1
|
Weller JH, Scheese D, Tragesser C, Yi PH, Alaish SM, Hackam DJ. Artificial Intelligence vs. Doctors: Diagnosing Necrotizing Enterocolitis on Abdominal Radiographs. J Pediatr Surg 2024; 59:161592. [PMID: 38955625 PMCID: PMC11401766 DOI: 10.1016/j.jpedsurg.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Radiographic diagnosis of necrotizing enterocolitis (NEC) is challenging. Deep learning models may improve accuracy by recognizing subtle imaging patterns. We hypothesized it would perform with comparable accuracy to that of senior surgical residents. METHODS This cohort study compiled 494 anteroposterior neonatal abdominal radiographs (214 images NEC, 280 other) and randomly divided them into training, validation, and test sets. Transfer learning was utilized to fine-tune a ResNet-50 deep convolutional neural network (DCNN) pre-trained on ImageNet. Gradient-weighted Class Activation Mapping (Grad-CAM) heatmaps visualized image regions of greatest relevance to the pretrained neural network. Senior surgery residents at a single institution examined the test set. Resident and DCNN ability to identify pneumatosis on radiographic images were measured via area under the receiver operating curves (AUROC) and compared using DeLong's method. RESULTS The pretrained neural network achieved AUROC of 0.918 (95% CI, 0.837-0.978) with an accuracy of 87.8% with five false negative and one false positive prediction. Heatmaps confirmed appropriate image region emphasis by the pretrained neural network. Senior surgical residents had a median area under the receiver operating curve of 0.896, ranging from 0.778 (95% CI 0.615-0.941) to 0.991 (95% CI 0.971-0.999) with zero to five false negatives and one to eleven false positive predictions. The deep convolutional neural network performed comparably to each surgical resident's performance (p > 0.05 for all comparisons). CONCLUSIONS A deep convolutional neural network trained to recognize pneumatosis can quickly and accurately assist clinicians in promptly identifying NEC in clinical practice. LEVEL OF EVIDENCE III (study type: Study of Diagnostic Test, study of nonconsecutive patients without a universally applied "gold standard").
Collapse
Affiliation(s)
- Jennine H Weller
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cody Tragesser
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul H Yi
- Malone Center for Engineering in Healthcare, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samuel M Alaish
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Nofi CP, Prince JM, Wang P, Aziz M. Chromatin as alarmins in necrotizing enterocolitis. Front Immunol 2024; 15:1403018. [PMID: 38881893 PMCID: PMC11176418 DOI: 10.3389/fimmu.2024.1403018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Collapse
Affiliation(s)
- Colleen P. Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Jose M. Prince
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
3
|
Hu X, Liang H, Li F, Zhang R, Zhu Y, Zhu X, Xu Y. Necrotizing enterocolitis: current understanding of the prevention and management. Pediatr Surg Int 2024; 40:32. [PMID: 38196049 PMCID: PMC10776729 DOI: 10.1007/s00383-023-05619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Necrotizing enterocolitis (NEC) is one of the diseases in neonates, with a high morbidity and mortality rate, especially in preterm infants. This review aimed to briefly introduce the latest epidemiology, susceptibility factors, and clinical diagnosis and presentation of NEC. We also organized new prevention strategies by risk factors according to different pathogeneses and then discussed new treatment methods based on Bell's staging and complications, and the classification of mild to high severity based on clinical and imaging manifestations. Such a generalization will help clinicians and researchers to gain a deeper understanding of the disease and to conduct more targeted classification, grading prevention, and exploration. We focused on prevention and treatment of the early and suspected stages of NEC, including the discovery of novel biomarkers and drugs to control disease progression. At the same time, we discussed its clinical application, future development, and shortcomings.
Collapse
Affiliation(s)
- Xiaohan Hu
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China
- Department of Neonatology, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China
| | - Hansi Liang
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Li
- Department of Human Anatomy and Histology and Embryology, Soochow University, Suzhou, Jiangsu Province, China
| | - Rui Zhang
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China
| | - Yanbo Zhu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueping Zhu
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China.
- Department of Neonatology, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China.
| | - Yunyun Xu
- Institute of Pediatric, Children's Hospital of Soochow University, 92 Zhong Nan Street, Suzhou City, Jiangsu Province, China.
| |
Collapse
|