1
|
Obeagu EI, Obeagu GU. Telomere Dynamics in Sickle Cell Anemia: Unraveling Molecular Aging and Disease Progression. J Blood Med 2024; 15:313-323. [PMID: 39081620 PMCID: PMC11288316 DOI: 10.2147/jbm.s462758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Sickle Cell Anemia (SCA) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin, leading to the formation of sickle-shaped red blood cells. While extensive research has unraveled many aspects of the genetic and molecular basis of SCA, the role of telomere dynamics in disease progression remains a relatively unexplored frontier. This review seeks to provide a comprehensive examination of telomere biology within the context of SCA, aiming to elucidate its potential impact on molecular aging and the progression of the disease. The impact of oxidative stress on telomere dynamics in SCA is explored, with a particular focus on how increased reactive oxygen species (ROS) may contribute to accelerated telomere shortening and genomic instability. Furthermore, the potential relationship between telomere dysfunction and cellular senescence in SCA is investigated, shedding light on how telomere dynamics may contribute to the premature aging of cells in this population. The review concludes by summarizing key findings and proposing potential therapeutic strategies targeting telomere dynamics to mitigate disease progression in SCA. It also identifies gaps in current understanding and suggests avenues for future research, emphasizing the importance of further investigating telomere biology to advance our understanding of molecular aging and disease progression in Sickle Cell Anemia. This comprehensive exploration of telomere dynamics in SCA offers insights into potential mechanisms of molecular aging and disease progression, paving the way for targeted therapeutic interventions and improved disease management.
Collapse
|
2
|
Kumar N, Sethi G. Telomerase and hallmarks of cancer: An intricate interplay governing cancer cell evolution. Cancer Lett 2023; 578:216459. [PMID: 37863351 DOI: 10.1016/j.canlet.2023.216459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Transformed cells must acquire specific characteristics to be malignant. Weinberg and Hanahan characterize these characteristics as cancer hallmarks. Though these features are independently driven, substantial signaling crosstalk in transformed cells efficiently promotes these feature acquisitions. Telomerase is an enzyme complex that maintains telomere length. However, its main component, Telomere reverse transcriptase (TERT), has been found to interact with various signaling molecules like cMYC, NF-kB, BRG1 and cooperate in transcription and metabolic reprogramming, acting as a strong proponent of malignant features such as cell death resistance, sustained proliferation, angiogenesis activation, and metastasis, among others. It allows cells to avoid replicative senescence and achieve endless replicative potential. This review summarizes both the canonical and noncanonical functions of TERT and discusses how they promote cancer hallmarks. Understanding the role of Telomerase in promoting cancer hallmarks provides vital insight into the underlying mechanism of cancer genesis and progression and telomerase intervention as a possible therapeutic target for cancer treatment. More investigation into the precise molecular mechanisms of telomerase-mediated impacts on cancer hallmarks will contribute to developing more focused and customized cancer treatment methods.
Collapse
Affiliation(s)
- Naveen Kumar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
3
|
Measuring Transposable Element Activity in Adult Drosophila Ovaries. Methods Mol Biol 2023; 2626:309-321. [PMID: 36715912 DOI: 10.1007/978-1-0716-2970-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transposons are genetic elements that use various mechanisms of transposition to move around the genome, thus posing a risk to genomic integrity. Repression of transposable elements (TEs) involves the complex PIWI pathway and several proteins associated with heterochromatinization. All players of TE repression are indispensable for proper reproductive fitness, as loss-of-function mutations in these genes result primarily in sterility and impaired reproductive development. When investigating the function of novel genes with similar phenotypes, elevated transposon expression in reproductive tissues can be a marker for involvement in the aforementioned processes. Here, we present a protocol for investigating TE levels in adult Drosophila ovaries, from dissection to data analysis.
Collapse
|
4
|
Characterization of Aberrations in DNA Damage Repair Pathways in Gastrointestinal Stromal Tumors: The Clinicopathologic Relevance of γH2AX and 53BP1 in Correlation with Heterozygous Deletions of CHEK2, BRCA2, and RB1. Cancers (Basel) 2022; 14:cancers14071787. [PMID: 35406559 PMCID: PMC8997382 DOI: 10.3390/cancers14071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic aberrations involving DNA damage repair (DDR) remain underexplored in gastrointestinal stromal tumors (GISTs). We characterized DDR abnormalities using targeted next-generation sequencing and multiplex ligation-dependent probe amplification, and performed immunofluorescence (IF) and immunohistochemistry (IHC) analyses of γH2AX and 53BP1. Consistent with IF-validated nuclear co-localization, γH2AX and 53BP1 showed robust correlations in expression levels, as did both biomarkers between IF and IHC. Without recurrent pathogenic single-nucleotide variants, heterozygous deletions (HetDels) frequently targeted DNA damage-sensing genes, with CHEK2-HetDel being the most prevalent. Despite their chromosomal proximity, BRCA2 and RB1 were occasionally hit by HetDels and were seldom co-deleted. HetDels of CHEK2 and BRCA2 showed a preference for older age groups, while RB1-HetDel predominated in the non-gastric, high-risk, and 53BP1-overexpressing GISTs. Higher risk levels were consistently related to γ-H2AX or 53BP1 overexpression (all p < 0.01) in two validation cohorts, while only 53BP1 overexpression was associated with the deletion of KIT exon 11 (KITex11-del) among genotyped GISTs. Low expressers of dual biomarkers were shown by univariate analysis to have longer disease-free survival (p = 0.031). However, higher risk levels, epithelioid histology, and KITex11-del retained prognostic independence. Conclusively, IHC is a useful surrogate of laborious IF in the combined assessment of 53BP1 and γ-H2AX to identify potential DDR-defective GISTs, which were frequently aberrated by HetDels and a harbinger of progression.
Collapse
|
5
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.
Collapse
Affiliation(s)
- Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; .,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Vega-Estévez S, Armitage A, Bates HJ, Harrison RJ, Buscaino A. The Genome of the CTG(Ser1) Yeast Scheffersomyces stipitis Is Plastic. mBio 2021; 12:e0187121. [PMID: 34488452 PMCID: PMC8546629 DOI: 10.1128/mbio.01871-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Microorganisms need to adapt to environmental changes, and genome plasticity can lead to rapid adaptation to hostile environments by increasing genetic diversity. Here, we investigate genome plasticity in the CTG(Ser1) yeast Scheffersomyces stipitis, an organism with an enormous potential for second-generation biofuel production. We demonstrate that S. stipitis has an intrinsically plastic genome and that different S. stipitis isolates have genomes with distinct chromosome organizations. Real-time evolution experiments show that S. stipitis genome plasticity is common and rapid since extensive genomic changes with fitness benefits are detected following in vitro evolution experiments. Hybrid MinION Nanopore and Illumina genome sequencing identify retrotransposons as major drivers of genome diversity. Indeed, the number and position of retrotransposons are different in different S. stipitis isolates, and retrotransposon-rich regions of the genome are sites of chromosome rearrangements. Our findings provide important insights into the adaptation strategies of the CTG(Ser1) yeast clade and have critical implications in the development of second-generation biofuels. These data highlight that genome plasticity is an essential factor for developing sustainable S. stipitis platforms for second-generation biofuels production. IMPORTANCE Genomes contain genes encoding the information needed to build the organism and allow it to grow and develop. Genomes are described as stable structures where genes have specific positions within a chromosome. Changes in gene dosage and position are viewed as harmful. However, it is becoming increasingly clear that genome plasticity can benefit microbial organisms that need to adapt rapidly to environmental changes. Mechanisms of genome plasticity are still poorly understood. This study focuses on Scheffersomyces stipitis, a yeast that holds great potential for second-generation biofuel production generated from forestry and agriculture waste. We demonstrate that S. stipitis chromosomes are easily reshuffled and that chromosome reshuffling is linked to adaptation to hostile environments. Genome sequencing demonstrates that mobile genetic elements, called transposons, mediate S. stipitis genome reshuffling. These data highlight that understanding genome plasticity is important for developing sustainable S. stipitis platforms for second-generation biofuels production.
Collapse
Affiliation(s)
- Samuel Vega-Estévez
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | - Andrew Armitage
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | | | | | - Alessia Buscaino
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| |
Collapse
|
7
|
Riba A, Fumagalli MR, Caselle M, Osella M. A Model-Driven Quantitative Analysis of Retrotransposon Distributions in the Human Genome. Genome Biol Evol 2021; 12:2045-2059. [PMID: 32986810 PMCID: PMC7750997 DOI: 10.1093/gbe/evaa201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons, DNA sequences capable of creating copies of themselves, compose about half of the human genome and played a central role in the evolution of mammals. Their current position in the host genome is the result of the retrotranscription process and of the following host genome evolution. We apply a model from statistical physics to show that the genomic distribution of the two most populated classes of retrotransposons in human deviates from random placement, and that this deviation increases with time. The time dependence suggests a major role of the host genome dynamics in shaping the current retrotransposon distributions. Focusing on a neutral scenario, we show that a simple model based on random placement followed by genome expansion and sequence duplications can reproduce the empirical retrotransposon distributions, even though more complex and possibly selective mechanisms can have contributed. Besides the inherent interest in understanding the origin of current retrotransposon distributions, this work sets a general analytical framework to analyze quantitatively the effects of genome evolutionary dynamics on the distribution of genomic elements.
