1
|
Gallois M, Menoret D, Marques-Prieto S, Montigny A, Valenti P, Moussian B, Plaza S, Payre F, Chanut-Delalande H. Pri peptides temporally coordinate transcriptional programs during epidermal differentiation. SCIENCE ADVANCES 2024; 10:eadg8816. [PMID: 38335295 PMCID: PMC10857433 DOI: 10.1126/sciadv.adg8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
To achieve a highly differentiated state, cells undergo multiple transcriptional processes whose coordination and timing are not well understood. In Drosophila embryonic epidermal cells, polished-rice (Pri) smORF peptides act as temporal mediators of ecdysone to activate a transcriptional program leading to cell shape remodeling. Here, we show that the ecdysone/Pri axis concomitantly represses the transcription of a large subset of cuticle genes to ensure proper differentiation of the insect exoskeleton. The repression relies on the transcription factor Ken and persists for several days throughout early larval stages, during which a soft cuticle allows larval crawling. The onset of these cuticle genes normally awaits the end of larval stages when the rigid pupal case assembles, and their premature expression triggers abnormal sclerotization of the larval cuticle. These results uncovered a temporal switch to set up distinct structures of cuticles adapted to the animal lifestyle and which might be involved in the evolutionary history of insects.
Collapse
Affiliation(s)
- Maylis Gallois
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Delphine Menoret
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Simon Marques-Prieto
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Audrey Montigny
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Philippe Valenti
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, CNRS/UPS/INPT, Auzeville-Tolosane, France
| | - François Payre
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Hélène Chanut-Delalande
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
2
|
Tanaka KM, Takahashi K, Rice G, Rebeiz M, Kamimura Y, Takahashi A. Trichomes on female reproductive tract: rapid diversification and underlying gene regulatory network in Drosophila suzukii and its related species. BMC Ecol Evol 2022; 22:93. [PMID: 35902820 PMCID: PMC9331688 DOI: 10.1186/s12862-022-02046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The ovipositors of some insects are external female genitalia, which have their primary function to deliver eggs. Drosophila suzukii and its sibling species D. subpulchrella are known to have acquired highly sclerotized and enlarged ovipositors upon their shifts in oviposition sites from rotting to ripening fruits. Inside the ovipositor plates, there are scale-like polarized protrusions termed "oviprovector scales" that are likely to aid the mechanical movement of the eggs. The size and spatial distribution of the scales need to be rearranged following the divergence of the ovipositors. In this study, we examined the features of the oviprovector scales in D. suzukii and its closely related species. We also investigated whether the scales are single-cell protrusions comprised of F-actin under the same conserved gene regulatory network as the well-characterized trichomes on the larval cuticular surface. RESULTS The oviprovector scales of D. suzukii and D. subpulchrella were distinct in size and spatial arrangement compared to those of D. biarmipes and other closely related species. The scale numbers also varied greatly among these species. The comparisons of the size of the scales suggested a possibility that the apical cell area of the oviprovector has expanded upon the elongation of the ovipositor plates in these species. Our transcriptome analysis revealed that 43 out of the 46 genes known to be involved in the trichome gene regulatory network are expressed in the developing female genitalia of D. suzukii and D. subpulchrella. The presence of Shavenbaby (Svb) or svb was detected in the inner cavity of the developing ovipositors of D. melanogaster, D. suzukii, and D. subpulchrella. Also, shavenoid (sha) was expressed in the corresponding patterns in the developing ovipositors and showed differential expression levels between D. suzukii and D. subpulchrella at 48 h APF. CONCLUSIONS The oviprovector scales have divergent size and spatial arrangements among species. Therefore, these scales may represent a rapidly diversifying morphological trait of the female reproductive tract reflecting ecological contexts. Furthermore, our results showed that the gene regulatory network underlying trichome formation is also utilized to develop the rapidly evolving trichomes on the oviprovectors of these flies.
Collapse
Affiliation(s)
- Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan
| | - Kanoko Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 192-0397, Hachioji, Japan.
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 192-0397, Hachioji, Japan.
