1
|
Hung CT, Haas GD, Watkinson RE, Chiu HP, Kowdle S, Stevens CS, Park A, Wohlschlegel JA, Thibault PA, Lee B. Paramyxovirus matrix proteins modulate host cell translation via exon-junction complex interactions in the cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611502. [PMID: 39282406 PMCID: PMC11398453 DOI: 10.1101/2024.09.05.611502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Viruses have evolved myriad strategies to exploit the translation machinery of host cells to potentiate their replication. However, how paramyxovirus (PMVs) modulate cellular translation for their own benefit has not been systematically examined. Utilizing puromycylation labeling, overexpression of individual viral genes, and infection with wild-type virus versus its gene-deleted counterpart, we found that PMVs significantly inhibit host cells' nascent peptide synthesis during infection, with the viral matrix being the primary contributor to this effect. Using the rNiV-NPL replicon system, we discovered that the viral matrix enhances viral protein translation without affecting viral mRNA transcription and suppresses host protein expression at the translational level. Polysome profile analysis revealed that the HPIV3 matrix promotes the association of viral mRNAs with ribosomes, thereby enhancing their translation efficiency during infection. Intriguingly, our NiV-Matrix interactome identified the core exon-junction complex (cEJC), critical for mRNA biogenesis, as a significant component that interacts with the paramyxoviral matrix predominantly in the cytoplasm. siRNA knockdown of eIF4AIII simulated the restriction of cellular functions by the viral matrix, leading to enhanced viral gene translation and a reduction in host protein synthesis. Moreover, siRNA depletion of cEJC resulted in a 2-3 log enhancement in infectious virus titer for various PMVs but not SARS-CoV-2, enterovirus D68, or influenza virus. Our findings characterize a host translational interference mechanism mediated by viral matrix and host cEJC interactions. We propose that the PMV matrix redirects ribosomes to translate viral mRNAs at the expense of host cell transcripts, enhancing viral replication, and thereby enhancing viral replication. These insights provide a deeper understanding of the molecular interactions between paramyxoviruses and host cells, highlighting potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Barbarin-Bocahu I, Ulryck N, Rigobert A, Ruiz Gutierrez N, Decourty L, Raji M, Garkhal B, Le Hir H, Saveanu C, Graille M. Structure of the Nmd4-Upf1 complex supports conservation of the nonsense-mediated mRNA decay pathway between yeast and humans. PLoS Biol 2024; 22:e3002821. [PMID: 39331656 PMCID: PMC11463774 DOI: 10.1371/journal.pbio.3002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway clears eukaryotic cells of mRNAs containing premature termination codons (PTCs) or normal stop codons located in specific contexts. It therefore plays an important role in gene expression regulation. The precise molecular mechanism of the NMD pathway has long been considered to differ substantially from yeast to metazoa, despite the involvement of universally conserved factors such as the central ATP-dependent RNA-helicase Upf1. Here, we describe the crystal structure of the yeast Upf1 bound to its recently identified but yet uncharacterized partner Nmd4, show that Nmd4 stimulates Upf1 ATPase activity and that this interaction contributes to the elimination of NMD substrates. We also demonstrate that a region of Nmd4 critical for the interaction with Upf1 in yeast is conserved in the metazoan SMG6 protein, another major NMD factor. We show that this conserved region is involved in the interaction of SMG6 with UPF1 and that mutations in this region affect the levels of endogenous human NMD substrates. Our results support the universal conservation of the NMD mechanism in eukaryotes.
