1
|
Lazcano I, Pech-Pool SM, Maldonado-Lira MF, Olvera A, Darras VM, Orozco A. Ontogeny of Thyroid Hormone Signaling in the Retina of Zebrafish: Effects of Thyroidal Status on Retinal Morphology, Cell Survival, and Color Preference. Int J Mol Sci 2024; 25:12215. [PMID: 39596289 PMCID: PMC11594673 DOI: 10.3390/ijms252212215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival. In the present study, we investigated the expression profile of genes involved in TH signaling and analyzed the impact of thyroidal status on retinal morphology, opsin expression, cell death/proliferation profile, as well as color preference behavior during the early retina development of zebrafish larvae. mRNA expression analysis on dissected whole eyes revealed that TH signaling elements gradually increase during eye development, with dio3b being the component that shows the most dramatic change. Mutations generated by CRISPR/CAS9 in the dio3b gene, but not in the thrb gene, modifies the structure of the retina. Disruption in TH level reduces the cell number of the ganglion cell layer, increases cell death, and modifies color preference, emphasizing the critical importance of precise TH regulation by its signaling elements for optimal retinal development and function.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Santiago M. Pech-Pool
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | | | - Aurora Olvera
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, 3000 Leuven, Belgium
| | - Aurea Orozco
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Queretaro 76230, Mexico
| |
Collapse
|
2
|
Walkowski WG, Richards-Zawacki CL, Gordon WC, Bazan NG, Farris HE. The relationship between spectral signals and retinal sensitivity in dendrobatid frogs. PLoS One 2024; 19:e0312578. [PMID: 39541311 PMCID: PMC11563434 DOI: 10.1371/journal.pone.0312578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Research on visually driven behavior in anurans has often focused on Dendrobatoidea, a clade with extensive variation in skin reflectance, which is perceived to range from cryptic to conspicuous coloration. Because these skin patterns are important in intraspecific and interspecific communication, we hypothesized that the visual spectral sensitivity of dendrobatids should vary with conspecific skin spectrum. We predicted that the physiological response of frog retinas would be tuned to portions of the visible light spectrum that match their body reflectance. Using wavelength-specific electroretinograms (ERGs; from 350-650 nm), spectrometer measurements, and color-calibrated photography of the skin, we compared retinal sensitivity and reflectance of two cryptic species (Allobates talamancae and Silverstoneia flotator), two intermediate species (Colostethus panamansis and Phyllobates lugubris), and two conspicuous aposematic species (Dendrobates tinctorius and Oophaga pumilio). Consistent with the matched filter hypothesis, the retinae of cryptic and intermediate species were sensitive across the spectrum, without evidence of spectral tuning to specific wavelengths, yielding low-threshold broadband sensitivity. In contrast, spectral tuning was found to be different between morphologically distinct populations of O. pumilio, where frogs exhibited retinal sensitivity better matching their morph's reflectance. This sensory specialization is particularly interesting given the rapid phenotypic divergence exhibited by this species and their behavioral preference for sympatric skin reflectances. Overall, this study suggests that retinal sensitivity is coevolving with reflective strategy and spectral reflectance in dendrobatids.