| |
Collapse
|
3
|
Dib A, Zanet J, Mancheno-Ferris A, Gallois M, Markus D, Valenti P, Marques-Prieto S, Plaza S, Kageyama Y, Chanut-Delalande H, Payre F. Pri smORF Peptides Are Wide Mediators of Ecdysone Signaling, Contributing to Shape Spatiotemporal Responses. Front Genet 2021; 12:714152. [PMID: 34527021 DOI: 10.3389/fgene.2021.714152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing evidence that peptides encoded by small open-reading frames (sORF or smORF) can fulfill various cellular functions and define a novel class regulatory molecules. To which extend transcripts encoding only smORF peptides compare with canonical protein-coding genes, yet remain poorly understood. In particular, little is known on whether and how smORF-encoding RNAs might need tightly regulated expression within a given tissue, at a given time during development. We addressed these questions through the analysis of Drosophila polished rice (pri, a.k.a. tarsal less or mille pattes), which encodes four smORF peptides (11-32 amino acids in length) required at several stages of development. Previous work has shown that the expression of pri during epidermal development is regulated in the response to ecdysone, the major steroid hormone in insects. Here, we show that pri transcription is strongly upregulated by ecdysone across a large panel of cell types, suggesting that pri is a core component of ecdysone response. Although pri is produced as an intron-less short transcript (1.5 kb), genetic assays reveal that the developmental functions of pri require an unexpectedly large array of enhancers (spanning over 50 kb), driving a variety of spatiotemporal patterns of pri expression across developing tissues. Furthermore, we found that separate pri enhancers are directly activated by the ecdysone nuclear receptor (EcR) and display distinct regulatory modes between developmental tissues and/or stages. Alike major developmental genes, the expression of pri in a given tissue often involves several enhancers driving apparently redundant (or shadow) expression, while individual pri enhancers can harbor pleiotropic functions across tissues. Taken together, these data reveal the broad role of Pri smORF peptides in ecdysone signaling and show that the cis-regulatory architecture of the pri gene contributes to shape distinct spatial and temporal patterns of ecdysone response throughout development.
Collapse
Affiliation(s)
- Azza Dib
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Jennifer Zanet
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Alexandra Mancheno-Ferris
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Maylis Gallois
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Damien Markus
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Philippe Valenti
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Simon Marques-Prieto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Serge Plaza
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - Yuji Kageyama
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan.,Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hélène Chanut-Delalande
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| | - François Payre
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| |
Collapse
|
4
|
Functions and impact of tal-like genes in animals with regard to applied aspects. Appl Microbiol Biotechnol 2018; 102:6841-6845. [PMID: 29909570 DOI: 10.1007/s00253-018-9159-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/03/2023]
Abstract
A large number of DNAs in eukaryote genomes can code for atypical transcripts, and their functions are controversial. It has been reported that the transcripts contain many small open reading frames (sORFs), which were originally considered as non-translatable RNAs. However, increasing evidence has suggested that some of these sORFs can encode for small peptides and some are conserved across large evolutionary distances. It has been reported that the small peptides have functions and may be involved in varieties of cellular processes, playing important roles in development, physiology, and metabolism. Among the sORFs, studies of the non-canonical gene polished rice/tarsal-less (pri/tal) in Drosophila and mille-pattes(mlpt) in Tribolium have been more thoroughly studied. The genes similar to pri/tal in other species have been defined as the tarsal-less-related gene family, tal-like gene. In this review, we described recent progress in the discovery and functional characterization of the small peptides encoded by the tal-like gene and their possible functional potentials.
Collapse
|
5
|
Abstract
A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
Collapse
Affiliation(s)
- Serge Plaza
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, 31326 Castanet Tolosan, France; .,CNRS, UMR5546, Laboratoire de Recherches en Sciences Végétales, 31326 Castanet Tolosan, France
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of Ghent, 9000 Gent, Belgium
| | - François Payre
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| |
Collapse
|
6
|
Rizzo NP, Bejsovec A. SoxNeuro and Shavenbaby act cooperatively to shape denticles in the embryonic epidermis of Drosophila. Development 2017; 144:2248-2258. [PMID: 28506986 DOI: 10.1242/dev.150169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
During development, extracellular signals are integrated by cells to induce the transcriptional circuitry that controls morphogenesis. In the fly epidermis, Wingless (Wg)/Wnt signaling directs cells to produce either a distinctly shaped denticle or no denticle, resulting in a segmental pattern of denticle belts separated by smooth, or 'naked', cuticle. Naked cuticle results from Wg repression of shavenbaby (svb), which encodes a transcription factor required for denticle construction. We have discovered that although the svb promoter responds differentially to altered Wg levels, Svb alone cannot produce the morphological diversity of denticles found in wild-type belts. Instead, a second Wg-responsive transcription factor, SoxNeuro (SoxN), cooperates with Svb to shape the denticles. Co-expressing ectopic SoxN with svb rescued diverse denticle morphologies. Conversely, removing SoxN activity eliminated the residual denticles found in svb mutant embryos. Furthermore, several known Svb target genes are also activated by SoxN, and we have discovered two novel target genes of SoxN that are expressed in denticle-producing cells and that are regulated independently of Svb. We conclude that proper denticle morphogenesis requires transcriptional regulation by both SoxN and Svb.