Collapse
Affiliation(s)
- Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Amandine Rigobert
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nadia Ruiz Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Mouna Raji
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Bhumika Garkhal
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
3
|
Du K, Peng D, Wu J, Zhu Y, Jiang T, Wang P, Chen X, Jiang S, Li X, Cao Z, Fan Z, Zhou T. Maize splicing-mediated mRNA surveillance impeded by sugarcane mosaic virus-coded pathogenic protein NIa-Pro. SCIENCE ADVANCES 2024; 10:eadn3010. [PMID: 39178251 PMCID: PMC11343020 DOI: 10.1126/sciadv.adn3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
The eukaryotic mRNA surveillance pathway, a pivotal guardian of mRNA fidelity, stands at the nexus of diverse biological processes, including antiviral immunity. Despite the recognized function of splicing factors on mRNA fate, the intricate interplay shaping the mRNA surveillance pathway remains elusive. We illustrate that the conserved splicing factor U2 snRNP auxiliary factor large subunit B (U2AF65B) modulates splicing of mRNA surveillance complex, contributing to transcriptomic homeostasis in maize. The functionality of the mRNA surveillance pathway requires ZmU2AF65B-mediated normal splicing of upstream frameshift 3 (ZmUPF3) pre-mRNA, encoding a core factor in this pathway. Intriguingly, sugarcane mosaic virus (SCMV)-coded nuclear inclusion protein a protease (NIa-Pro) hinders the splicing function of ZmU2AF65B. Furthermore, NIa-Pro disrupts ZmU2AF65B binding to ZmUPF3 pre-mRNA, leading to dysregulated splicing of ZmUPF3 transcripts and, consequently, impairing mRNA surveillance, thus facilitating viral infection. Together, this study establishes that splicing governs the mRNA surveillance pathway and identifies a pathogenic protein capable of disrupting this regulation to compromise RNA immunity.
Collapse
Affiliation(s)
- Kaitong Du
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Dezhi Peng
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jiqiu Wu
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yabing Zhu
- BGI Tech Solutions Co. Ltd. BGI-Shenzhen, Shenzhen, China
| | - Tong Jiang
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pei Wang
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Sanjie Jiang
- BGI Tech Solutions Co. Ltd. BGI-Shenzhen, Shenzhen, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Zhiyan Cao
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zaifeng Fan
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Dias TL, Mamede I, de Toledo NE, Queiroz LR, Castro Í, Polidoro R, Del-Bem LE, Nakaya H, Franco GR. SARS-CoV-2 Selectively Induces the Expression of Unproductive Splicing Isoforms of Interferon, Class I MHC, and Splicing Machinery Genes. Int J Mol Sci 2024; 25:5671. [PMID: 38891862 PMCID: PMC11172111 DOI: 10.3390/ijms25115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
RNA processing is a highly conserved mechanism that serves as a pivotal regulator of gene expression. Alternative processing generates transcripts that can still be translated but lead to potentially nonfunctional proteins. A plethora of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategically manipulate the host's RNA processing machinery to circumvent antiviral responses. We integrated publicly available omics datasets to systematically analyze isoform-level expression and delineate the nascent peptide landscape of SARS-CoV-2-infected human cells. Our findings explore a suggested but uncharacterized mechanism, whereby SARS-CoV-2 infection induces the predominant expression of unproductive splicing isoforms in key IFN signaling, interferon-stimulated (ISGs), class I MHC, and splicing machinery genes, including IRF7, HLA-B, and HNRNPH1. In stark contrast, cytokine and chemokine genes, such as IL6 and TNF, predominantly express productive (protein-coding) splicing isoforms in response to SARS-CoV-2 infection. We postulate that SARS-CoV-2 employs an unreported tactic of exploiting the host splicing machinery to bolster viral replication and subvert the immune response by selectively upregulating unproductive splicing isoforms from antigen presentation and antiviral response genes. Our study sheds new light on the molecular interplay between SARS-CoV-2 and the host immune system, offering a foundation for the development of novel therapeutic strategies to combat COVID-19.