Collapse
Affiliation(s)
- Whitney G. Walkowski
- Neuroscience Center, School of Medicine, LSUHSC, New Orleans, LA, United States of America
- Department Cell Biology and Anatomy, School of Medicine, LSUHSC, New Orleans, LA, United States of America
| | | | - William C. Gordon
- Neuroscience Center, School of Medicine, LSUHSC, New Orleans, LA, United States of America
- Department of Ophthalmology, School of Medicine, LSUHSC, New Orleans, LA, United States of America
| | - Nicolas G. Bazan
- Neuroscience Center, School of Medicine, LSUHSC, New Orleans, LA, United States of America
| | - Hamilton E. Farris
- Neuroscience Center, School of Medicine, LSUHSC, New Orleans, LA, United States of America
- Department Cell Biology and Anatomy, School of Medicine, LSUHSC, New Orleans, LA, United States of America
- Department of Otolaryngology & Biocommunication, School of Medicine, LSUHSC, New Orleans, LA, United States of America
| |
Collapse
|
3
|
Butler JM, McKinney JE, Ludington SC, Mabogunje M, Baker P, Singh D, Edwards SV, O'Connell LA. Tadpoles rely on mechanosensory stimuli for communication when visual capabilities are poor. Dev Biol 2024; 514:66-77. [PMID: 38851558 DOI: 10.1016/j.ydbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
The ways in which animals sense the world changes throughout development. For example, young of many species have limited visual capabilities, but still make social decisions, likely based on information gathered through other sensory modalities. Poison frog tadpoles display complex social behaviors that have been suggested to rely on vision despite a century of research indicating tadpoles have poorly-developed visual systems relative to adults. Alternatively, other sensory modalities, such as the lateral line system, are functional at hatching in frogs and may guide social decisions while other sensory systems mature. Here, we examined development of the mechanosensory lateral line and visual systems in tadpoles of the mimic poison frog (Ranitomeya imitator) that use vibrational begging displays to stimulate egg feeding from their mothers. We found that tadpoles hatch with a fully developed lateral line system. While begging behavior increases with development, ablating the lateral line system inhibited begging in pre-metamorphic tadpoles, but not in metamorphic tadpoles. We also found that the increase in begging and decrease in reliance on the lateral line co-occurs with increased retinal neural activity and gene expression associated with eye development. Using the neural tracer neurobiotin, we found that axonal innervations from the eye to the brain proliferate during metamorphosis, with few retinotectal connections in recently-hatched tadpoles. We then tested visual function in a phototaxis assay and found tadpoles prefer darker environments. The strength of this preference increased with developmental stage, but eyes were not required for this behavior, possibly indicating a role for the pineal gland. Together, these data suggest that tadpoles rely on different sensory modalities for social interactions across development and that the development of sensory systems in socially complex poison frog tadpoles is similar to that of other frog species.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biology, Stanford University, United States.
| | | | | | - Moremi Mabogunje
- Department of Biology, Stanford University, United States; Foothill Community College, United States
| | - Penelope Baker
- Department of Biology, Stanford University, United States
| | - Devraj Singh
- Department of Organismic and Evolutionary Biology, Harvard University, United States; Museum of Comparative Zoology, Harvard University, United States; Department of Biology, University of Kentucky, United States
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, United States; Museum of Comparative Zoology, Harvard University, United States
| | - Lauren A O'Connell
- Department of Biology, Stanford University, United States; Wu Tsai Institute for Neuroscience, Stanford University, United States.
| |
Collapse
|
4
|
Cervino NG, Elias-Costa AJ, Iglesias PP, Yovanovich CAM, Faivovich J. Insights into the evolution of photoreceptor oil droplets in frogs and toads. Proc Biol Sci 2024; 291:20241388. [PMID: 39079666 PMCID: PMC11288682 DOI: 10.1098/rspb.2024.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 08/03/2024] Open
Abstract
Photoreceptor oil droplets (ODs) are spherical organelles placed most commonly within the inner segment of the cone photoreceptors. Comprising neutral lipids, ODs can be either non-pigmented or pigmented and have been considered optically functional in various studies. Among living amphibians, ODs were only reported to occur in frogs and toads (Anura), while they are absent in salamanders and caecilians. Nonetheless, the limited understanding of their taxonomic distribution in anurans impedes a comprehensive assessment of their evolution and relationship with visual ecology. We studied the retinae of 134 anuran species, extending the knowledge of the distribution of ODs to 46 of the 58 currently recognized families, and providing a new perspective on this group that complements the available information from other vertebrates. The occurrence of ODs in anurans shows a strong phylogenetic signal, and our findings revealed that ODs evolved at least six times during the evolutionary history of the group, independently from other vertebrates. Although no evident correlation was found between OD occurrence, adult habits and diel activity, it is inferred that each independent origin involves distinct scenarios in the evolution of ODs concerning photic habits. Furthermore, our results revealed significant differences in the size of the ODs between nocturnal and arrhythmic anurans relative to the length of the cones' outer segment.
Collapse
Affiliation(s)
- Nadia G. Cervino
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| | - Agustín J. Elias-Costa
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin10115, Germany
| | - Patricia P. Iglesias
- CONICET--Agencia INTA General Acha, Estación Experimental Anguil, Avellaneda 530 General Acha, La PampaL8200AEL, Argentina
| | - Carola A. M. Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, Rua do Matão No. 101, São Paulo05508-090, Brazil
- Department of Biology, Lund University, Sölvegatan 35, Lund22362, Sweden
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos AiresC1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| |
Collapse
|
5
|
Lin JJ, Wang FY, Chung WY, Wang TY. The genomic evolution of visual opsin genes in amphibians. Vision Res 2024; 222:108447. [PMID: 38906036 DOI: 10.1016/j.visres.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.
