1
|
Sozen B. Navigating human embryogenesis through tailored model selection. Nat Cell Biol 2024; 26:1819-1821. [PMID: 39528699 DOI: 10.1038/s41556-024-01525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Mody TA, Rolle A, Stucki N, Roll F, Bauer U, Schneitz K. Topological analysis of 3D digital ovules identifies cellular patterns associated with ovule shape diversity. Development 2024; 151:dev202590. [PMID: 38738635 PMCID: PMC11168579 DOI: 10.1242/dev.202590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Tissue morphogenesis remains poorly understood. In plants, a central problem is how the 3D cellular architecture of a developing organ contributes to its final shape. We address this question through a comparative analysis of ovule morphogenesis, taking advantage of the diversity in ovule shape across angiosperms. Here, we provide a 3D digital atlas of Cardamine hirsuta ovule development at single cell resolution and compare it with an equivalent atlas of Arabidopsis thaliana. We introduce nerve-based topological analysis as a tool for unbiased detection of differences in cellular architectures and corroborate identified topological differences between two homologous tissues by comparative morphometrics and visual inspection. We find that differences in topology, cell volume variation and tissue growth patterns in the sheet-like integuments and the bulbous chalaza are associated with differences in ovule curvature. In contrast, the radialized conical ovule primordia and nucelli exhibit similar shapes, despite differences in internal cellular topology and tissue growth patterns. Our results support the notion that the structural organization of a tissue is associated with its susceptibility to shape changes during evolutionary shifts in 3D cellular architecture.
Collapse
Affiliation(s)
- Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 4, 85354 Freising, Germany
| | - Alexander Rolle
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
| | - Nico Stucki
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Walther-von-Dyck Strasse 10, 85747 Garching, Germany
| | - Fabian Roll
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
| | - Ulrich Bauer
- Applied and Computational Topology, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 3, 85747 Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Walther-von-Dyck Strasse 10, 85747 Garching, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 4, 85354 Freising, Germany
| |
Collapse
|
3
|
Cao D, Garai S, DiFrisco J, Veenvliet JV. The logic of monsters: development and morphological diversity in stem-cell-based embryo models. Interface Focus 2024; 14:20240023. [PMID: 39464644 PMCID: PMC11503023 DOI: 10.1098/rsfs.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Organoids and stem-cell-based embryo models (SEMs) are imperfect organ or embryo representations that explore a much larger space of possible forms, or morphospace, compared to their in vivo counterparts. Here, we discuss SEM biology in light of seminal work by Pere Alberch, a leading figure in early evo-devo, interpreting SEMs as developmental 'monstrosities' in the Alberchian sense. Alberch suggested that ordered patterns in aberrant development-i.e. 'the logic of monsters'-reveal developmental constraints on possible morphologies. In the same vein, we detail how SEMs have begun to shed light on structural features of normal development, such as developmental variability, the relative importance of internal versus external constraints, boundary conditions and design principles governing robustness and canalization. We argue that SEMs represent a powerful experimental tool to explore and expand developmental morphospace and propose that the 'monstrosity' of SEMs can be leveraged to uncover the 'hidden' rules and developmental constraints that robustly shape and pattern the embryo.
Collapse
Affiliation(s)
- Dominica Cao
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520, USA
| | - Sumit Garai
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
- Division of Biosciences, Medical Sciences Building, University College London, Gower Street, LondonWC1E 6BT, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Jesse V. Veenvliet
- Stembryogenesis Lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01307, Germany
| |
Collapse
|
4
|
Garge RK, Lynch V, Fields R, Casadei S, Best S, Stone J, Snyder M, McGann CD, Shendure J, Starita LM, Hamazaki N, Schweppe DK. The proteomic landscape and temporal dynamics of mammalian gastruloid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.609098. [PMID: 39282277 PMCID: PMC11398484 DOI: 10.1101/2024.09.05.609098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Gastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is challenging to study in vivo, stem cell-derived models have emerged as powerful surrogates, e.g. human and mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have been extensively applied to characterize such in vitro embryo models, a paucity of measurements of protein dynamics and regulation leaves a major gap in our understanding. Here, we sought to address this by applying quantitative proteomics to human and mouse gastruloids at four key stages of their differentiation (naïve ESCs, primed ESCs, early gastruloids, late gastruloids). To the resulting data, we perform network analysis to map the dynamics of expression of macromolecular protein complexes and biochemical pathways, including identifying cooperative proteins that associate with them. With matched RNA-seq and phosphosite data from these same stages, we investigate pathway-, stage- and species-specific aspects of translational and post-translational regulation, e.g. finding peri-gastrulation stages of human and mice to be discordant with respect to the mitochondrial transcriptome vs. proteome, and nominating novel kinase-substrate relationships based on phosphosite dynamics. Finally, we leverage correlated dynamics to identify conserved protein networks centered around congenital disease genes. Altogether, our data (https://gastruloid.brotmanbaty.org/) and analyses showcase the potential of intersecting in vitro embryo models and proteomics to advance our understanding of early mammalian development in ways not possible through transcriptomics alone.