Collapse
Affiliation(s)
- Thomaz Lüscher Dias
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
- Departament of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil;
| | - Izabela Mamede
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| | - Nayara Evelin de Toledo
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| | - Lúcio Rezende Queiroz
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| | - Ícaro Castro
- Departament of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil;
| | - Rafael Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Luiz Eduardo Del-Bem
- Department of Botanics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Helder Nakaya
- Departament of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil;
- Scientific Platform Pasteur-USP, University of São Paulo, São Paulo 05508-020, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Glória Regina Franco
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| |
Collapse
|
5
|
He H, Ge L, Chen Y, Zhao S, Li Z, Zhou X, Li F. m 6A modification of plant virus enables host recognition by NMD factors in plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:161-174. [PMID: 37837530 DOI: 10.1007/s11427-022-2377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/26/2023] [Indexed: 10/16/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Increasing evidence has implicated that m6A modification is an important anti-viral defense mechanism in mammals and plants, but it is largely unknown how m6A regulates viral infection in plants. Here we report the dynamic changes and functional anatomy of m6A in Nicotiana benthamiana and Solanum lycopersicum during Pepino mosaic virus (PepMV) infection. m6A modification in the PepMV RNA genome is conserved in these two species. Overexpression of the m6A writers, mRNA adenosine methylase A (MTA), and HAKAI inhibit the PepMV RNA accumulation accompanied by increased viral m6A modifications, whereas deficiency of these writers decreases the viral RNA m6A levels but enhances virus infection. Further study reveals that the cytoplasmic YTH-domain family protein NbECT2A/2B/2C as m6A readers are involved in anti-viral immunity. Protein-protein interactions indicate that NbECT2A/2B/2C interact with nonsense-mediated mRNA decay (NMD)-related proteins, including NbUPF3 and NbSMG7, but not with NbUPF1. m6A modification-mediated restriction to PepMV infection is dependent on NMD-related factors. These findings provide new insights into the functionality of m6A anti-viral activity and reveal a distinct immune response that NMD factors recognize the m6A readers-viral m6A RNA complex for viral RNA degradation to limit virus infection in plants.
Collapse
Affiliation(s)
- Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Cakir MO, Bilge U, Ghanbari A, Ashrafi GH. Regulatory Effect of Ficus carica Latex on Cell Cycle Progression in Human Papillomavirus-Positive Cervical Cancer Cell Lines: Insights from Gene Expression Analysis. Pharmaceuticals (Basel) 2023; 16:1723. [PMID: 38139849 PMCID: PMC10747314 DOI: 10.3390/ph16121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cervical cancer presents a significant global health concern with high-risk human papillomaviruses (HPVs) identified as the main cause of this cancer. Although current treatment methods for cervical cancer can eliminate lesions, preventing metastatic spread and minimizing tissue damage remain a major challenge. Therefore, the development of a safer and innovative therapeutic approach is of the utmost importance. Natural products like fig latex, derived from the Ficus carica tree, have demonstrated promising anti-cancer properties when tested on cervical cancer cell lines. However, the specific mechanisms by which fig latex exerts its effects are still unknown. In this study, we conducted RNA-Seq analysis to explore how fig latex may counteract carcinogenesis in HPV-positive cervical cancer cell lines, namely, CaSki (HPV type 16-positive) and HeLa (HPV type 18-positive). Our results from this investigation indicate that fig latex influences the expression of genes associated with the development and progression of cervical cancer, including pathways related to "Nonsense-Mediated Decay (NMD)", "Cell Cycle regulation", "Transcriptional Regulation by TP53", and "Apoptotic Process". This selective impact of fig latex on cancer-related pathways suggests a potential novel therapeutic approach for HPV-related cervical cancer.
Collapse
Affiliation(s)
- Muharrem Okan Cakir
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (M.O.C.); (A.G.)
| | - Ugur Bilge
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Akdeniz University, Antalya 07050, Turkey;
| | - Arshia Ghanbari
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, London KT1 2EE, UK; (M.O.C.); (A.G.)