Collapse
Affiliation(s)
- Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Feng-Yu Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments. Mol Biol Evol 2024; 41:msae049. [PMID: 38573520 PMCID: PMC10994157 DOI: 10.1093/molbev/msae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology and Centre for Vision Research, York University, Toronto, Ontario, Canada
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | | | | | - Kate N Thomas
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
- Natural History Museum, London, UK
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | | | | | - C Guillherme Becker
- Department of Biology and One Health Microbiome Center, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Diego Cisneros-Heredia
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Simon Clulow
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mateo Davila
- Laboratorio de Zoología Terrestre, Instituto de Biodiversidad Tropical IBIOTROP, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Thomas J Firneno
- Department of Biological Sciences, University of Denver, Denver, USA
| | - Célio F B Haddad
- Department of Biodiversity and Center of Aquaculture—CAUNESP, I.B., São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Sunita Janssenswillen
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jim Labisko
- Natural History Museum, London, UK
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
| | - Simon T Maddock
- Natural History Museum, London, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé, Seychelles
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Michael Mahony
- Department of Biological Sciences, The University of Newcastle, Newcastle 2308, Australia
| | - Renato A Martins
- Programa de Pós-graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, Brazil
| | | | - Nicola J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel M Portik
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ivan Prates
- Department of Biology, Lund University, Lund, Sweden
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corey Roelke
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Elie Tobi
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Maya Woolfolk
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
7
|
Wan YC, Navarrete Méndez MJ, O'Connell LA, Uricchio LH, Roland AB, Maan ME, Ron SR, Betancourth-Cundar M, Pie MR, Howell KA, Richards-Zawacki CL, Cummings ME, Cannatella DC, Santos JC, Tarvin RD. Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs. Mol Biol Evol 2023; 40:msad206. [PMID: 37791477 PMCID: PMC10548314 DOI: 10.1093/molbev/msad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.
Collapse
Affiliation(s)
- Yin Chen Wan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - María José Navarrete Méndez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Lawrence H Uricchio
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Biology, Tufts University, Medford, MA, USA
| | - Alexandre-Benoit Roland
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Santiago R Ron
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Marcio R Pie
- Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
- Biology Department, Edge Hill University, Ormskirk, United Kingdom
| | - Kimberly A Howell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Molly E Cummings
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - David C Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York City, NY, USA
| | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
8
|
Seifert M, Roberts PA, Kafetzis G, Osorio D, Baden T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat Commun 2023; 14:5308. [PMID: 37652912 PMCID: PMC10471707 DOI: 10.1038/s41467-023-41032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Collapse
Affiliation(s)
- Marvin Seifert
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Lametschwandtner A, Minnich B. Ocular microvasculature in adult Xenopus laevis: Scanning electron microscopy of vascular casts. J Morphol 2023; 284:e21561. [PMID: 36719276 DOI: 10.1002/jmor.21561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
Abstract
The microvascular anatomy of choriocapillaris, iris, ciliary body, and superficial vascular hyaloid system of eyes was studied in the permanent aquatic Xenopus laevis by scanning electron microscopy of vascular casts and was compared with that published in two semiaquatic ranid species (Rana esculenta and Rana temporaria), and the urodelian species Triturus criststus carnifex. Results showed that the choriocapillaris in Xenopus consisted of a dense meshwork of wide capillaries displaying polygonal arrays at the scleral side with venules leaving the centers and arterioles supplied from the periphery. The choriocapillaris lacked the multilayered capillary meshwork described in ranids. Iris and ciliary body were supplied by nasal and temporal branches of the iridial artery, which either originated with a common stem from the hyaloid artery or arose as individual vessels from the proximal portions of the semicircular nasal and temporal branches of the hyaloid artery. These branches ran in the pupillary margin and supplied the two-dimensional capillary network of the iris, as well as the three-dimensional network of the ciliary body. Iris and ciliary body drained via parallel running vasa recta into the choriocapillaris. The superficial vascular hyaloid bed (system) was supplied by the hyaloid artery. This artery coursed along the scleral surface of the ventrotemporal choriocapillaris toward the ora serrata, where it bifurcated into a temporal and a nasal semicircular branch. Seven to 10 arterial meridional twigs arose from these branches and supplied the superficial hyaloid capillary bed. Capillaries drained into branches of the hyaloid vein, which ascended toward the ora serrata, where the hyaloid vein joined the temporal branch of the ciliary vein.