Collapse
Affiliation(s)
| | - Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Spencer AK, Schaumberg AJ, Zallen JA. Scaling of cytoskeletal organization with cell size in Drosophila. Mol Biol Cell 2017; 28:1519-1529. [PMID: 28404752 PMCID: PMC5449150 DOI: 10.1091/mbc.e16-10-0691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022] Open
Abstract
Actin-rich denticle precursors are regularly distributed in the Drosophila embryo. Cytoskeletal scaling occurs through changes in denticle number and spacing. Denticle spacing scales with cell length over a 10-fold range. Accurate denticle positioning requires the microtubule cytoskeleton. Spatially organized macromolecular complexes are essential for cell and tissue function, but the mechanisms that organize micron-scale structures within cells are not well understood. Microtubule-based structures such as mitotic spindles scale with cell size, but less is known about the scaling of actin structures within cells. Actin-rich denticle precursors cover the ventral surface of the Drosophila embryo and larva and provide templates for cuticular structures involved in larval locomotion. Using quantitative imaging and statistical modeling, we demonstrate that denticle number and spacing scale with cell length over a wide range of cell sizes in embryos and larvae. Denticle number and spacing are reduced under space-limited conditions, and both features robustly scale over a 10-fold increase in cell length during larval growth. We show that the relationship between cell length and denticle spacing can be recapitulated by specific mathematical equations in embryos and larvae and that accurate denticle spacing requires an intact microtubule network and the microtubule minus end–binding protein, Patronin. These results identify a novel mechanism of microtubule-dependent actin scaling that maintains precise patterns of actin organization during tissue growth.
Collapse
Affiliation(s)
- Alison K Spencer
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences.,Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Andrew J Schaumberg
- Weill Cornell Graduate School of Medical Sciences and the Tri-Institutional PhD Program in Computational Biology and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
8
|
Zanet J, Chanut-Delalande H, Plaza S, Payre F. Small Peptides as Newcomers in the Control of Drosophila Development. Curr Top Dev Biol 2016; 117:199-219. [PMID: 26969979 DOI: 10.1016/bs.ctdb.2015.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout the last century, studies using the fruit fly have contributed to the discovery of many key genetic elements that control animal development. Recent work has shed light on an unexpectedly large number of RNAs that lack the classical hallmarks of protein-coding genes and are thus referred to as noncoding RNAs. However, there is mounting evidence that both mRNA and noncoding RNAs often contain small open reading frames (sORFs/smORFs), which can be translated into peptides. While genome-wide profiling supports a pervasive translation of these noncanonical sORF/smORF/SEP peptides, their functions remain poorly understood. Here, we review recent data obtained in Drosophila demonstrating the overlooked role of smORF peptides in the control of development and adult life. Focusing on a few smORF peptides whose functions have been elucidated recently, we discuss the importance of these newly identified regulatory molecules and how they act to regulate the building and function of the whole organism.
Collapse
Affiliation(s)
- J Zanet
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France
| | - H Chanut-Delalande
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France
| | - Serge Plaza
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France.
| | - Francios Payre
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France.
| |
Collapse
|
9
|
Arif S, Kittelmann S, McGregor AP. From shavenbaby to the naked valley: trichome formation as a model for evolutionary developmental biology. Evol Dev 2015; 17:120-6. [PMID: 25627718 DOI: 10.1111/ede.12113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microtrichia or trichomes are non-sensory actin protrusions produced by the epidermal cells of many insects. Studies of trichome formation in Drosophila have over the last 30 years provided key insights towards our understanding of gene regulation, gene regulatory networks (GRNs), development, the genotype to phenotype map, and the evolution of these processes. Here we review classic studies that have used trichome formation as a model to shed light on Drosophila development as well as recent research on the architecture of the GRN underlying trichome formation. This includes the findings that both small peptides and microRNAs play important roles in the regulation and evolution of this network. In addition, we review research on the evolution of trichome patterns that has provided novel insights into the function and architecture of cis-regulatory modules, and into the genetic basis of morphological change. We conclude that further research on these apparently simple and often functionally enigmatic structures will continue to provide new and important knowledge about development and evolution.