| | - G. Hossein Ashrafi
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Akdeniz University, Antalya 07050, Turkey;
| |
Collapse
|
7
|
Akbari B, Ahmadi E, Zabihi MR, Zamir MR, Shaker MS, Noorbakhsh F. SARS-CoV-2 helicase might interfere with cellular nonsense-mediated RNA decay: insights from a bioinformatics study. BMC Genom Data 2023; 24:68. [PMID: 37980504 PMCID: PMC10657555 DOI: 10.1186/s12863-023-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Viruses employ diverse strategies to interfere with host defense mechanisms, including the production of proteins that mimic or resemble host proteins. This study aimed to analyze the similarities between SARS-CoV-2 and human proteins, investigate their impact on virus-host interactions, and elucidate underlying mechanisms. RESULTS Comparing the proteins of SARS-CoV-2 with human and mammalian proteins revealed sequence and structural similarities between viral helicase with human UPF1. The latter is a protein that is involved in nonsense-mediated RNA decay (NMD), an mRNA surveillance pathway which also acts as a cellular defense mechanism against viruses. Protein sequence similarities were also observed between viral nsp3 and human Poly ADP-ribose polymerase (PARP) family of proteins. Gene set enrichment analysis on transcriptomic data derived from SARS-CoV-2 positive samples illustrated the enrichment of genes belonging to the NMD pathway compared with control samples. Moreover, comparing transcriptomic data from SARS-CoV-2-infected samples with transcriptomic data derived from UPF1 knockdown cells demonstrated a significant overlap between datasets. CONCLUSIONS These findings suggest that helicase/UPF1 sequence and structural similarity might have the ability to interfere with the NMD pathway with pathogenic and immunological implications.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
8
|
Ahmed MR, Du Z. Molecular Interaction of Nonsense-Mediated mRNA Decay with Viruses. Viruses 2023; 15:v15040816. [PMID: 37112798 PMCID: PMC10141005 DOI: 10.3390/v15040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
The virus–host interaction is dynamic and evolutionary. Viruses have to fight with hosts to establish successful infection. Eukaryotic hosts are equipped with multiple defenses against incoming viruses. One of the host antiviral defenses is the nonsense-mediated mRNA decay (NMD), an evolutionarily conserved mechanism for RNA quality control in eukaryotic cells. NMD ensures the accuracy of mRNA translation by removing the abnormal mRNAs harboring pre-matured stop codons. Many RNA viruses have a genome that contains internal stop codon(s) (iTC). Akin to the premature termination codon in aberrant RNA transcripts, the presence of iTC would activate NMD to degrade iTC-containing viral genomes. A couple of viruses have been reported to be sensitive to the NMD-mediated antiviral defense, while some viruses have evolved with specific cis-acting RNA features or trans-acting viral proteins to overcome or escape from NMD. Recently, increasing light has been shed on the NMD–virus interaction. This review summarizes the current scenario of NMD-mediated viral RNA degradation and classifies various molecular means by which viruses compromise the NMD-mediated antiviral defense for better infection in their hosts.
Collapse
Affiliation(s)
| | - Zhiyou Du
- Correspondence: ; Tel.: +86-571-86843195
| |
Collapse
|
9
|
Sun L, Mailliot J, Schaffitzel C. Nonsense-Mediated mRNA Decay Factor Functions in Human Health and Disease. Biomedicines 2023; 11:722. [PMID: 36979701 PMCID: PMC10045457 DOI: 10.3390/biomedicines11030722] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a cellular surveillance mechanism that degrades mRNAs with a premature stop codon, avoiding the synthesis of C-terminally truncated proteins. In addition to faulty mRNAs, NMD recognises ~10% of endogenous transcripts in human cells and downregulates their expression. The up-frameshift proteins are core NMD factors and are conserved from yeast to human in structure and function. In mammals, NMD diversified into different pathways that target different mRNAs employing additional NMD factors. Here, we review our current understanding of molecular mechanisms and cellular roles of NMD pathways and the involvement of more specialised NMD factors. We describe the consequences of mutations in NMD factors leading to neurodevelopmental diseases, and the role of NMD in cancer. We highlight strategies of RNA viruses to evade recognition and decay by the NMD machinery.
Collapse
Affiliation(s)
- Lingling Sun
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- Bristol Engineering Biology Centre BrisEngBio, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
10
|
Cook TW, Wilstermann AM, Mitchell JT, Arnold NE, Rajasekaran S, Bupp CP, Prokop JW. Understanding Insulin in the Age of Precision Medicine and Big Data: Under-Explored Nature of Genomics. Biomolecules 2023; 13:257. [PMID: 36830626 PMCID: PMC9953665 DOI: 10.3390/biom13020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Insulin is amongst the human genome's most well-studied genes/proteins due to its connection to metabolic health. Within this article, we review literature and data to build a knowledge base of Insulin (INS) genetics that influence transcription, transcript processing, translation, hormone maturation, secretion, receptor binding, and metabolism while highlighting the future needs of insulin research. The INS gene region has 2076 unique variants from population genetics. Several variants are found near the transcriptional start site, enhancers, and following the INS transcripts that might influence the readthrough fusion transcript INS-IGF2. This INS-IGF2 transcript splice site was confirmed within hundreds of pancreatic RNAseq samples, lacks drift based on human genome sequencing, and has possible elevated expression due to viral regulation within the liver. Moreover, a rare, poorly characterized African population-enriched variant of INS-IGF2 results in a loss of the stop codon. INS transcript UTR variants rs689 and rs3842753, associated with type 1 diabetes, are found in many pancreatic RNAseq datasets with an elevation of the 3'UTR alternatively spliced INS transcript. Finally, by combining literature, evolutionary profiling, and structural biology, we map rare missense variants that influence preproinsulin translation, proinsulin processing, dimer/hexamer secretory storage, receptor activation, and C-peptide detection for quasi-insulin blood measurements.