Collapse
Affiliation(s)
- Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Valerie Lynch
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Sabrina Best
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Matthew Snyder
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Chris D. McGann
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Hong SJ, Bock M, Zhang S, An SB, Han I. Therapeutic Transplantation of Human Central Nervous System Organoids for Neural Reconstruction. Int J Mol Sci 2024; 25:8540. [PMID: 39126108 PMCID: PMC11313261 DOI: 10.3390/ijms25158540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.
Collapse
Affiliation(s)
- Sung Jun Hong
- Research Competency Milestones Program (RECOMP), School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| |
Collapse
|
6
|
Gribaudo S, Robert R, van Sambeek B, Mirdass C, Lyubimova A, Bouhali K, Ferent J, Morin X, van Oudenaarden A, Nedelec S. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis. Nat Biotechnol 2024; 42:1243-1253. [PMID: 37709912 DOI: 10.1038/s41587-023-01956-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Integrated in vitro models of human organogenesis are needed to elucidate the multi-systemic events underlying development and disease. Here we report the generation of human trunk-like structures that model the co-morphogenesis, patterning and differentiation of the human spine and spinal cord. We identified differentiation conditions for human pluripotent stem cells favoring the formation of an embryo-like extending antero-posterior (AP) axis. Single-cell and spatial transcriptomics show that somitic and spinal cord differentiation trajectories organize along this axis and can self-assemble into a neural tube surrounded by somites upon extracellular matrix addition. Morphogenesis is coupled with AP patterning mechanisms, which results, at later stages of organogenesis, in in vivo-like arrays of neural subtypes along a neural tube surrounded by spine and muscle progenitors contacted by neuronal projections. This integrated system of trunk development indicates that in vivo-like multi-tissue co-morphogenesis and topographic organization of terminal cell types can be achieved in human organoids, opening windows for the development of more complex models of organogenesis.
Collapse
Affiliation(s)
- Simona Gribaudo
- Institut du Fer à Moulin, Paris, France
- Inserm, UMR-S 1270, Paris, France
- Sorbonne Université, Science and Engineering Faculty, Paris, France
| | - Rémi Robert
- Institut du Fer à Moulin, Paris, France
- Inserm, UMR-S 1270, Paris, France
- Sorbonne Université, Science and Engineering Faculty, Paris, France
| | - Björn van Sambeek
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Camil Mirdass
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Anna Lyubimova
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kamal Bouhali
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julien Ferent
- Institut du Fer à Moulin, Paris, France
- Inserm, UMR-S 1270, Paris, France
- Sorbonne Université, Science and Engineering Faculty, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stéphane Nedelec
- Institut du Fer à Moulin, Paris, France.
- Inserm, UMR-S 1270, Paris, France.
- Sorbonne Université, Science and Engineering Faculty, Paris, France.