Collapse
Affiliation(s)
| | - Maria Rita Fumagalli
- Institute of Biophysics - CNR, National Research Council, Genova, Italy.,Department of Environmental Science and Policy, Center for Complexity and Biosystems, University of Milan, Milano, Italy
| | - Michele Caselle
- Department of Physics and INFN, University of Torino, Torino, Italy
| | - Matteo Osella
- Department of Physics and INFN, University of Torino, Torino, Italy
| |
Collapse
|
8
|
Al-Gabri NA, Saghir SAM, Al-Hashedi SA, El-Far AH, Khafaga AF, Swelum AA, Al-Wajeeh AS, Mousa SA, Abd El-Hack ME, Naiel MAE, El-Tarabily KA. Therapeutic Potential of Thymoquinone and Its Nanoformulations in Pulmonary Injury: A Comprehensive Review. Int J Nanomedicine 2021; 16:5117-5131. [PMID: 34349511 PMCID: PMC8326280 DOI: 10.2147/ijn.s314321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
As a crucial organ, the lung is exposed to various harmful agents that may induce inflammation and oxidative stress, which may cause chronic or acute lung injury. Nigella sativa, also known as black seed, has been widely used to treat various diseases and is one of the most extensively researched medicinal plants. Thymoquinone (TQ) is the main component of black seed volatile oil and has been proven to have antioxidant, anti-inflammatory, and antineoplastic properties. The potential therapeutic properties of TQ against various pulmonary disorders have been studied in both in vitro and in vivo studies. Furthermore, the application of nanotechnology may increase drug solubility, cellular absorption, drug release (sustained or control), and drug delivery to lung tissue target sites. As a result, fabricating TQ as nanoparticles (NPs) is a potential therapeutic approach against a variety of lung diseases. In this current review, we summarize recent findings on the efficacy of TQ and its nanotypes in lung disorders caused by immunocompromised conditions such as cancer, diabetes, gastric ulcers, and other neurodegenerative diseases. It is concluded that TQ nanoparticles with anti-inflammatory, antioxidant, antiasthma, and antitumor activity may be safely applied to treat lung disorders. However, more research is required before TQ nanoparticles can be used as pharmaceutical preparations in human studies.
Collapse
Affiliation(s)
- Naif A Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen.,Laboratory of Regional Djibouti Livestock Quarantine, Abu Yasar international Est. 1999, Arta, Djibouti
| | - Sultan A M Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, AlHussein Bin Talal University, Ma'an, 71111, Jordan
| | | | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | | | - Shaker A Mousa
- Department of Pharmaceutical Sciences, the Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed A E Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.,Biosecurity and One Health Research Centre, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
9
|
Pócza T, Grolmusz VK, Papp J, Butz H, Patócs A, Bozsik A. Germline Structural Variations in Cancer Predisposition Genes. Front Genet 2021; 12:634217. [PMID: 33936164 PMCID: PMC8081352 DOI: 10.3389/fgene.2021.634217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to single nucleotide variations and small-scale indels, structural variations (SVs) also contribute to the genetic diversity of the genome. SVs, such as deletions, duplications, amplifications, or inversions may also affect coding regions of cancer-predisposing genes. These rearrangements may abrogate the open reading frame of these genes or adversely affect their expression and may thus act as germline mutations in hereditary cancer syndromes. With the capacity of disrupting the function of tumor suppressors, structural variations confer an increased risk of cancer and account for a remarkable fraction of heritability. The development of sequencing techniques enables the discovery of a constantly growing number of SVs of various types in cancer predisposition genes (CPGs). Here, we provide a comprehensive review of the landscape of germline SV types, detection methods, pathomechanisms, and frequency in CPGs, focusing on the two most common cancer syndromes: hereditary breast- and ovarian cancer and gastrointestinal cancers. Current knowledge about the possible molecular mechanisms driving to SVs is also summarized.
Collapse
Affiliation(s)
- Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Mary L, Loget P, Odent S, Aussel D, Le Bouar G, Launay E, Henry C, Belaud-Rotureau MA, Jaillard S. Multicolor-FISH Characterization of a Prenatal Mosaicism for a Chromosomal Rearrangement Undetected by Molecular Cytogenetics. Cytogenet Genome Res 2021; 161:143-152. [PMID: 33827072 DOI: 10.1159/000514592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
Fetal mosaicism for chromosomal rearrangements remains a challenge to diagnose, even in the era of whole-genome sequencing. We present here a case of fetal mosaicism for a chromosomal rearrangement explored in amniocytes and fetal muscle, consisting of a major cell population (95%) with partial monosomy 4q and a minor population (5%) with additional material replacing the 4qter deleted segment. Molecular techniques (MLPA, array-CGH) failed to assess the origin of this material. Only multicolor-FISH identified the additional segment on chromosome 4 as derived from chromosome 17. Due to the poor prognosis, the couple chose to terminate the pregnancy. Because of low-level mosaicism, chromosomal microarray analysis (CMA), now considered as first-tier prenatal genetic analysis, did not allow the identification of the minor cell line. In case of large CNVs (>5 Mb) detected by CMA, karyotyping may be considered to elucidate the mechanism of the underlying rearrangement and eliminate mosaicism.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France.,INSERM, EHESP, IRSET - UMR_S 1085, Université Rennes 1, Rennes, France
| | - Philippe Loget
- Service d'Anatomie et Cytologie Pathologiques, CHU Rennes, Rennes, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU Rennes, CLAD Ouest, Rennes, France
| | - Dominique Aussel
- Service de Gynécologie-Obstétrique, Clinique de La Sagesse, Rennes, France
| | - Gwenaelle Le Bouar
- Unité de Médecine fœtale, Service de Gynécologie-Obstétrique, CHU Rennes, Rennes, France
| | - Erika Launay
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Catherine Henry
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France.,INSERM, EHESP, IRSET - UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France.,INSERM, EHESP, IRSET - UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
11
|
Ben-Shlomo A, Deng N, Ding E, Yamamoto M, Mamelak A, Chesnokova V, Labadzhyan A, Melmed S. DNA damage and growth hormone hypersecretion in pituitary somatotroph adenomas. J Clin Invest 2021; 130:5738-5755. [PMID: 32673291 DOI: 10.1172/jci138540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Drivers of sporadic benign pituitary adenoma growth are largely unknown. Whole-exome sequencing of 159 prospectively resected pituitary adenomas showed that somatic copy number alteration (SCNA) rather than mutation is a hallmark of hormone-secreting adenomas and that SCNAs correlate with adenoma phenotype. Using single-gene SCNA pathway analysis, we observed that both cAMP and Fanconi anemia DNA damage repair pathways were affected by SCNAs in growth hormone-secreting (GH-secreting) somatotroph adenomas. As somatotroph differentiation and GH secretion are dependent on cAMP activation and we previously showed DNA damage, aneuploidy, and senescence in somatotroph adenomas, we studied links between cAMP signaling and DNA damage. Stimulation of cAMP in C57BL/6 mouse primary pituitary cultures using forskolin or a long-acting GH-releasing hormone (GHRH) analog increased GH production and DNA damage measured by H2AX phosphorylation and a comet assay. Octreotide, a somatostatin receptor ligand that targets somatotroph adenoma GH secretion in patients with acromegaly, inhibited cAMP and GH and reversed DNA damage induction. In vivo long-acting GHRH treatment also induced pituitary DNA damage in mice. We conclude that cAMP, which induces somatotroph proliferation and GH secretion, may concomitantly induce DNA damage, potentially linking hormone hypersecretion to SCNA and genome instability. These results elucidating somatotroph adenoma pathophysiology identify pathways for targeted treatment.