Collapse
Affiliation(s)
- Alois Lametschwandtner
- Department of Environment and Biodiversity, University of Salzburg, Vascular Biology Research Unit, Salzburg, Austria
| | - Bernd Minnich
- Department of Environment and Biodiversity, University of Salzburg, Vascular Biology Research Unit, Salzburg, Austria
| |
Collapse
|
10
|
Adebogun GT, Bachmann AE, Callan AA, Khan U, Lewis AR, Pollock AC, Alfonso SA, Arango Sumano D, Bhatt DA, Cullen AB, Hajian CM, Huang W, Jaeger EL, Li E, Maske AK, Offenberg EG, Ta V, Whiting WW, McKinney JE, Butler J, O’Connell LA. Albino Xenopus laevis tadpoles prefer dark environments compared to wild type. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000750. [PMID: 36824381 PMCID: PMC9941856 DOI: 10.17912/micropub.biology.000750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023]
Abstract
Tadpoles display preferences for different environments but the sensory modalities that govern these choices are not well understood. Here, we examined light preferences and associated sensory mechanisms of albino and wild-type Xenopus laevis tadpoles. We found that albino tadpoles spent more time in darker environments compared to the wild type, although they showed no differences in overall activity. This preference persisted when the tadpoles had their optic nerve severed or pineal glands removed, suggesting these sensory systems alone are not necessary for phototaxis. These experiments were conducted by an undergraduate laboratory course, highlighting how X. laevis tadpole behavior assays in a classroom setting can reveal new insights into animal behavior.
Collapse
Affiliation(s)
- Grace T Adebogun
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Annabelle E Bachmann
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Ashlyn A Callan
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Ummara Khan
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Amaris R Lewis
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Alexa C Pollock
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Sebastian A Alfonso
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Daniel Arango Sumano
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Dhruv A Bhatt
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Aidan B Cullen
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Cyrus M Hajian
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Winnie Huang
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emma L Jaeger
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emily Li
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - A. Kaile Maske
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emma G Offenberg
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Vy Ta
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Waymon W Whiting
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Jordan E McKinney
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
,
Department of Biology, Stanford University, Stanford, California, United States
| | - Julie Butler
- Department of Biology, Stanford University, Stanford, California, United States
,
Correspondence to: Julie Butler (
)
| | - Lauren A O’Connell
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
,
Department of Biology, Stanford University, Stanford, California, United States
,
Correspondence to: Lauren A O’Connell (
)
| |
Collapse
|
11
|
Stückler S, Fuxjager MJ, Preininger D. Evidence that catecholaminergic systems mediate dynamic colour change during explosive breeding events in toads. Biol Lett 2022; 18:20220337. [PMID: 36259941 PMCID: PMC9580614 DOI: 10.1098/rsbl.2022.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022] Open
Abstract
Many animals communicate by rapidly (within minutes or seconds) changing their body coloration; however, we know little about the physiology of this behaviour. Here we study how catecholaminergic hormones regulate rapid colour change in explosive breeding toads (Duttaphrynus melanostictus), where large groups of males gather and quickly change their colour from brown to bright yellow during reproduction. We find that both epinephrine (EP) and/or norepinephrine (NE) cause the toads' skin to become yellow in minutes, even in the absence of social and environmental cues associated with explosive breeding. We hypothesize that natural selection drives the evolution of rapid colour change by co-opting the functional effects of catecholaminergic action. If so, then hormones involved in 'fight or flight' responses may mechanistically facilitate the emergence of dynamic visual signals that mediate communication in a sexual context.
Collapse
Affiliation(s)
| | - Matthew J. Fuxjager
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, USA
| | - Doris Preininger
- Department of Evolutionary Biology, University of Vienna, Austria
- Vienna Zoo, 1130 Vienna, Austria
| |
Collapse
|
12
|
Schott RK, Bell RC, Loew ER, Thomas KN, Gower DJ, Streicher JW, Fujita MK. Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs. BMC Biol 2022; 20:138. [PMID: 35761245 PMCID: PMC9238225 DOI: 10.1186/s12915-022-01341-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Biology, York University, Toronto, Ontario, Canada.
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA.