| |
Collapse
|
7
|
Rebuzzini P, Rustichelli S, Fassina L, Canobbio I, Zuccotti M, Garagna S. BPA Exposure Affects Mouse Gastruloids Axial Elongation by Perturbing the Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:7924. [PMID: 39063166 PMCID: PMC11276681 DOI: 10.3390/ijms25147924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian embryos are very vulnerable to environmental toxicants (ETs) exposure. Bisphenol A (BPA), one of the most diffused ETs, exerts endocrine-disrupting effects through estro-gen-mimicking and hormone-like properties, with detrimental health effects, including on reproduction. However, its impact during the peri-implantation stages is still unclear. This study, using gastruloids as a 3D stem cell-based in vitro model of embryonic development, showed that BPA exposure arrests their axial elongation when present during the Wnt/β-catenin pathway activation period by β-catenin protein reduction. Gastruloid reshaping might have been impeded by the downregulation of Snail, Slug and Twist, known to suppress E-cadherin expression and to activate the N-cadherin gene, and by the low expression of the N-cadherin protein. Also, the lack of gastruloids elongation might be related to altered exit of BPA-exposed cells from the pluripotency condition and their following differentiation. In conclusion, here we show that the inhibition of gastruloids' axial elongation by BPA might be the result of the concomitant Wnt/β-catenin perturbation, reduced N-cadherin expression and Oct4, T/Bra and Cdx2 altered patter expression, which all together concur in the impaired development of mouse gastruloids.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
| | - Serena Rustichelli
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
- University School for Advanced Studies Pavia (IUSS), 27100 Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy;
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ilaria Canobbio
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
8
|
Kılıç K, Yılmaz Z. Importance of In Vitro Embryo Model Procedure Standardization. J Clin Lab Anal 2024; 38:e25082. [PMID: 39072781 PMCID: PMC11317767 DOI: 10.1002/jcla.25082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 07/30/2024] Open
Abstract
In vivo studies offer a detailed understanding of organism functioning, surpassing the insights provided by in vitro studies. These experiments are crucial for comprehending disease emergence, progression, and associated mechanisms in humans, as well as for developing treatments. When choosing experimental models, factors such as genomic similarity, physiological relevance, ethical appropriateness, and economic feasibility must be considered. Standardized protocols enhance the reliability, and reproducibility of scientific methods, promoting the assessment of research in the scientific literature. Researchers conducting embryo studies should establish and document standardized protocols for increased data comparability. Standardization is vital for scientific validity, reproducibility, and comparability in both in vivo and in vitro studies, ensuring the accuracy and reliability of experimental results and advancing scientific knowledge.
Collapse
Affiliation(s)
- Kubilay Doğan Kılıç
- Department of Histology and Embryology, Faculty of MedicineEge UniversityİzmirTürkiye
- Institute for Tissue Engineering and Regenerative MedicineHelmholtz Zentrum MünchenGermany
| | - Zeynep Simge Yılmaz
- Department of Histology and Embryology, Faculty of MedicineEge UniversityİzmirTürkiye
| |
Collapse
|
9
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
10
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
11
|
Huntsman MC, Kurashima CK, Marikawa Y. Validation of a mouse 3D gastruloid-based embryotoxicity assay in reference to the ICH S5(R3) guideline chemical exposure list. Reprod Toxicol 2024; 125:108558. [PMID: 38367697 PMCID: PMC11016378 DOI: 10.1016/j.reprotox.2024.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
There is growing interest in establishing alternative methods in place of conventional animal tests to assess the developmental and reproductive toxicity (DART) of chemicals. Gastruloids are 3D aggregates of pluripotent stem cells that spontaneously exhibit axial elongation morphogenesis similar to gastrulation. They have been explored as in vitro embryogenesis models for developmental and toxicological studies. Here, a mouse gastruloid-based assay was validated for DART assessment in accordance with the ICH S5(R3) guideline, which provides the plasma concentration data of various reference drugs in rodents, specifically Cmax and AUC for NOAEL and LOAEL. First, adverse effect concentrations of the reference drugs and their known metabolites on gastruloid development were determined based on morphological impact, namely reduced growth or aberrant elongation. Then, the NOAEL to LOAEL concentration range obtained from the gastruloid assay was compared with that in rodents to examine similarities in sensitivity between the in vitro and in vivo assays for each chemical. For 18 out of the 24 reference drugs that have both NOAEL and LOAEL information in rodents, the sensitivity of the gastruloid assay was comparable to the in vivo assay within an 8-fold concentration margin. For 7 out of the 8 additional reference drugs that have only NOAEL or LOAEL information in rodents, the gastruloid assay was in line with the in vivo data. Altogether, these results support the effectiveness of the gastruloid assay, which may be exploited as a non-animal alternative method for DART assessment.
Collapse
Affiliation(s)
- Margaret Carrell Huntsman
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Courtney Kehaulani Kurashima
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA.
| |
Collapse
|
12
|
Mirdass C, Catala M, Bocel M, Nedelec S, Ribes V. Stem cell-derived models of spinal neurulation. Emerg Top Life Sci 2023; 7:423-437. [PMID: 38087891 DOI: 10.1042/etls20230087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Neurulation is a critical step in early embryonic development, giving rise to the neural tube, the primordium of the central nervous system in amniotes. Understanding this complex, multi-scale, multi-tissue morphogenetic process is essential to provide insights into normal development and the etiology of neural tube defects. Innovations in tissue engineering have fostered the generation of pluripotent stem cell-based in vitro models, including organoids, that are emerging as unique tools for delving into neurulation mechanisms, especially in the context of human development. Each model captures specific aspects of neural tube morphogenesis, from epithelialization to neural tissue elongation, folding and cavitation. In particular, the recent models of human and mouse trunk morphogenesis, such as gastruloids, that form a spinal neural plate-like or neural tube-like structure are opening new avenues to study normal and pathological neurulation. Here, we review the morphogenetic events generating the neural tube in the mammalian embryo and questions that remain unanswered. We discuss the advantages and limitations of existing in vitro models of neurulation and possible future technical developments.