Collapse
Affiliation(s)
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, and
| | | | | | - Adam Mamelak
- Pituitary Center, Department of Medicine.,Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | |
Collapse
|
12
|
Silipigni R, Milani D, Tolva G, Monfrini E, Giacobbe A, Marchisio PG, Guerneri S. Complex genomic alterations and intellectual disability: an interpretative challenge. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:113-124. [PMID: 33140510 DOI: 10.1111/jir.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Complex chromosomal rearrangements (CCRs) are structural rearrangements involving more than three chromosomes or having more than two breaks; approximately 70% are not associated with any clinical phenotype. Here, we describe a CCR segregating in a two-generation family. METHOD A 4-year-old male was evaluated for developmental delay, mild intellectual disability and epicanthus. Karyotype, fluorescence in situ hybridisation (FISH) analysis and array comparative genomic hybridisation (aCGH) analysis were performed on the patient and of all family members. RESULT Array CGH analysis of the proband detected two non-contiguous genomic gains of chromosome 2 at bands q32.3q33.2 and bands q36.1q36.3. Both karyotype and FISH analysis revealed a recombinant chromosome 2 with a direct insertion of regions q32.3q33.2 and q36.1q36.3 into region q12. Both of these regions were also present in their original location. Karyotype and FISH analysis of the father revealed a de novo direct insertion of regions q32.3q33.2 and q36.1q36.3 into region q12. Moreover, a de novo balanced translocation involving the q arm of the same chromosome 2 and the p arm of chromosome 10 was observed in the father of the proband. The single nucleotide polymorphism (SNP) array analysis and haplotype reconstruction confirmed the paternal origin of the duplications. Karyotype, FISH analysis and array CGH analysis of other family members were all normal. CONCLUSION This report underlines the importance of using different methods to correctly evaluate the origin and the structure of CCRs in order to provide an appropriate management of the patients and a good estimation of the reproductive risk of the family.
Collapse
Affiliation(s)
- R Silipigni
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Tolva
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - E Monfrini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A Giacobbe
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P G Marchisio
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Gualtieri CT. Genomic Variation, Evolvability, and the Paradox of Mental Illness. Front Psychiatry 2021; 11:593233. [PMID: 33551865 PMCID: PMC7859268 DOI: 10.3389/fpsyt.2020.593233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022] Open
Abstract
Twentieth-century genetics was hard put to explain the irregular behavior of neuropsychiatric disorders. Autism and schizophrenia defy a principle of natural selection; they are highly heritable but associated with low reproductive success. Nevertheless, they persist. The genetic origins of such conditions are confounded by the problem of variable expression, that is, when a given genetic aberration can lead to any one of several distinct disorders. Also, autism and schizophrenia occur on a spectrum of severity, from mild and subclinical cases to the overt and disabling. Such irregularities reflect the problem of missing heritability; although hundreds of genes may be associated with autism or schizophrenia, together they account for only a small proportion of cases. Techniques for higher resolution, genomewide analysis have begun to illuminate the irregular and unpredictable behavior of the human genome. Thus, the origins of neuropsychiatric disorders in particular and complex disease in general have been illuminated. The human genome is characterized by a high degree of structural and behavioral variability: DNA content variation, epistasis, stochasticity in gene expression, and epigenetic changes. These elements have grown more complex as evolution scaled the phylogenetic tree. They are especially pertinent to brain development and function. Genomic variability is a window on the origins of complex disease, neuropsychiatric disorders, and neurodevelopmental disorders in particular. Genomic variability, as it happens, is also the fuel of evolvability. The genomic events that presided over the evolution of the primate and hominid lineages are over-represented in patients with autism and schizophrenia, as well as intellectual disability and epilepsy. That the special qualities of the human genome that drove evolution might, in some way, contribute to neuropsychiatric disorders is a matter of no little interest.
Collapse
|
14
|
Stivison EA, Young KJ, Symington LS. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res 2021; 48:12697-12710. [PMID: 33264397 PMCID: PMC7736798 DOI: 10.1093/nar/gkaa1081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Break-induced replication (BIR) is a mechanism used to heal one-ended DNA double-strand breaks, such as those formed at collapsed replication forks or eroded telomeres. Instead of utilizing a canonical replication fork, BIR is driven by a migrating D-loop and is associated with a high frequency of mutagenesis. Here we show that when BIR encounters an interstitial telomere sequence (ITS), the machinery frequently terminates, resulting in the formation of an ectopic telomere. The primary mechanism to convert the ITS to a functional telomere is by telomerase-catalyzed addition of telomeric repeats with homology-directed repair serving as a back-up mechanism. Termination of BIR and creation of an ectopic telomere is promoted by Mph1/FANCM helicase, which has the capacity to disassemble D-loops. Other sequences that have the potential to seed new telomeres but lack the unique features of a natural telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can form ectopic telomeres if BIR is made less processive. Our results support a model in which features of the ITS itself, such as the propensity to form secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by helicases, thereby promoting ectopic telomere formation.
Collapse
Affiliation(s)
- Elizabeth A Stivison
- Program in Nutritional and Metabolic Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kati J Young
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is one of the hallmark of biological tools, contemplated as a valid and hopeful alternatives to genome editing. Advancements in CRISPR-based technologies have empowered scientists with an editing kit that allows them to employ their knowledge for deleting, replacing and lately "Gene Surgery", and provides unique control over genes in broad range of species, and presumably in humans. These fast-growing technologies have high strength and flexibility and are becoming an adaptable tool with implementations that are altering organism's genome and easily used for chromatin manipulation. In addition to the popularity of CRISPR in genome engineering and modern biology, this major tool authorizes breakthrough discoveries and methodological advancements in science. As scientists are developing new types of experiments, some of the applications are raising questions about what CRISPR can enable. The results of evidence-based research strongly suggest that CRISPR is becoming a practical tool for genome-engineering and to create genetically modified eukaryotes, which is needed to establish guidelines on new regulatory concerns for scientific communities.
Collapse
Affiliation(s)
- Zhabiz Golkar
- Division of Academic Affairs, Voorhees College, Denmark, SC, USA.
| |
Collapse
|
16
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
17
|
Liu K, Luo J, Shao C, Ren Z, Sun S, Zhu Y, Zhou H, Jiang Z, Li X, Gu W, Xu Y, Qiang Y, Ren B, Xu L, Wu H, Shen Y. Synaptotagmin 12 (SYT12) Gene Expression Promotes Cell Proliferation and Progression of Lung Adenocarcinoma and Involves the Phosphoinositide 3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Pathway. Med Sci Monit 2020; 26:e920351. [PMID: 32108133 PMCID: PMC7063850 DOI: 10.12659/msm.920351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background This study aimed to use bioinformatics analysis to compare data from tissue microarrays from patients with lung adenocarcinoma (LUAD) and normal lung tissue, and human lung adenocarcinoma cells with normal lung epithelial cells in vitro to investigate the role of synaptotagmin 12 (SYT12) gene expression in LUAD. Material/Methods Human lung adenocarcinoma cell lines (A549, SPC-A-1, H1299, H1975, and PC9) and the normal HBE cell line were compared, and tumor xenografts were developed in mice. The Cancer Genome Atlas (TCGA) tissue microarray data were used to compare SYT12 expression and overall survival (OS). The in vivo and in vitro effects of down-regulation and upregulation of SYT12 were studied using short-interfering RNA (si-RNA) and overexpression plasmids, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and Western blot investigated the molecular mechanisms of SYT12 expression in LUAD. Results SYT12 expression was increased in tissues from patients with LUAD from TCGA and was associated with advanced tumor stage and reduced prognosis. Knockdown of SYT12 suppressed the proliferation and migration of LUAD cells, and upregulation of SYT12 increased the proliferation and migration of LUAD cells in vitro. Phosphorylation of PIK3R3 activated the PI3K/AKT/mTOR pathway. In the mouse xenograft model, expression of SYT12 increased the volume and weight of the xenograft tumors. Conclusions Bioinformatics analysis, human LUAD cells, and mouse xenograft studies showed that SYT12 acted as a possible oncogene by phosphorylation of PIK3R3 to activate the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Kaichao Liu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Chenye Shao
- Department of Cardiothoracic Surgery, Jingling Hospital, Jingling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhijian Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Sai Sun
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Yihao Zhu
- The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Hai Zhou
- Department of Cardiothoracic Surgery, Jingling Hospital, Jingling School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Zhisheng Jiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Xiaokun Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Jinling Hospital, China (mainland)
| | - Wenfeng Gu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland)
| | - Youtao Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland).,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Yong Qiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Binhui Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland).,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China (mainland).,Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China (mainland)
| | - Haiwei Wu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China (mainland).,Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
18
|
RAP80 and BRCA1 PARsylation protect chromosome integrity by preventing retention of BRCA1-B/C complexes in DNA repair foci. Proc Natl Acad Sci U S A 2020; 117:2084-2091. [PMID: 31932421 PMCID: PMC6995001 DOI: 10.1073/pnas.1908003117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Normally, BRCA1 promotes physiological, error-free homologous recombination repair (HRR) of damaged DNA and genome stability. In contrast, excessive, deregulated HRR can lead to genome instability. The BRCA1-binding protein RAP80 restricts HRR amplitude and genome instability, at least in part by manifesting polyubiquitin and poly-ADP-ribose binding activities in postdamage nuclear foci. Although how these processes operate in detail remains unknown, we find that simultaneous defects in RAP80/BRCA1 complex formation and in BRCA1 poly-ADP-ribosylation result in the persistent accumulation of BRCA1-containing complexes in nuclear foci that also contain CtIP and BACH1. These effects lead to excessive HRR, chromosomal hyper-recombination, and gross chromosomal abnormalities. BRCA1 promotes error-free, homologous recombination-mediated repair (HRR) of DNA double-stranded breaks (DSBs). When excessive and uncontrolled, BRCA1 HRR activity promotes illegitimate recombination and genome disorder. We and others have observed that the BRCA1-associated protein RAP80 recruits BRCA1 to postdamage nuclear foci, and these chromatin structures then restrict the amplitude of BRCA1-driven HRR. What remains unclear is how this process is regulated. Here we report that both BRCA1 poly-ADP ribosylation (PARsylation) and the presence of BRCA1-bound RAP80 are critical for the normal interaction of BRCA1 with some of its partners (e.g., CtIP and BACH1) that are also known components of the aforementioned focal structures. Surprisingly, the simultaneous loss of RAP80 and failure therein of BRCA1 PARsylation results in the dysregulated accumulation in these foci of BRCA1 complexes. This in turn is associated with the intracellular development of a state of hyper-recombination and gross chromosomal disorder. Thus, physiological RAP80-BRCA1 complex formation and BRCA1 PARsylation contribute to the kinetics by which BRCA1 HRR-sustaining complexes normally concentrate in nuclear foci. These events likely contribute to aneuploidy suppression.