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
13
|
Li H, Schrode KM, Bee MA. Vocal sacs do not function in multimodal mate attraction under nocturnal illumination in Cope's grey treefrog. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Robertson JM, Bell RC, Loew ER. Vision in dim light and the evolution of color pattern in a crepuscular/nocturnal frog. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Thomas KN, Gower DJ, Streicher JW, Bell RC, Fujita MK, Schott RK, Liedtke HC, Haddad CFB, Becker CG, Cox CL, Martins RA, Douglas RH. Ecology drives patterns of spectral transmission in the ocular lenses of frogs and salamanders. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kate N. Thomas
- Department of Life Sciences The Natural History Museum London UK
| | - David J. Gower
- Department of Life Sciences The Natural History Museum London UK
| | | | - Rayna C. Bell
- Department of Herpetology California Academy of Sciences San Francisco CA USA
- Department of Vertebrate Zoology National Museum of Natural History, Smithsonian Institution Washington DC USA
| | - Matthew K. Fujita
- Department of Biology Amphibian and Reptile Diversity Research Center The University of Texas at Arlington Arlington TX USA
| | - Ryan K. Schott
- Department of Vertebrate Zoology National Museum of Natural History, Smithsonian Institution Washington DC USA
- Department of Biology York University Toronto ON Canada
| | - H. Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Célio F. B. Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP) I.B. Universidade Estadual Paulista Rio Claro Brazil
| | - C. Guilherme Becker
- Department of Biology The Pennsylvania State University University Park PA USA
| | - Christian L. Cox
- Department of Biological Sciences Institute for the Environment Florida International University Miami FL USA
| | - Renato A. Martins
- Programa de Pós‐graduação em Conservação da Fauna Universidade Federal de São Carlos São Carlos Brazil
| | - Ron H. Douglas
- Division of Optometry & Visual Science, School of Health Sciences City, University of London London UK
| |
Collapse
|
16
|
Schott RK, Perez L, Kwiatkowski MA, Imhoff V, Gumm JM. Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection. Ecol Evol 2022; 12:e8595. [PMID: 35154658 PMCID: PMC8820127 DOI: 10.1002/ece3.8595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 01/12/2023] Open
Abstract
Among major vertebrate groups, anurans (frogs and toads) are understudied with regard to their visual systems, and little is known about variation among species that differ in ecology. We sampled North American anurans representing diverse evolutionary and life histories that likely possess visual systems adapted to meet different ecological needs. Using standard molecular techniques, visual opsin genes, which encode the protein component of visual pigments, were obtained from anuran retinas. Additionally, we extracted the visual opsins from publicly available genome and transcriptome assemblies, further increasing the phylogenetic and ecological diversity of our dataset to 33 species in total. We found that anurans consistently express four visual opsin genes (RH1, LWS, SWS1, and SWS2, but not RH2) even though reported photoreceptor complements vary widely among species. The proteins encoded by these genes showed considerable sequence variation among species, including at sites known to shift the spectral sensitivity of visual pigments in other vertebrates and had conserved substitutions that may be related to dim-light adaptation. Using molecular evolutionary analyses of selection (dN/dS) we found significant evidence for positive selection at a subset of sites in the dim-light rod opsin gene RH1 and the long wavelength sensitive cone opsin LWS. The function of sites inferred to be under positive selection are largely unknown, but a few are likely to affect spectral sensitivity and other visual pigment functions based on proximity to previously identified sites in other vertebrates. We also found the first evidence of visual opsin duplication in an amphibian with the duplication of the LWS gene in the African bullfrog, which had distinct LWS copies on the sex chromosomes suggesting the possibility of sex-specific visual adaptation. Taken together, our results indicate that ecological factors, such as habitat and life history, as well as behavior, may be driving changes to anuran visual systems.
