJ, Schwartz MW, Sakurai T, Furley AJ, Kunze DL, Croniger CM, Nadeau JH. The juxtaparanodal proteins CNTNAP2 and TAG1 regulate diet-induced obesity. Mamm Genome 2012; 23:431-42. [PMID: 22752552 DOI: 10.1007/s00335-012-9400-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
Abstract
Despite considerable effort, the identification of genes that regulate complex multigenic traits such as obesity has proven difficult with conventional methodologies. The use of a chromosome substitution strain-based mapping strategy based on deep congenic analysis overcame many of the difficulties associated with gene discovery and led to the finding that the juxtaparanodal proteins CNTNAP2 and TAG1 regulate diet-induced obesity. The effects of a mild Cntnap2 mutation on body weight were highly dependent on genetic background, as both obesity-promoting and obesity-resistant effects of Cntnap2 were observed on different genetic backgrounds. The more severe effect of complete TAG1 deficiency, by decreasing food intake, completely prevented the weight gain normally associated with high-fat-diet feeding. Together, these studies implicate two novel proteins in the regulation of diet-induced obesity. Moreover, as juxtaparanodal proteins have previously been implicated in various neurological disorders, our results suggest a potential genetic and molecular link between obesity and diseases such as autism and epilepsy.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Glasscock E, Qian J, Kole MJ, Noebels JL. Transcompartmental reversal of single fibre hyperexcitability in juxtaparanodal Kv1.1-deficient vagus nerve axons by activation of nodal KCNQ channels. J Physiol 2012; 590:3913-26. [PMID: 22641786 DOI: 10.1113/jphysiol.2012.235606] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kv1.1 channels cluster at juxtaparanodes of myelinated axons in the vagus nerve, the primary conduit for parasympathetic innervation of the heart. Kcna1-null mice lacking these channels exhibit neurocardiac dysfunction manifested by atropine-sensitive atrioventricular conduction blocks and bradycardia that may culminate in sudden death. To evaluate whether loss of Kv1.1 channels alters electrogenic properties within the nerve, we compared the intrinsic excitability of single myelinated A- and Aδ-axons from excised cervical vagus nerves of young adult Kcna1-null mice and age-matched, wild-type littermate controls. Although action potential shapes and relative refractory periods varied little between genotypes, Kv1.1-deficient large myelinated A-axons showed a fivefold increase in susceptibility to 4-aminopyridine (4-AP)-induced spontaneous ectopic firing. Since the repolarizing currents of juxtaparanodal Kv1 channels and nodal KCNQ potassium channels both act to dampen repetitive activity, we examined whether augmenting nodal KCNQ activation could compensate for Kv1.1 loss and reverse the spontaneous hyperexcitability in Kv1.1-deficient A-axons. Application of the selective KCNQ opener flupirtine raised A-axon firing threshold while profoundly suppressing 4-AP-induced spontaneous firing, demonstrating a functional synergy between the two compartments. We conclude that juxtaparanodal Kv1.1-deficiency causes intrinsic hyperexcitability in large myelinated axons in vagus nerve which could contribute to autonomic dysfunction in Kcna1-null mice, and that KCNQ openers reveal a transcompartmental synergy between Kv1 and KCNQ channels in regulating axonal excitability.
Collapse
Affiliation(s)
- Edward Glasscock
- J. L. Noebels: Department of Neurology, Baylor College of Medicine, One Baylor Plaza, NB220, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
37
|
Desmazières A, Sol-Foulon N, Lubetzki C. Changes at the nodal and perinodal axonal domains: a basis for multiple sclerosis pathology? Mult Scler 2012; 18:133-7. [PMID: 22217583 DOI: 10.1177/1352458511434370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
How axonal damage, a major prognostic factor of multiple sclerosis disability progression, is induced, is likely to be multifactorial. Whereas axonal injury has been identified as a consequence of myelin loss, the possibility of an additional direct damage is also suggested. In this context, recent data have highlighted the nodal and perinodal axonal domains of the myelinated neurons as potential targets of the disease process, opening new perspectives in multiple sclerosis pathophysiology.
Collapse
Affiliation(s)
- Anne Desmazières
- CRICM-UPMC/Inserm UMR_S 975/CNRS UMR 7225, Hôpital de la Salpêtrière, Paris, France
| | | | | |
Collapse
|
38
|
McLinden KA, Trunova S, Giniger E. At the Fulcrum in Health and Disease: Cdk5 and the Balancing Acts of Neuronal Structure and Physiology. ACTA ACUST UNITED AC 2012; 2012:001. [PMID: 25364642 PMCID: PMC4212508 DOI: 10.4172/2168-975x.s1-001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cdk5 has been implicated in a multitude of processes in neuronal development, cell biology and physiology. These influence many neurological disorders, but the very breadth of Cdk5 effects has made it difficult to synthesize a coherent picture of the part played by this protein in health and disease. In this review, we focus on the roles of Cdk5 in neuronal function, particularly synaptic homeostasis, plasticity, neurotransmission, subcellular organization, and trafficking. We then discuss how disruption of these Cdk5 activities may initiate or exacerbate neural disorders. A recurring theme will be the sensitivity of Cdk5 sequelae to the precise biological context under consideration.
Collapse
Affiliation(s)
- Kristina A McLinden
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| | - Svetlana Trunova
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, USA ; National Human Genome Research Institute, USA
| |
Collapse
|