Collapse
|
19
|
Mitotic antipairing of homologous and sex chromosomes via spatial restriction of two haploid sets. Proc Natl Acad Sci U S A 2018; 115:E12235-E12244. [PMID: 30530674 PMCID: PMC6310853 DOI: 10.1073/pnas.1809583115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic recombination must be prevented to maintain genetic stability across daughter cells, but the underlying mechanism remains elusive. We report that mammalian cells impede homologous chromosome pairing during mitosis by keeping the two haploid chromosome sets apart, positioning them to either side of a meridional plane defined by the centrosomes. Chromosome oscillation analysis revealed collective genome behavior of noninteracting chromosome sets. Male translocation mice with a maternal-derived supernumerary chromosome display the tracer chromosome exclusively to the haploid set containing the X chromosome. This haploid set-based antipairing motif is shared by multiple cell types, is doubled in tetraploid cells, and is lost in carcinoma cells. The data provide a model of nuclear polarity through the antipairing of homologous chromosomes during mitosis. Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.
Collapse
|
20
|
Tsao WC, Eckert KA. Detours to Replication: Functions of Specialized DNA Polymerases during Oncogene-induced Replication Stress. Int J Mol Sci 2018; 19:ijms19103255. [PMID: 30347795 PMCID: PMC6214091 DOI: 10.3390/ijms19103255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Incomplete and low-fidelity genome duplication contribute to genomic instability and cancer development. Difficult-to-Replicate Sequences, or DiToRS, are natural impediments in the genome that require specialized DNA polymerases and repair pathways to complete and maintain faithful DNA synthesis. DiToRS include non B-DNA secondary structures formed by repetitive sequences, for example within chromosomal fragile sites and telomeres, which inhibit DNA replication under endogenous stress conditions. Oncogene activation alters DNA replication dynamics and creates oncogenic replication stress, resulting in persistent activation of the DNA damage and replication stress responses, cell cycle arrest, and cell death. The response to oncogenic replication stress is highly complex and must be tightly regulated to prevent mutations and tumorigenesis. In this review, we summarize types of known DiToRS and the experimental evidence supporting replication inhibition, with a focus on the specialized DNA polymerases utilized to cope with these obstacles. In addition, we discuss different causes of oncogenic replication stress and its impact on DiToRS stability. We highlight recent findings regarding the regulation of DNA polymerases during oncogenic replication stress and the implications for cancer development.
Collapse
Affiliation(s)
- Wei-Chung Tsao
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
| |
Collapse
|
21
|
Cai M, Zhang H, Hou L, Gao W, Song Y, Cui X, Li C, Guan R, Ma J, Wang X, Han Y, Lv Y, Chen F, Wang P, Meng X, Fu S. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer 2018; 144:1037-1048. [PMID: 30070702 PMCID: PMC6586039 DOI: 10.1002/ijc.31781] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/23/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023]
Abstract
Gene amplification, which involves the two major topographical structures double minutes (DMs) and homegeneously stained region (HSR), is a common mechanism of treatment resistance in cancer and is initiated by DNA double‐strand breaks. NHEJ, one of DSB repair pathways, is involved in gene amplification as we demonstrated previously. However, the involvement of homologous recombination, another DSB repair pathway, in gene amplification remains to be explored. To better understand the association between HR and gene amplification, we detected HR activity in DM‐ and HSR‐containing MTX‐resistant HT‐29 colon cancer cells. In DM‐containing MTX‐resistant cells, we found increased homologous recombination activity compared with that in MTX‐sensitive cells. Therefore, we suppressed HR activity by silencing BRCA1, the key player in the HR pathway. The attenuation of HR activity decreased the numbers of DMs and DM‐form amplified gene copies and increased the exclusion of micronuclei and nuclear buds that contained DM‐form amplification; these changes were accompanied by cell cycle acceleration and increased MTX sensitivity. In contrast, BRCA1 silencing did not influence the number of amplified genes and MTX sensitivity in HSR‐containing MTX‐resistant cells. In conclusion, our results suggest that the HR pathway plays different roles in extrachromosomal and intrachromosomal gene amplification and may be a new target to improve chemotherapeutic outcome by decreasing extrachromosomal amplification in cancer. What's new? Double‐strand DNA breaks (DSBs) initiate gene amplification, a phenomenon associated with therapeutic resistance in cancer that involves two topographical structures, double minutes (DMs) and homogeneously staining regions (HSRs). Whether DSB repair pathways, particularly homologous recombination (HR), also influence gene amplification is unknown. Here, in methotrexate‐resistant colon cancer cells, HR inhibition effectively reduced gene amplification, specifically the DM‐form, by blocking DM formation and promoting DM exclusion via micronuclei. HR inhibition had no influence on the HSR‐form of gene amplification. Loss of gene amplification by HR inhibition, through partial reversal of methotrexate resistance, may contribute to improved chemotherapeutic outcome.
Collapse
Affiliation(s)
- Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Huishu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Liqing Hou
- Department of Genetics, Inner Mongolia Maternal and Child Care Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wei Gao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Ying Song
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xiaobo Cui
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jinfa Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xu Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Yue Han
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Yafan Lv
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Ping Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
22
|
Dürrbaum M, Kruse C, Nieken KJ, Habermann B, Storchová Z. The deregulated microRNAome contributes to the cellular response to aneuploidy. BMC Genomics 2018; 19:197. [PMID: 29703144 PMCID: PMC6389165 DOI: 10.1186/s12864-018-4556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress and triggers conserved transcriptome and proteome changes. RESULTS In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development, growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a subset of mRNAs that contain so called 5'TOP motif and we show that its upregulation in aneuploids provides resistance to starvation-induced shut down of ribosomal protein translation. CONCLUSIONS Our work suggests that the changes of the microRNAome contribute on one hand to the adverse effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting translation under adverse conditions.