Collapse
Affiliation(s)
- Ryan K. Schott
- Department of BiologyYork UniversityTorontoOntarioCanada
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of ColumbiaUSA
| | - Leah Perez
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
| | | | - Vance Imhoff
- Southern Nevada Fish and Wildlife OfficeUS Fish and Wildlife ServiceLas VegasNevadaUSA
| | - Jennifer M. Gumm
- Department of BiologyStephen F. Austin State UniversityNacogdochesTexasUSA
- Ash Meadows Fish Conservation FacilityUS Fish and Wildlife ServiceAmargosa ValleyNevadaUSA
| |
Collapse
|
17
|
Fouilloux CA, Yovanovich CAM, Rojas B. Tadpole Responses to Environments With Limited Visibility: What We (Don’t) Know and Perspectives for a Sharper Future. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.766725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amphibian larvae typically inhabit relatively shallow freshwater environments, and within these boundaries there is considerable diversity in the structure of the habitats exploited by different species. This diversity in habitat structure is usually taken into account in relation to aspects such as locomotion and feeding, and plays a fundamental role in the classification of tadpoles into ecomorphological guilds. However, its impact in shaping the sensory worlds of different species is rarely addressed, including the optical qualities of each of these types of water bodies and the challenges and limitations that they impose on the repertoire of visual abilities available for a typical vertebrate eye. In this Perspective article, we identify gaps in knowledge on (1) the role of turbidity and light-limited environments in shaping the larval visual system; and (2) the possible behavioral and phenotypic responses of larvae to such environments. We also identify relevant unaddressed study systems paying special attention to phytotelmata, whose small size allows for extensive quantification and manipulation providing a rich and relatively unexplored research model. Furthermore, we generate hypotheses ranging from proximate shifts (i.e., red-shifted spectral sensitivity peaks driven by deviations in chromophore ratios) to ultimate changes in tadpole behavior and phenotype, such as reduced foraging efficiency and the loss of antipredator signaling. Overall, amphibians provide an exciting opportunity to understand adaptations to visually limited environments, and this framework will provide novel experimental considerations and interpretations to kickstart future research based on understanding the evolution and diversity of strategies used to cope with limited visibility.
Collapse
|
18
|
Phototransduction in Anuran Green Rods: Origins of Extra-Sensitivity. Int J Mol Sci 2021; 22:ijms222413400. [PMID: 34948198 PMCID: PMC8707487 DOI: 10.3390/ijms222413400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 01/13/2023] Open
Abstract
Green rods (GRs) represent a unique type of photoreceptor to be found in the retinas of anuran amphibians. These cells harbor a cone-specific blue-sensitive visual pigment but exhibit morphology of the outer segment typical for classic red rods (RRs), which makes them a perspective model object for studying cone–rod transmutation. In the present study, we performed detailed electrophysiological examination of the light sensitivity, response kinetics and parameters of discrete and continuous dark noise in GRs of the two anuran species: cane toad and marsh frog. Our results confirm that anuran GRs are highly specialized nocturnal vision receptors. Moreover, their rate of phototransduction quenching appeared to be about two-times slower than in RRs, which makes them even more efficient single photon detectors. The operating intensity ranges for two rod types widely overlap supposedly allowing amphibians to discriminate colors in the scotopic region. Unexpectedly for typical cone pigments but in line with some previous reports, the spontaneous isomerization rate of the GR visual pigment was found to be the same as for rhodopsin of RRs. Thus, our results expand the knowledge on anuran GRs and show that these are even more specialized single photon catchers than RRs, which allows us to assign them a status of “super-rods”.
Collapse
|
19
|
Pushchin I. Retinal ganglion cell distribution and spatial resolution in the Asiatic toad Bufo gargarizans (Günther, 1859). Vision Res 2021; 195:107960. [PMID: 34674891 DOI: 10.1016/j.visres.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Vision plays a crucial role in the biology of anurans. The spatial arrangement of retinal ganglion cells (GCs) is closely related to visual behavior in vertebrates. There is scarce data on GC topography in anurans, in particular, in toads. I studied the number and distribution of GCs in the retina of the Asiatic toad Bufo gargarizans. GCs were unevenly distributed across the retina. Their spatial density was minimum in the dorsal periphery (3374 and 2486 cells/mm2 in the smaller and larger toad, respectively). It increased towards the retinal equator, where a moderately pronounced visual streak was observed comprising several "patches" of a greater GC density. The streak had somewhat "vague" dorsal and ventral borders. The maximum GC density (8605 and 7282 cells/mm2 in the smaller and larger toad, respectively) was found in the temporal retina, slightly dorsal to the equator. The respective zone was identified as an area centralis. The total GC number ranged from 266 × 103 (smaller toad) to 309 × 103 cells (larger toad). The spatial resolution as estimated from eye geometry and GC density in air was minimum in the dorsal periphery (0.90 and 0.79 cycles per degree in smaller and larger toads, respectively) and maximum in the area centralis (1.43 and 1.36 cycles per degree in smaller and larger toads, respectively). Both retinal specializations found in the Asiatic toad match its biology.
