1
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson LA. Assessing mechanical agency during apical apoptotic cell extrusion. iScience 2024; 27:111017. [PMID: 39507245 PMCID: PMC11539584 DOI: 10.1016/j.isci.2024.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/31/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells in the larval zebrafish tail fin epidermis are removed via controlled cell death and extrusion. Extrusion coincides with oscillations of cell area, both in the extruding cell and its neighbors. Here, we develop a biophysical model of this process to explore the role of autonomous and non-autonomous mechanics. We vary biophysical properties and oscillatory behaviors of extruding cells and their neighbors along with tissue-wide cell density and viscosity. We find that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. We also find that some cells initially resist extrusion, influencing the duration of the expulsion process. Our model provides insights into the cellular dynamics and mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Computational Modeling and Simulation Graduate Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Anjum S, Turner L, Atieh Y, Eisenhoffer GT, Davidson L. Assessing mechanical agency during apical apoptotic cell extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564227. [PMID: 37961593 PMCID: PMC10634859 DOI: 10.1101/2023.10.26.564227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Epithelial tissues maintain homeostasis through the continual addition and removal of cells. Homeostasis is necessary for epithelia to maintain barrier function and prevent the accumulation of defective cells. Unfit, excess, and dying cells can be removed from epithelia by the process of extrusion. Controlled cell death and extrusion in the epithelium of the larval zebrafish tail fin coincides with oscillation of cell area, both in the extruding cell and its neighbors. Both cell-autonomous and non-autonomous factors have been proposed to contribute to extrusion but have been challenging to test by experimental approaches. Here we develop a dynamic cell-based biophysical model that recapitulates the process of oscillatory cell extrusion to test and compare the relative contributions of these factors. Our model incorporates the mechanical properties of individual epithelial cells in a two-dimensional simulation as repelling active particles. The area of cells destined to extrude oscillates with varying durations or amplitudes, decreasing their mechanical contribution to the epithelium and surrendering their space to surrounding cells. Quantitative variations in cell shape and size during extrusion are visualized by a hybrid weighted Voronoi tessellation technique that renders individual cell mechanical properties directly into an epithelial sheet. To explore the role of autonomous and non-autonomous mechanics, we vary the biophysical properties and behaviors of extruding cells and neighbors such as the period and amplitude of repulsive forces, cell density, and tissue viscosity. Our data suggest that cell autonomous processes are major contributors to the dynamics of extrusion, with the mechanical microenvironment providing a less pronounced contribution. Our computational model based on in vivo data serves as a tool to provide insights into the cellular dynamics and localized changes in mechanics that promote elimination of unwanted cells from epithelia during homeostatic tissue maintenance.
Collapse
Affiliation(s)
- Sommer Anjum
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Llaran Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Youmna Atieh
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George T. Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Genetics and Epigenetics Graduate Program, University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Lance Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Marsay KS, Greaves S, Mahabaleshwar H, Ho CM, Roehl H, Monk PN, Carney TJ, Partridge LJ. Tetraspanin Cd9b and Cxcl12a/Cxcr4b have a synergistic effect on the control of collective cell migration. PLoS One 2021; 16:e0260372. [PMID: 34847198 PMCID: PMC8631670 DOI: 10.1371/journal.pone.0260372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Collective cell migration is essential for embryonic development and homeostatic processes. During zebrafish development, the posterior lateral line primordium (pLLP) navigates along the embryo flank by collective cell migration. The chemokine receptors, Cxcr4b and Cxcr7b, as well as their cognate ligand, Cxcl12a, are essential for this process. We corroborate that knockdown of the zebrafish cd9 tetraspanin orthologue, cd9b, results in mild pLL abnormalities. Through generation of CRISPR and TALEN mutants, we show that cd9a and cd9b function partially redundantly in pLLP migration, which is delayed in the cd9b single and cd9a; cd9b double mutants. This delay led to a transient reduction in neuromast numbers. Loss of both Cd9a and Cd9b sensitized embryos to reduced Cxcr4b and Cxcl12a levels. Together these results provide evidence that Cd9 modulates collective cell migration of the pLLP during zebrafish development. One interpretation of these observations is that Cd9 contributes to more effective chemokine signalling.
Collapse
Affiliation(s)
- Katherine S. Marsay
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sarah Greaves
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, Singapore, Singapore
| | - Charmaine Min Ho
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, Singapore, Singapore
| | - Henry Roehl
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| | - Peter N. Monk
- Department of Infection, Immunity and Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Tom J. Carney
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, Singapore, Singapore
| | - Lynda J. Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Arias Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 2020; 11:21. [PMID: 33062243 PMCID: PMC7549232 DOI: 10.1186/s13227-020-00165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|