Collapse
Affiliation(s)
- Milena Dürrbaum
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Christine Kruse
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - K. Julia Nieken
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Computational Biology Group, Developmental Biology Institute of Marseille (IBDM) UMR 7288, CNRS, Aix Marseille Université, 13288 Marseille, France
| | - Zuzana Storchová
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
- Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Strasse 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
23
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
24
|
Yamoto K, Okamoto S, Fujisawa Y, Fukami M, Saitsu H, Ogata T. FGFR1 disruption identified by whole genome sequencing in a male with a complex chromosomal rearrangement and hypogonadotropic hypogonadism. Am J Med Genet A 2017; 176:139-143. [PMID: 29160040 DOI: 10.1002/ajmg.a.38535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shingo Okamoto
- Okamoto Endocrine Clinic, Nara, Japan.,Department of Gastroenterology, Endocrinology and Metabolism of Nara Medical University, Nara, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
25
|
Zhang S, Lei C, Wu J, Sun H, Yang Y, Zhang Y, Sun X. A Retrospective Study of Cytogenetic Results From Amniotic Fluid in 5328 Fetuses With Abnormal Obstetric Sonographic Findings. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1809-1817. [PMID: 28523762 DOI: 10.1002/jum.14215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the diagnostic utility of karyotype analysis of amniotic fluid for fetuses with abnormal sonographic findings and to determine the detection rates of abnormal karyotypes. METHODS We conducted a retrospective study of 5328 fetuses with abnormal sonographic findings in the first or second trimester enrolled from October 1998 and September 2015. Cytogenetic results from amniotic fluid were obtained in all of these pregnancies. Sonographic abnormalities were stratified according to anatomic system involvement. RESULTS A total of 238 abnormal karyotypes were encountered in the 5328 fetuses (4.5%). The highest rate of chromosomal anomalies was in fetuses with structural abnormalities in multiple organ systems (25.7%), followed by an abnormal amniotic fluid volume (7.9%), structural abnormalities in a single system (7.3%), multiple nonstructural anomalies (7.2%), isolated placental abnormalities (7.1%), and isolated soft markers for aneuploidy (2.4%; P < .01). Among abnormalities in a single system, gastrointestinal and neck/body fluids had particularly high detection rates (26.1% and 26.2%, respectively). A detailed analysis suggested that the probability of an abnormal karyotype among every anatomic system was statistically significant (P < .01). This study identified several common indications with extremely high abnormal rates: duodenal atresia (53.1%), holoprosencephaly (48.8%), fetal hydrops (39.5%), cerebellar hypoplasia (32.0%), cystic hygroma (31.5%), absent/short nasal bone (11.0%), and bilateral choroid plexus cysts (8.5%). CONCLUSIONS Cytogenetic analysis has important clinical utility in a wide range of settings, such as prenatal diagnosis. For fetuses with indications of a highly abnormal detection rate, karyotype analysis should be suggested.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiyan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yuezhou Yang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Berry NK, Dixon-McIver A, Scott RJ, Rowlings P, Enjeti AK. Detection of complex genomic signatures associated with risk in plasma cell disorders. Cancer Genet 2017; 218-219:1-9. [PMID: 29153091 DOI: 10.1016/j.cancergen.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/30/2017] [Accepted: 08/06/2017] [Indexed: 01/10/2023]
Abstract
Plasma cell disorders (PCD) range from benign to highly malignant disease. The ability to detect risk-stratifying aberrations based on cytogenetic and molecular genetic assays plays an increasing role in therapeutic decision making. In this study, 58 patients were chosen for screening by comparative genomic hybridisation microarray (aCGH) to identify the new high-risk prognostic markers of chromothripsis and chromoanasynthesis. All patients had an unequivocal clinical diagnosis of a plasma cell disorder (plasma cell myeloma (PCM)(n = 51) or monoclonal gammopathy of undetermined significance (MGUS)(n = 7)) and an abnormal FISH result. There were a total of 17 complex genomic events identified across 9 patient samples, which were selected for further investigation by high definition single nucleotide polymorphism (HD-SNP) microarray. Each event was analysed and characterised for chromothripsis, chromoanasynthesis or a complex step-wise chromosomal event. We describe an effective method to identify the new high-risk prognostic markers of chromothripsis and chromoanasynthesis in plasma cell disorders.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Hematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.
| | | | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia; Department of Molecular Medicine, Pathology North Newcastle, Rankin Park, New South Wales, Australia
| | - Philip Rowlings
- Department of Hematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Hematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
27
|
Kushima I, Aleksic B, Nakatochi M, Shimamura T, Shiino T, Yoshimi A, Kimura H, Takasaki Y, Wang C, Xing J, Ishizuka K, Oya-Ito T, Nakamura Y, Arioka Y, Maeda T, Yamamoto M, Yoshida M, Noma H, Hamada S, Morikawa M, Uno Y, Okada T, Iidaka T, Iritani S, Yamamoto T, Miyashita M, Kobori A, Arai M, Itokawa M, Cheng MC, Chuang YA, Chen CH, Suzuki M, Takahashi T, Hashimoto R, Yamamori H, Yasuda Y, Watanabe Y, Nunokawa A, Someya T, Ikeda M, Toyota T, Yoshikawa T, Numata S, Ohmori T, Kunimoto S, Mori D, Iwata N, Ozaki N. High-resolution copy number variation analysis of schizophrenia in Japan. Mol Psychiatry 2017; 22:430-440. [PMID: 27240532 DOI: 10.1038/mp.2016.88] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
Abstract
Recent schizophrenia (SCZ) studies have reported an increased burden of de novo copy number variants (CNVs) and identified specific high-risk CNVs, although with variable phenotype expressivity. However, the pathogenesis of SCZ has not been fully elucidated. Using array comparative genomic hybridization, we performed a high-resolution genome-wide CNV analysis on a mainly (92%) Japanese population (1699 SCZ cases and 824 controls) and identified 7066 rare CNVs, 70.0% of which were small (<100 kb). Clinically significant CNVs were significantly more frequent in cases than in controls (odds ratio=3.04, P=9.3 × 10-9, 9.0% of cases). We confirmed a significant association of X-chromosome aneuploidies with SCZ and identified 11 de novo CNVs (e.g., MBD5 deletion) in cases. In patients with clinically significant CNVs, 41.7% had a history of congenital/developmental phenotypes, and the rate of treatment resistance was significantly higher (odds ratio=2.79, P=0.0036). We found more severe clinical manifestations in patients with two clinically significant CNVs. Gene set analysis replicated previous findings (e.g., synapse, calcium signaling) and identified novel biological pathways including oxidative stress response, genomic integrity, kinase and small GTPase signaling. Furthermore, involvement of multiple SCZ candidate genes and biological pathways in the pathogenesis of SCZ was suggested in established SCZ-associated CNV loci. Our study shows the high genetic heterogeneity of SCZ and its clinical features and raises the possibility that genomic instability is involved in its pathogenesis, which may be related to the increased burden of de novo CNVs and variable expressivity of CNVs.
Collapse
Affiliation(s)
- I Kushima
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - B Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Nakatochi
- Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - T Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Shiino
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - A Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Takasaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - C Wang
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - J Xing
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Oya-Ito
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - T Maeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Yoshida
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H Noma
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Hamada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Iidaka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - S Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - T Yamamoto
- Department of Legal Medicine and Bioethics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - M Miyashita
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kobori
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - M Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - M Itokawa
- Center for Medical Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - M-C Cheng
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Y-A Chuang
- Department of Psychiatry, Yuli Mental Health Research Center, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - C-H Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - M Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - T Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - R Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - H Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - A Nunokawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - T Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - T Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - S Numata
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Ohmori
- Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - S Kunimoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - D Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - N Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - N Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
29
|
O'Driscoll M. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. J Pathol 2017; 241:192-207. [PMID: 27757957 DOI: 10.1002/path.4828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
30
|
Global analysis of genomic instability caused by DNA replication stress in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:E8114-E8121. [PMID: 27911848 DOI: 10.1073/pnas.1618129113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA replication stress (DRS)-induced genomic instability is an important factor driving cancer development. To understand the mechanisms of DRS-associated genomic instability, we measured the rates of genomic alterations throughout the genome in a yeast strain with lowered expression of the replicative DNA polymerase δ. By a genetic test, we showed that most recombinogenic DNA lesions were introduced during S or G2 phase, presumably as a consequence of broken replication forks. We observed a high rate of chromosome loss, likely reflecting a reduced capacity of the low-polymerase strains to repair double-stranded DNA breaks (DSBs). We also observed a high frequency of deletion events within tandemly repeated genes such as the ribosomal RNA genes. By whole-genome sequencing, we found that low levels of DNA polymerase δ elevated mutation rates, both single-base mutations and small insertions/deletions. Finally, we showed that cells with low levels of DNA polymerase δ tended to accumulate small promoter mutations that increased the expression of this polymerase. These deletions conferred a selective growth advantage to cells, demonstrating that DRS can be one factor driving phenotypic evolution.
Collapse
|
31
|
Carpinetti P, Donnard E, Bettoni F, Asprino P, Koyama F, Rozanski A, Sabbaga J, Habr-Gama A, Parmigiani RB, Galante PAF, Perez RO, Camargo AA. The use of personalized biomarkers and liquid biopsies to monitor treatment response and disease recurrence in locally advanced rectal cancer after neoadjuvant chemoradiation. Oncotarget 2016; 6:38360-71. [PMID: 26451609 PMCID: PMC4742005 DOI: 10.18632/oncotarget.5256] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) followed by surgery is the mainstay treatment for locally advanced rectal cancer. Variable degrees of tumor regression are observed after nCRT and alternative treatment strategies, including close surveillance without immediate surgery, have been investigated to spare patients with complete tumor regression from potentially adverse outcomes of radical surgery. However, clinical and radiological assessment of response does not allow accurate identification of patients with complete response. In addition, surveillance for recurrence is similarly important for these patients, as early detection of recurrence allows salvage resections and adjuvant interventions. We report the use of liquid biopsies and personalized biomarkers for monitoring treatment response to nCRT and detecting residual disease and recurrence in patients with rectal cancer. We sequenced the whole-genome of four rectal tumors to identify patient-specific chromosomal rearrangements that were used to monitor circulating tumor DNA (ctDNA) in liquid biopsies collected at diagnosis and during nCRT and follow-up. We compared ctDNA levels to clinical, radiological and pathological response to nCRT. Our results indicate that personalized biomarkers and liquid biopsies may not be sensitive for the detection of microscopic residual disease. However, it can be efficiently used to monitor treatment response to nCRT and detect disease recurrence, preceding increases in CEA levels and radiological diagnosis. Similar good results were observed when assessing tumor response to systemic therapy and disease progression. Our study supports the use of personalized biomarkers and liquid biopsies to tailor the management of rectal cancer patients, however, replication in a larger cohort is necessary to introduce this strategy into clinical practice.