Collapse
Affiliation(s)
- Igor Pushchin
- Laboratory of Physiology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
20
|
Cervino NG, Elias-Costa AJ, Pereyra MO, Faivovich J. A closer look at pupil diversity and evolution in frogs and toads. Proc Biol Sci 2021; 288:20211402. [PMID: 34403634 PMCID: PMC8370803 DOI: 10.1098/rspb.2021.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022] Open
Abstract
The eyes of frogs and toads (Anura) are among their most fascinating features. Although several pupil shapes have been described, the diversity, evolution, and functional role of the pupil in anurans have received little attention. Studying photographs of more than 3200 species, we surveyed pupil diversity, described their morphological variation, tested correlation with adult habits and diel activity, and discuss major evolutionary patterns considering iris anatomy and visual ecology. Our results indicate that the pupil in anurans is a highly plastic structure, with seven main pupil shapes that evolved at least 116 times during the history of the group. We found no significant correlation between pupil shape, adult habits, and diel activity, with the exception of the circular pupil and aquatic habits. The vertical pupil arose at least in the most-recent common ancestor of Anura + Caudata, and this morphology is present in most early-diverging anuran clades. Subsequently, a horizontal pupil, a very uncommon shape in vertebrates, evolved in most neobatrachian frogs. This shape evolved into most other known pupil shapes, but it persisted in a large number of species with diverse life histories, habits, and diel activity patterns, demonstrating a remarkable functional and ecological versatility.
Collapse
Affiliation(s)
- Nadia G. Cervino
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina
| | - Agustín J. Elias-Costa
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina
| | - Martín O. Pereyra
- Laboratorio de Genética Evolutiva ‘Claudio J. Bidau’, Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ – CONICET, Av. Ángel Gallardo 470, Buenos Aires C1405DJR, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
21
|
Image motion with color contrast suffices to elicit an optokinetic reflex in Xenopus laevis tadpoles. Sci Rep 2021; 11:8445. [PMID: 33875722 PMCID: PMC8055916 DOI: 10.1038/s41598-021-87835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022] Open
Abstract
The optokinetic reflex is a closed-loop gaze-stabilizing ocular motor reaction that minimizes residual retinal image slip during vestibulo-ocular reflexes. In experimental isolation, the reflex is usually activated by motion of an achromatic large-field visual background with strong influence of radiance contrast on visual motion estimation and behavioral performance. The presence of color in natural environments, however, suggests that chromatic cues of visual scenes provide additional parameters for image motion detection. Here, we employed Xenopus laevis tadpoles to study the influence of color cues on the performance of the optokinetic reflex and multi-unit optic nerve discharge during motion of a large-field visual scene. Even though the amplitude of the optokinetic reflex decreases with smaller radiance contrast, considerable residual eye movements persist at the ‘point of equiluminance’ of the colored stimuli. Given the color motion preferences of individual optic nerve fibers, the underlying computation potentially originates in retinal circuits. Differential retinal ganglion cell projections and associated ocular motor signal transformation might further reinforce the color dependency in conceptual correspondence with head/body optomotor signaling. Optokinetic reflex performance under natural light conditions is accordingly influenced by radiance contrast as well as by the color composition of the moving visual scene.
Collapse
|
22
|
Yeager J, Barnett JB. Ultraviolet components offer minimal contrast enhancement to an aposematic signal. Ecol Evol 2020; 10:13576-13582. [PMID: 33391663 PMCID: PMC7771128 DOI: 10.1002/ece3.6969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
Aposematic and sexual signals are often characterized by bright, highly contrasting colors. Many species can see colors beyond the human visible spectrum, and ultraviolet (UV) reflection has been found to play an important role in communication and sexual selection. However, the role of UV in aposematic signals is poorly explored. Poison frogs frequently produce high-contrast signals that have been linked to both aposematism and intraspecific communication. Yet despite considerable efforts studying interspecific and intraspecific diversity in color, poison frogs are not known to perceive UV, and UV reflection of the integument has not been described. We report UV-reflective spots in a population of Oophaga sylvatica and quantify the effect of UV on visual contrast with models of avian vision. We found that the frogs are highly contrasting, but UV had a minimal effect on signal saliency. These data highlight the importance of considering UV reflectance within aposematic signals, but that UV should not necessarily be regarded as an independent signal.
Collapse
Affiliation(s)
- Justin Yeager
- Biodiversidad Medio Ambiente y SaludUniversidad de Las AméricasQuitoEcuador
| | - James B. Barnett
- Department of Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonONCanada
| |
Collapse
|