Collapse
Affiliation(s)
- Taylor W. Cook
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jackson T. Mitchell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas E. Arnold
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Division of Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
11
|
He Y, Yu F, Tian Y, Hu Q, Wang B, Wang L, Hu Y, Tao Y, Chen X, Peng M. Single-Cell RNA Sequencing Unravels Distinct Tumor Microenvironment of Different Components of Lung Adenocarcinoma Featured as Mixed Ground-Glass Opacity. Front Immunol 2022; 13:903513. [PMID: 35874770 PMCID: PMC9299373 DOI: 10.3389/fimmu.2022.903513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Lung adenocarcinoma featured as mixed ground-glass opacity (mGGO) doubled its volume half of the time in comparison with that featured as pure ground-glass opacity (pGGO). The mechanisms underlying the heterogeneous appearance of mGGO remain elusive. In this study, we macro-dissected the solid (S) components and ground-glass (GG) components of mGGO and performed single-cell sequencing analyses of six paired components from three mGGO patients. A total of 19,391 single-cell profiles were taken into analysis, and the data of each patient were analyzed independently to obtain a common alteration. Cancer cells and macrophages were the dominant cell types in the S and GG components, respectively. Cancer cells in the S components, which showed relatively malignant phenotypes, were likely to originate from both the GG and S components and monitor the surrounding tumor microenvironment (TME) through an intricate cell interaction network. SPP1hi macrophages were enriched in the S components and showed increased activity of chemoattraction, while macrophages in the GG components displayed an active antimicrobial process with a higher stress-induced state. In addition, the CD47–SIRPA axis was demonstrated to be critical in the maintenance of the GG components. Taken together, our study unraveled the alterations of cell components and transcriptomic features between different components in mGGOs.
Collapse
Affiliation(s)
- Yu He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Tian
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaofeng Chen
- Department of Anaesthesia, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
12
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
13
|
Praissman JL, Wells L. Proteomics-Based Insights Into the SARS-CoV-2-Mediated COVID-19 Pandemic: A Review of the First Year of Research. Mol Cell Proteomics 2021; 20:100103. [PMID: 34089862 PMCID: PMC8176883 DOI: 10.1016/j.mcpro.2021.100103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a virus subsequently named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and led to a worldwide pandemic of the disease termed coronavirus disease 2019. The global health threat posed by this pandemic led to an extremely rapid and robust mobilization of the scientific and medical communities as evidenced by the publication of more than 10,000 peer-reviewed articles and thousands of preprints in the first year of the pandemic alone. With the publication of the initial genome sequence of SARS-CoV-2, the proteomics community immediately joined this effort publishing, to date, more than 100 peer-reviewed proteomics studies and submitting many more preprints to preprint servers. In this review, we focus on peer-reviewed articles published on the proteome, glycoproteome, and glycome of SARS-CoV-2. At a basic level, proteomic studies provide valuable information on quantitative aspects of viral infection course; information on the identities, sites, and microheterogeneity of post-translational modifications; and, information on protein-protein interactions. At a biological systems level, these studies elucidate host cell and tissue responses, characterize antibodies and other immune system factors in infection, suggest biomarkers that may be useful for diagnosis and disease-course monitoring, and help in the development or repurposing of potential therapeutics. Here, we summarize results from selected early studies to provide a perspective on the current rapidly evolving literature.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|