Collapse
Affiliation(s)
- Paola Carpinetti
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil.,Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil.,Programa de Pós Graduação em Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Elisa Donnard
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil.,Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil.,Programa de Pós Graduação em Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Fabiana Bettoni
- Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Paula Asprino
- Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | - Andrei Rozanski
- Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Jorge Sabbaga
- Centro de Oncologia Clínica, Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Angelita Habr-Gama
- Angelita & Joaquim Gama Institute, São Paulo, SP, Brazil.,University of São Paulo, School of Medicine, São Paulo, SP, Brazil
| | | | - Pedro A F Galante
- Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Rodrigo O Perez
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil.,Angelita & Joaquim Gama Institute, São Paulo, SP, Brazil.,University of São Paulo, School of Medicine, São Paulo, SP, Brazil
| | - Anamaria A Camargo
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil.,Centro de Oncologia Molecular Hospital Sírio Libanês, São Paulo, SP, Brazil
| |
Collapse
|
32
|
Demchenko Y, Roschke A, Chen WD, Asmann Y, Bergsagel PL, Kuehl WM. Frequent occurrence of large duplications at reciprocal genomic rearrangement breakpoints in multiple myeloma and other tumors. Nucleic Acids Res 2016; 44:8189-98. [PMID: 27353332 PMCID: PMC5041460 DOI: 10.1093/nar/gkw527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 05/26/2016] [Indexed: 12/11/2022] Open
Abstract
Using a combination of array comparative genomic hybridization, mate pair and cloned sequences, and FISH analyses, we have identified in multiple myeloma cell lines and tumors a novel and recurrent type of genomic rearrangement, i.e. interchromosomal rearrangements (translocations or insertions) and intrachromosomal inversions that contain long (1-4000 kb; median ∼100 kb) identical sequences adjacent to both reciprocal breakpoint junctions. These duplicated sequences were generated from sequences immediately adjacent to the breakpoint from at least one-but sometimes both-chromosomal donor site(s). Tandem duplications had a similar size distribution suggesting the possibility of a shared mechanism for generating duplicated sequences at breakpoints. Although about 25% of apparent secondary rearrangements contained these duplications, primary IGH translocations rarely, if ever, had large duplications at breakpoint junctions. Significantly, these duplications often contain super-enhancers and/or oncogenes (e.g. MYC) that are dysregulated by rearrangements during tumor progression. We also found that long identical sequences often were identified at both reciprocal breakpoint junctions in six of eight other tumor types. Finally, we have been unable to find reports of similar kinds of rearrangements in wild-type or mutant prokaryotes or lower eukaryotes such as yeast.
Collapse
Affiliation(s)
- Yulia Demchenko
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4265, USA
| | - Anna Roschke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4265, USA
| | - Wei-Dong Chen
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4265, USA
| | - Yan Asmann
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Peter Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Walter Michael Kuehl
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4265, USA
| |
Collapse
|
33
|
Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma. Am J Hum Genet 2016; 98:256-74. [PMID: 26833333 PMCID: PMC4746371 DOI: 10.1016/j.ajhg.2015.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/15/2015] [Indexed: 01/02/2023] Open
Abstract
Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.
Collapse
|
34
|
Cannan WJ, Pederson DS. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 2016; 231:3-14. [PMID: 26040249 DOI: 10.1002/jcp.25048] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual's mutation burden and risk of cancer. This review describes radiological, chemical, and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis).
Collapse
Affiliation(s)
- Wendy J Cannan
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - David S Pederson
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| |
Collapse
|
35
|
Rodgers K, McVey M. Error-Prone Repair of DNA Double-Strand Breaks. J Cell Physiol 2016; 231:15-24. [PMID: 26033759 DOI: 10.1002/jcp.25053] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022]
Abstract
Preserving the integrity of the DNA double helix is crucial for the maintenance of genomic stability. Therefore, DNA double-strand breaks represent a serious threat to cells. In this review, we describe the two major strategies used to repair double strand breaks: non-homologous end joining and homologous recombination, emphasizing the mutagenic aspects of each. We focus on emerging evidence that homologous recombination, long thought to be an error-free repair process, can in fact be highly mutagenic, particularly in contexts requiring large amounts of DNA synthesis. Recent investigations have begun to illuminate the molecular mechanisms by which error-prone double-strand break repair can create major genomic changes, such as translocations and complex chromosome rearrangements. We highlight these studies and discuss proposed models that may explain some of the more extreme genetic changes observed in human cancers and congenital disorders.
Collapse
Affiliation(s)
- Kasey Rodgers
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
36
|
Abstract
Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying mechanism for the development of diseases. However, changes in copy number are observed during development and occur during normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how TSSGs can influence the therapeutic response in cancer.
Collapse
Affiliation(s)
- Sweta Mishra
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
37
|
Sinha S, Villarreal D, Shim EY, Lee SE. Risky business: Microhomology-mediated end joining. Mutat Res 2016; 788:17-24. [PMID: 26790771 DOI: 10.1016/j.mrfmmm.2015.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
Abstract
Prevalence of microhomology (MH) at the breakpoint junctions in somatic and germ-line chromosomal rearrangements and in the programmed immune receptor rearrangements from cells deficient in classical end joining reveals an enigmatic process called MH-mediated end joining (MMEJ). MMEJ repairs DNA double strand breaks (DSBs) by annealing flanking MH and deleting genetic information at the repair junctions from yeast to humans. Being genetically distinct from canonical DNA DSB pathways, MMEJ is involved with the fusions of eroded/uncapped telomeres as well as with the assembly of chromosome fragments in chromothripsis. In this review article, we will discuss an up-to-date model representing the MMEJ process and the mechanism by which cells regulate MMEJ to limit repair-associated mutagenesis. We will also describe the possible therapeutic gains resulting from the inhibition of MMEJ in recombination deficient cancers. Lastly, we will embark on two contentious issues associated with MMEJ such as the significance of MH at the repair junction to be the hallmark of MMEJ and the relationship of MMEJ to other mechanistically related DSB repair pathways.
Collapse
Affiliation(s)
- Supriya Sinha
- Department of Molecular Medicine, Institute of Biotechnology, United States
| | - Diana Villarreal
- Children's Hospital of San Antonio, Baylor College of Medicine, San Antonio, TX 78207, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, United States.
| |
Collapse
|
38
|
Abstract
Diversity is the basis of fitness selection. Although the genome of an individual is considered to be largely stable, there is theoretical and experimental evidence--both in model organisms and in humans--that genetic mosaicism is the rule rather than the exception. The continuous generation of cell variants, their interactions and selective pressures lead to life-long tissue dynamics. Individuals may thus enjoy 'clonal health', defined as a clonal composition that supports healthy morphology and physiology, or suffer from clonal configurations that promote disease, such as cancer. The contribution of mosaicism to these processes starts during embryonic development. In this Opinion article, we argue that the road to cancer might begin during these early stages.
Collapse
Affiliation(s)
- Luis C Fernández
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares-CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco X Real
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, and at the Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, 28029 Madrid, Spain
| |
Collapse
|
39
|
Dutra RL, Piazzon FB, Zanardo ÉA, Costa TVMM, Montenegro MM, Novo-Filho GM, Dias AT, Nascimento AM, Kim CA, Kulikowski LD. Rare genomic rearrangement in a boy with Williams-Beuren syndrome associated to XYY syndrome and intriguing behavior. Am J Med Genet A 2015; 167A:3197-203. [PMID: 26420477 DOI: 10.1002/ajmg.a.37360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/17/2015] [Indexed: 12/27/2022]
Abstract
Williams-Beuren syndrome (WBS) is caused by a hemizygous contiguous gene microdeletion of 1.55-1.84 Mb at 7q11.23 region. Approximately, 28 genes have been shown to contribute to classical phenotype of SWB with presence of dysmorphic facial features, supravalvular aortic stenosis (SVAS), intellectual disability, and overfriendliness. With the use of Microarray-based comparative genomic hybridization and other molecular cytogenetic techniques, is possible define with more accuracy partial or atypical deletion and refine the genotype-phenotype correlation. Here, we report on a rare genomic structural rearrangement in a boy with atypical deletion in 7q11.23 and XYY syndrome with characteristic clinical signs, but not sufficient for the diagnosis of WBS. Cytogenetic analysis of G-banding showed a karyotype 47,XYY. Analysis of DNA with the technique of MLPA (Multiplex Ligation-dependent Probe Amplification) using kits a combination of kits (P064, P036, P070, and P029) identified an atypical deletion on 7q11.23. In addition, high resolution SNP Oligonucleotide Microarray Analysis (SNP-array) confirmed the alterations found by MLPA and revealed others pathogenic CNVs, in the chromosomes 7 and X. The present report demonstrates an association not yet described in literature, between Williams-Beuren syndrome and 47,XYY. The identification of atypical deletion in 7q11.23 concomitant to additional pathogenic CNVs in others genomic regions allows a better comprehension of clinical consequences of atypical genomic rearrangements.