Collapse
Affiliation(s)
- Saad Arif
- Friedrich Meischer Laboratory of the Max Planck Society, Spemannstrasse 39, Tuebingen, 72076, Germany
| | | | | |
Collapse
|
10
|
Pri peptides are mediators of ecdysone for the temporal control of development. Nat Cell Biol 2014; 16:1035-44. [DOI: 10.1038/ncb3052] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/15/2014] [Indexed: 02/08/2023]
|
11
|
Lorenz K, Cohen BA. Causal variation in yeast sporulation tends to reside in a pathway bottleneck. PLoS Genet 2014; 10:e1004634. [PMID: 25211152 PMCID: PMC4161353 DOI: 10.1371/journal.pgen.1004634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
There has been extensive debate over whether certain classes of genes are more likely than others to contain the causal variants responsible for phenotypic differences in complex traits between individuals. One hypothesis states that input/output genes positioned in signal transduction bottlenecks are more likely than other genes to contain causal natural variation. The IME1 gene resides at such a signaling bottleneck in the yeast sporulation pathway, suggesting that it may be more likely to contain causal variation than other genes in the sporulation pathway. Through crosses between natural isolates of yeast, we demonstrate that the specific causal nucleotides responsible for differences in sporulation efficiencies reside not only in IME1 but also in the genes that surround IME1 in the signaling pathway, including RME1, RSF1, RIM15, and RIM101. Our results support the hypothesis that genes at the critical decision making points in signaling cascades will be enriched for causal variants responsible for phenotypic differences. Distinguishing the small number of genetic variants that impact phenotypes from the huge number of innocuous variants within an individual's genome is a difficult problem. Several hypotheses concerning the location of causal variants have been put forward based on the fact that genes are often organized into signaling cascades where the activation of a gene at the top of a pathway in turn activates large numbers of downstream genes. One hypothesis states that causal variations are more likely to reside in the genes at the top of these pathways because their effects are amplified by the signaling cascade. Here we provide support for this hypothesis by showing that causal genetic variants in yeast sporulation cluster around a gene at the top of the sporulation signaling cascade. Our result suggests a way to focus the search for causal genetic variants, including those that cause disease, on a smaller number of genes that are more likely to harbor important variations.
Collapse
Affiliation(s)
- Kim Lorenz
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
Menoret D, Santolini M, Fernandes I, Spokony R, Zanet J, Gonzalez I, Latapie Y, Ferrer P, Rouault H, White KP, Besse P, Hakim V, Aerts S, Payre F, Plaza S. Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization. Genome Biol 2013; 14:R86. [PMID: 23972280 PMCID: PMC4053989 DOI: 10.1186/gb-2013-14-8-r86] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Developmental programs are implemented by regulatory interactions between Transcription Factors (TFs) and their target genes, which remain poorly understood. While recent studies have focused on regulatory cascades of TFs that govern early development, little is known about how the ultimate effectors of cell differentiation are selected and controlled. We addressed this question during late Drosophila embryogenesis, when the finely tuned expression of the TF Ovo/Shavenbaby (Svb) triggers the morphological differentiation of epidermal trichomes. Results We defined a sizeable set of genes downstream of Svb and used in vivo assays to delineate 14 enhancers driving their specific expression in trichome cells. Coupling computational modeling to functional dissection, we investigated the regulatory logic of these enhancers. Extending the repertoire of epidermal effectors using genome-wide approaches showed that the regulatory models learned from this first sample are representative of the whole set of trichome enhancers. These enhancers harbor remarkable features with respect to their functional architectures, including a weak or non-existent clustering of Svb binding sites. The in vivo function of each site relies on its intimate context, notably the flanking nucleotides. Two additional cis-regulatory motifs, present in a broad diversity of composition and positioning among trichome enhancers, critically contribute to enhancer activity. Conclusions Our results show that Svb directly regulates a large set of terminal effectors of the remodeling of epidermal cells. Further, these data reveal that trichome formation is underpinned by unexpectedly diverse modes of regulation, providing fresh insights into the functional architecture of enhancers governing a terminal differentiation program.
Collapse
|
13
|
Martin A, Orgogozo V. The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 2013; 67:1235-50. [PMID: 23617905 DOI: 10.1111/evo.12081] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/26/2013] [Indexed: 12/11/2022]
Abstract
What is the nature of the genetic changes underlying phenotypic evolution? We have catalogued 1008 alleles described in the literature that cause phenotypic differences among animals, plants, and yeasts. Surprisingly, evolution of similar traits in distinct lineages often involves mutations in the same gene ("gene reuse"). This compilation yields three important qualitative implications about repeated evolution. First, the apparent evolution of similar traits by gene reuse can be traced back to two alternatives, either several independent causative mutations or a single original mutational event followed by sorting processes. Second, hotspots of evolution-defined as the repeated occurrence of de novo mutations at orthologous loci and causing similar phenotypic variation-are omnipresent in the literature with more than 100 examples covering various levels of analysis, including numerous gain-of-function events. Finally, several alleles of large effect have been shown to result from the aggregation of multiple small-effect mutations at the same hotspot locus, thus reconciling micromutationist theories of adaptation with the empirical observation of large-effect variants. Although data heterogeneity and experimental biases prevented us from extracting quantitative trends, our synthesis highlights the existence of genetic paths of least resistance leading to viable evolutionary change.
Collapse
Affiliation(s)
- Arnaud Martin
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall, 215 Tower Road, Ithaca, New York, 14853, USA.
| | | |
Collapse
|