Collapse
Affiliation(s)
- Camil Mirdass
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Martin Catala
- Institut de Biologie Paris Seine (IBPS) - Developmental Biology Laboratory, UMR7622 CNRS, INSERM ERL 1156, Sorbonne Université, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Mikaëlle Bocel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
13
|
de Graeff N, De Proost L, Munsie M. 'Ceci n'est pas un embryon?' The ethics of human embryo model research. Nat Methods 2023; 20:1863-1867. [PMID: 38057511 PMCID: PMC7615661 DOI: 10.1038/s41592-023-02066-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Increasingly advanced in vitro stem-cell-derived human embryo models raise novel ethical questions and shed a light on long-standing questions regarding research on human embryos.
Collapse
Affiliation(s)
- Nienke de Graeff
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.
| | - Lien De Proost
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- Developmental Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Megan Munsie
- Stem Cell Biology Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Arthur TD, Nguyen JP, D'Antonio-Chronowska A, Matsui H, Silva NS, Joshua IN, Luchessi AD, Young Greenwald WW, D'Antonio M, Pera MF, Frazer KA. Analysis of regulatory network modules in hundreds of human stem cell lines reveals complex epigenetic and genetic factors contribute to pluripotency state differences between subpopulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541447. [PMID: 37292794 PMCID: PMC10245835 DOI: 10.1101/2023.05.20.541447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discovered 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which were highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlied the coordinated expression of genes in the GNMs. Epigenetic analyses revealed that regulatory networks underlying self-renewal and pluripotency have a surprising level of complexity. Genetic analyses identified thousands of regulatory variants that overlapped predicted transcription factor binding sites and were associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network were significantly enriched for regulatory variants with large effects, suggesting that they may play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work captures the coordinated activity of tens of thousands of regulatory elements in hiPSCs and bins these elements into discrete functionally characterized regulatory networks, shows that regulatory elements in pluripotency networks harbor variants with large effects, and provides a rich resource for future pluripotent stem cell research.
Collapse
|
15
|
Ayad NM, Lakins JN, Ghagre A, Ehrlicher AJ, Weaver VM. Tissue tension permits β-catenin phosphorylation to drive mesoderm specification in human embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549074. [PMID: 37503095 PMCID: PMC10370032 DOI: 10.1101/2023.07.14.549074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The role of morphogenetic forces in cell fate specification is an area of intense interest. Our prior studies suggested that the development of high cell-cell tension in human embryonic stem cells (hESC) colonies permits the Src-mediated phosphorylation of junctional β-catenin that accelerates its release to potentiate Wnt-dependent signaling critical for initiating mesoderm specification. Using an ectopically expressed nonphosphorylatable mutant of β-catenin (Y654F), we now provide direct evidence that impeding tension-dependent Src-mediated β-catenin phosphorylation impedes the expression of Brachyury (T) and the epithelial-to-mesenchymal transition (EMT) necessary for mesoderm specification. Addition of exogenous Wnt3a or inhibiting GSK3β activity rescued mesoderm expression, emphasizing the importance of force dependent Wnt signaling in regulating mechanomorphogenesis. Our work provides a framework for understanding tension-dependent β-catenin/Wnt signaling in the self-organization of tissues during developmental processes including gastrulation.
Collapse
Affiliation(s)
- Nadia M.E. Ayad
- Graduate Program in Bioengineering, University of California, San Francisco and University of California Berkeley, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Johnathon N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, Department of Anatomy and Cell Biology, Department of Biomedical Engineering, Department of Mechanical Engineering, Centre for Structural Biology, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Abstract
Recent years have seen exciting progress across human embryo research, including new methods for culturing embryos, transcriptional profiling of embryogenesis and gastrulation, mapping lineage trajectories, and experimenting on stem cell-based embryo models. These advances are beginning to define the dynamical principles of development across stages, tissues and organs, enabling a better understanding of human development before birth in health and disease, and potentially leading to improved treatments for infertility and developmental disorders. However, there are still significant roadblocks en route to this goal. Here, we highlight technical challenges to studying early human development and propose ways and means to overcome some of these constraints.
Collapse
Affiliation(s)
- Peter J. Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Naomi Moris
- The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|