Collapse
Affiliation(s)
- Roberta L Dutra
- Genetics Unit, Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil.,Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Flavia B Piazzon
- Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Évelin A Zanardo
- Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Marília M Montenegro
- Genetics Unit, Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil.,Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Gil M Novo-Filho
- Genetics Unit, Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil.,Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Alexandre T Dias
- Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Amom M Nascimento
- Genetics Unit, Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil.,Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Leslie D Kulikowski
- Department of Pathology, Cytogenomics Lab - LIM03, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil.,Department of Collective Health - Human Reproduction and Genetics Center, Faculdade de Medicina do ABC, Santo André, São Paulo, Brazil
| |
Collapse
|
40
|
Gorska M, Zmijewski MA, Kuban-Jankowska A, Wnuk M, Rzeszutek I, Wozniak M. Neuronal Nitric Oxide Synthase-Mediated Genotoxicity of 2-Methoxyestradiol in Hippocampal HT22 Cell Line. Mol Neurobiol 2015; 53:5030-40. [PMID: 26381428 DOI: 10.1007/s12035-015-9434-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023]
Abstract
2-methoxyestradiol, metabolite of 17β-estradiol, is considered a potential anticancer agent, currently investigated in several clinical trials. This natural compound was found to be effective towards great number of cancers, including colon, breast, lung, and osteosarcoma and has been reported to be relatively non-toxic towards non-malignant cells. The aim of the study was to determine the potential neurotoxicity and genotoxicity of 2-methoxyestradiol at physiological and pharmacological relevant concentrations in hippocampal HT22 cell line. Herein, we determined influence of 2-methoxyestradiol on proliferation, inhibition of cell cycle, induction of apoptosis, and DNA damage in the HT22 cells. The study was performed using imaging cytometry and comet assay techniques. Herein, we demonstrated that 2-methoxyestradiol, at pharmacologically and also physiologically relevant concentrations, increases nuclear localization of neuronal nitric oxide synthase. It potentially results in DNA strand breaks and increases in genomic instability in hippocampal HT22 cell line. Thus, we are postulating that naturally occurring 2-methoxyestradiol may be considered a physiological modulator of neuron survival.
Collapse
Affiliation(s)
- Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Debinki 1 St, Poland.
| | | | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Debinki 1 St, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Iwona Rzeszutek
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk 80-211, Debinki 1 St, Poland
| |
Collapse
|
41
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Gorska M, Kuban-Jankowska A, Zmijewski M, Gammazza AM, Cappello F, Wnuk M, Gorzynik M, Rzeszutek I, Daca A, Lewinska A, Wozniak M. DNA strand breaks induced by nuclear hijacking of neuronal NOS as an anti-cancer effect of 2-methoxyestradiol. Oncotarget 2015; 6:15449-63. [PMID: 25972363 PMCID: PMC4558163 DOI: 10.18632/oncotarget.3913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022] Open
Abstract
2-Methoxyestradiol (2-ME) is a physiological metabolite of 17β-estradiol. At pharmacological concentrations, 2-ME inhibits colon, breast and lung cancer in tumor models. Here we investigated the effect of physiologically relevant concentrations of 2-ME in osteosarcoma cell model. We demonstrated that 2-ME increased nuclear localization of neuronal nitric oxide synthase, resulting in nitro-oxidative DNA damage. This in turn caused cell cycle arrest and apoptosis in osteosarcoma cells. We suggest that 2-ME is a naturally occurring hormone with potential anti-cancer properties.
Collapse
Affiliation(s)
- Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Michal Zmijewski
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy “Emerico Luna”, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy “Emerico Luna”, University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Monika Gorzynik
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Rzeszutek
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | - Agnieszka Daca
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
43
|
Japanese founder duplications/triplications involving BHLHA9 are associated with split-hand/foot malformation with or without long bone deficiency and Gollop-Wolfgang complex. Orphanet J Rare Dis 2014; 9:125. [PMID: 25351291 PMCID: PMC4205278 DOI: 10.1186/s13023-014-0125-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Limb malformations are rare disorders with high genetic heterogeneity. Although multiple genes/loci have been identified in limb malformations, underlying genetic factors still remain to be determined in most patients. Methods This study consisted of 51 Japanese families with split-hand/foot malformation (SHFM), SHFM with long bone deficiency (SHFLD) usually affecting the tibia, or Gollop-Wolfgang complex (GWC) characterized by SHFM and femoral bifurcation. Genetic studies included genomewide array comparative genomic hybridization and exome sequencing, together with standard molecular analyses. Results We identified duplications/triplications of a 210,050 bp segment containing BHLHA9 in 29 SHFM patients, 11 SHFLD patients, two GWC patients, and 22 clinically normal relatives from 27 of the 51 families examined, as well as in 2 of 1,000 Japanese controls. Families with SHFLD- and/or GWC-positive patients were more frequent in triplications than in duplications. The fusion point was identical in all the duplications/triplications and was associated with a 4 bp microhomology. There was no sequence homology around the two breakpoints, whereas rearrangement-associated motifs were abundant around one breakpoint. The rs3951819-D17S1174 haplotype patterns were variable on the duplicated/triplicated segments. No discernible genetic alteration specific to patients was detected within or around BHLHA9, in the known causative SHFM genes, or in the exome. Conclusions These results indicate that BHLHA9 overdosage constitutes the most frequent susceptibility factor, with a dosage effect, for a range of limb malformations at least in Japan. Notably, this is the first study revealing the underlying genetic factor for the development of GWC, and demonstrating the presence of triplications involving BHLHA9. It is inferred that a Japanese founder duplication was generated through a replication-based mechanism and underwent subsequent triplication and haplotype modification through recombination-based mechanisms, and that the duplications/triplications with various haplotypes were widely spread in Japan primarily via clinically normal carriers and identified via manifesting patients. Furthermore, genotype-phenotype analyses of patients reported in this study and the previous studies imply that clinical variability is ascribed to multiple factors including the size of duplications/triplications as a critical factor. Electronic supplementary material The online version of this article (doi:10.1186/s13023-014-0125-5) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Donnelly N, Passerini V, Dürrbaum M, Stingele S, Storchová Z. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J 2014; 33:2374-87. [PMID: 25205676 DOI: 10.15252/embj.201488648] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.
Collapse
Affiliation(s)
- Neysan Donnelly
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Verena Passerini
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Milena Dürrbaum
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Silvia Stingele
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
45
|
Mukherjee B, Bindhani B, Saha H, Ray MR. Increased oxidative DNA damage and decreased expression of base excision repair proteins in airway epithelial cells of women who cook with biomass fuels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:341-352. [PMID: 25128766 DOI: 10.1016/j.etap.2014.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/08/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
To investigate whether biomass burning causes oxidative DNA damage and alters the expression of DNA base excision repair (BER) proteins in airway cells, sputum samples were collected from 80 premenopausal rural biomass-users and 70 age-matched control women who cooked with liquefied petroleum gas. Compared with control the airway cells of biomass-users showed increased DNA damage in alkaline comet assay. Biomass-users showed higher percentage of cells expressing oxidative DNA damage marker 8-oxoguanine and lower percentages of BER proteins OGG1 and APE1 by immunocytochemical staining. Reactive oxygen species (ROS) generation was doubled and level of superoxide dismutase was depleted significantly among biomass-users. The concentrations of particulate matters were higher in biomass-using households which positively correlated with ROS generation and negatively with BER proteins expressions. ROS generation was positively correlated with 8-oxoguanine and negatively with BER proteins suggesting cooking with biomass is a risk for genotoxicity among rural women in their child-bearing age.
Collapse
Affiliation(s)
- Bidisha Mukherjee
- Department of Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Banani Bindhani
- Department of Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Hirak Saha
- Department of Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Manas Ranjan Ray
- Department of Experimental Hematology, Chittaranjan National Cancer Institute, Kolkata 700 026, India.
| |
Collapse
|
46
|
Qiao Y, Mercier E, Dastan J, Hurlburt J, McGillivray B, Chudley AE, Farrell S, Bernier FP, Lewis MS, Pavlidis P, Rajcan-Separovic E. Copy number variants (CNVs) analysis in a deeply phenotyped cohort of individuals with intellectual disability (ID). BMC MEDICAL GENETICS 2014; 15:82. [PMID: 25030379 PMCID: PMC4107469 DOI: 10.1186/1471-2350-15-82] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023]
Abstract
Background DNA copy number variants (CNVs) are found in 15% of subjects with ID but their association with phenotypic abnormalities has been predominantly studied in smaller cohorts of subjects with detailed yet non-systematically categorized phenotypes, or larger cohorts (thousands of cases) with smaller number of generalized phenotypes. Methods We evaluated the association of de novo, familial and common CNVs detected in 78 ID subjects with phenotypic abnormalities classified using the Winter-Baraitser Dysmorphology Database (WBDD) (formerly the London Dysmorphology Database). Terminology for 34 primary (coarse) and 169 secondary (fine) phenotype features were used to categorize the abnormal phenotypes and determine the prevalence of each phenotype in patients grouped by the type of CNV they had. Results In our cohort more than 50% of cases had abnormalities in primary categories related to head (cranium, forehead, ears, eye globes, eye associated structures, nose) as well as hands and feet. The median number of primary and secondary abnormalities was 12 and 18 per subject, respectively, indicating that the cohort consisted of subjects with a high number of phenotypic abnormalities (median De Vries score for the cohort was 5). The prevalence of each phenotypic abnormality was comparable in patients with de novo or familial CNVs in comparison to those with only common CNVs, although a trend for increased frequency of cranial and forehead abnormalities was noted in subjects with rare de novo and familial CNVs. Two clusters of subjects were identified based on the prevalence of each fine phenotypic feature, with an average of 28.3 and 13.5 abnormal phenotypes/subject in the two clusters respectively (P < 0.05). Conclusions Our study is a rare example of using standardized, deep morphologic phenotype clustering with phenotype/CNV correlation in a cohort of subjects with ID. The composition of the cohort inevitably influences the phenotype/genotype association, and our studies show that the influence of the de novo CNVs on the phenotype is less obvious in cohorts consisting of subjects with a high number of phenotypic abnormalities. The outcome of phenotype/genotype analysis also depends on the choice of phenotypes assessed and standardized phenotyping is required to minimize variability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Me Suzanne Lewis
- Department of Pathology (Cytogenetics), BC Child and Family Research Institute, University of British Columbia (UBC), 950 West 28th, Room 3060, Vancouver, BC V5Z 4H4, Canada.
| | | | | |
Collapse
|
47
|
Zanardo ÉA, Piazzon FB, Dutra RL, Dias AT, Montenegro MM, Novo-Filho GM, Costa TVMM, Nascimento AM, Kim CA, Kulikowski LD. Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome. Mol Genet Genomics 2014; 289:1037-43. [PMID: 24985706 DOI: 10.1007/s00438-014-0876-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Genome rearrangements are caused by the erroneous repair of DNA double-strand breaks, leading to several alterations that result in loss or gain of the structural genomic of a dosage-sensitive genes. However, the mechanisms that promote the complexity of rearrangements of congenital or developmental defects in human disease are unclear. The investigation of complex genomic abnormalities could help to elucidate the mechanisms and causes for the formation and facilitate the understanding of congenital or developmental defects in human disease. We here report one case of a patient with atypical clinical features of the 1p36 syndrome and the use of cytogenomic techniques to characterize the genomic alterations. Analysis by multiplex ligation-dependent probe amplification and array revealed a complex rearrangement in the 1p36.3 region with deletions and duplication interspaced by normal sequences. We also suggest that chromoanagenesis could be a possible mechanism involved in the repair and stabilization of this rearrangement.
Collapse
Affiliation(s)
- Évelin Aline Zanardo
- Department of Pathology, Laboratório de Citogenômica, LIM 03, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 155, 2° floor, block 12, Cerqueira César, São Paulo, SP, CEP: 05403-000, Brazil,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hasty P, Montagna C. Chromosomal Rearrangements in Cancer: Detection and potential causal mechanisms. Mol Cell Oncol 2014; 1:e29904. [PMID: 26203462 PMCID: PMC4507279 DOI: 10.4161/mco.29904] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
Many cancers exhibit chromosomal rearrangements. These rearrangements can be simple with a single balanced fusion preserving the proper complement of genetic information or they can be complex with one or more fusions that distort this balance. A range of technological advances has improved our ability to detect and understand these rearrangements leading to speculation of causal mechanisms including defective DNA double strand break (DSB) repair and faulty DNA replication. A better understanding of these potential cancer-causing mechanisms will lead to novel therapeutic regimes to fight cancer. This review describes the technological advances used to detect simple and complex chromosomal rearrangements, cancers that exhibit these rearrangements, potential mechanisms that rearrange chromosomes and intervention strategies designed to specifically attack fusion gene products and causal DNA repair/synthesis pathways.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine/Institute of Biotechnology; The University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| | - Cristina Montagna
- Department of Genetics and Pathology; Albert Einstein College of Medicine of Yeshiva University; Michael F. Price Center; Bronx, NY USA
| |
Collapse
|
49
|
Wang J, Wang X, Guan T, Xiang Q, Wang M, Zhang Z, Guan Z, Wang G, Zhu Z, Xie Q, Li G, Guo J, Wang F, Zhang Z, Niu B, Zhang T. Analyses of copy number variation reveal putative susceptibility loci in MTX-induced mouse neural tube defects. Dev Neurobiol 2014; 74:877-93. [DOI: 10.1002/dneu.22170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/12/2014] [Accepted: 02/05/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jianhua Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Xiuwei Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Tao Guan
- Department of Biochemistry and Molecular Biology; Shanxi Medical University; Taiyuan 030001 China
| | - Qian Xiang
- Department of Biomedical Engineering, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing 100730 China
| | - Mingsheng Wang
- Department of Biomedical Engineering, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing 100730 China
| | - Zhi Zhang
- Department of Biomedical Engineering, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing 100730 China
| | - Zhen Guan
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Guoliang Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Zhiqiang Zhu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Qiu Xie
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Guannan Li
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Jin Guo
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Fang Wang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| | - Zhengguo Zhang
- Department of Biomedical Engineering, Chinese Academy of Medical Sciences; Peking Union Medical College; Beijing 100730 China
| | - Bo Niu
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
- Department of Biochemistry and Molecular Biology; Shanxi Medical University; Taiyuan 030001 China
| | - Ting Zhang
- Department of Biotechnology, Beijing Municipal Key Laboratory of Child Development and Nutriomics; Capital Institute of Pediatrics; Beijing 100020 China
| |
Collapse
|
50
|
Blumenthal I, Ragavendran A, Erdin S, Klei L, Sugathan A, Guide J, Manavalan P, Zhou J, Wheeler V, Levin J, Ernst C, Roeder K, Devlin B, Gusella J, Talkowski M. Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. Am J Hum Genet 2014; 94:870-83. [PMID: 24906019 DOI: 10.1016/j.ajhg.2014.05.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/12/2014] [Indexed: 12/18/2022] Open
Abstract
Reciprocal copy-number variation (CNV) of a 593 kb region of 16p11.2 is a common genetic cause of autism spectrum disorder (ASD), yet it is not completely penetrant and can manifest in a wide array of phenotypes. To explore its molecular consequences, we performed RNA sequencing of cerebral cortex from mouse models with CNV of the syntenic 7qF3 region and lymphoblast lines from 34 members of 7 multiplex ASD-affected families harboring the 16p11.2 CNV. Expression of all genes in the CNV region correlated well with their DNA copy number, with no evidence of dosage compensation. We observed effects on gene expression outside the CNV region, including apparent positional effects in cis and in trans at genomic segments with evidence of physical interaction in Hi-C chromosome conformation data. One of the most significant positional effects was telomeric to the 16p11.2 CNV and includes the previously described "distal" 16p11.2 microdeletion. Overall, 16p11.2 CNV was associated with altered expression of genes and networks that converge on multiple hypotheses of ASD pathogenesis, including synaptic function (e.g., NRXN1, NRXN3), chromatin modification (e.g., CHD8, EHMT1, MECP2), transcriptional regulation (e.g., TCF4, SATB2), and intellectual disability (e.g., FMR1, CEP290). However, there were differences between tissues and species, with the strongest effects being consistently within the CNV region itself. Our analyses suggest that through a combination of indirect regulatory effects and direct effects on nuclear architecture, alteration of 16p11.2 genes disrupts expression networks that involve other genes and pathways known to contribute to ASD, suggesting an overlap in mechanisms of pathogenesis.
Collapse
|