1
|
Lee S, Heo S, Park MK, Sung MH, Jeong DW. Bacterial Community of Breast Milk in Breastfeeding Women Using Culture-Dependent and Culture-Independent Approaches. J Microbiol Biotechnol 2024; 34:2005-2011. [PMID: 39252644 PMCID: PMC11540596 DOI: 10.4014/jmb.2407.07001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
This study aimed to analyze bacterial communities in breast milk obtained from five breastfeeding women. Culture-dependent and culture-independent methods were used to analyze microbial communities. Total bacterial count of breast milk determined using plate count agar ranged from 3.3 × 104 ± 3.5 × 102 colony forming unit (CFU)/g to 1.7 × 105 ± 3.5 × 103 CFU/g, with a pH between 6.4 and 6.8. Only three species, Leuconostoc citreum (17 out of 160 strains; 10.63%), Staphylococcus epidermidis (118 strains; 73.75%), and Staphylococcus lugdunensis (25 strains; 15.63%), belong to the phylum Bacillota were detected by culture-dependent analysis. Microbial communities analyzed via pyrosequencing revealed greater diversity compared to the culture-dependent analysis. At the phylum level, Bacillota accounted for 60.9% of the microbial community. At the genus level, Staphylococcus (24.57%), Streptococcus (22.93%), and Methylobacterium (8.76%) were dominant genera. While pyrosequencing demonstrated greater microbial diversity than the agar plate culture method, identified microbes might lack information or include many unculturable microbes. Most of all, considering the low total bacterial count averaging 7.2 × 104 CFU/g, further research is needed to determine the significance of microbial presence in breast milk.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology and Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Moon-Hee Sung
- KookminBio Corporation, Seoul 02826, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
2
|
Karami S, Mousavi SN, Shapouri R, Naderloo H, Heidarzadeh S, Afshar D. Breast milk dominant phyla and probiotic bacteria in the obese lactating women compared with normal weights. Sci Rep 2024; 14:19199. [PMID: 39160300 PMCID: PMC11333490 DOI: 10.1038/s41598-024-70070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
The main purpose was to determine the abundance of dominant phyla, Bifidobacterium spp., and Lactobacillus in breast milk of obese mothers versus normal-weights in fourth month of lactation in Iranian population. Sixty health women at the fourth month of breastfeeding, aged 18-40 years, were included and categorized based on body mass index (BMI) to the obese (BMI ≥ 30 kg/m2) and normal-weights (18.5 ≤ BMI ≤ 24.9). Bacterial DNA was extracted and qPCR of the 16S region was performed after human milk donation in a sterile condition. A multiple linear mixed model was used to determine the effective factors on the phyla population. Bifidobacterium spp. was significantly higher in milk of normal-weight group than the obese. The current weight showed a significant effect on the Actinobacteria abundance in milk. The Bacteroidetes and Firmicutes were significantly lower in mother's milk with cesarean section (p = 0.04). Pre-pregnancy obesity decreased the Firmicutes and Lactobacillus abundance in maternal milk (p = 0.04 and p = 0.01). The Actinobacteria and Bifidobacterium spp. showed a significant effect on infant's height (p = 0.008 and p = 0.04). The maternal current and pre-pregnancy weight showed an important effect on abundance of Actinobacteria and Bifidobacterium spp., as the good phyla and genus in milk which are associated with the infant's height.
Collapse
Affiliation(s)
- Shahla Karami
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Khorramshahr Blv, Honarestan St., 3rd Shaban St., Shahid Avval Ave, Zanjan, Iran.
| | - Reza Shapouri
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Hasti Naderloo
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Khorramshahr Blv, Honarestan St., 3rd Shaban St., Shahid Avval Ave, Zanjan, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Schulkers Escalante K, Bai-Tong SS, Allard SM, Ecklu-Mensah G, Sanchez C, Song SJ, Gilbert J, Bode L, Dorrestein P, Knight R, Gonzalez DJ, Leibel SA, Leibel SL. The impact of breastfeeding on the preterm infant's microbiome and metabolome: a pilot study. Pediatr Res 2024:10.1038/s41390-024-03440-9. [PMID: 39138352 DOI: 10.1038/s41390-024-03440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Human milk is unquestionably beneficial for preterm infants. We investigated how the transition from tube to oral/breastfeeding impacts the preterm infants' oral and gut microbiome and metabolome. METHODS We analyzed stool, saliva, and milk samples collected from a cohort of preterm infants enrolled in the MAP Study, a prospective observational trial. The microbiome and metabolome of the samples were analyzed from 4 longitudinal sample time points, 2 during tube feeds only and 2 after the initiation of oral/breastfeeding. RESULTS We enrolled 11 mother-infant dyads (gestational age = 27.9 (23.4-32.2)) and analyzed a total of 39 stool, 44 saliva, and 43 milk samples over 4 timepoints. In saliva samples, there was a shift towards increased Streptococcus and decreased Staphylococcus after oral feeding/breastfeeding initiation (p < 0.05). Milk sample metabolites were strongly influenced by the route of feeding and milk type (p < 0.05) and represented the pathways of Vitamin E metabolism, Vitamin B12 metabolism, and Tryptophan metabolism. CONCLUSION Our analysis demonstrated that the milk and preterm infant's saliva microbiome and metabolome changed over the course of the first four to 5 months of life, coinciding with the initiation of oral/breastfeeds. IMPACT The microbiome and metabolome is altered in the infant's saliva but not their stool, and in mother's milk when feeds are transitioned from tube to oral/breastfeeding. We assessed the relationship between the gut and oral microbiome/metabolome with the milk microbiome/metabolome over a longitudinal period of time in preterm babies. Metabolites that changed in the infants saliva after the initiation of oral feeds have the potential to be used as biomarkers for disease risk.
Collapse
Affiliation(s)
| | - Shiyu S Bai-Tong
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, CA, USA
| | - Sarah M Allard
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - Concepcion Sanchez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Jack Gilbert
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, USA
| | - Pieter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sydney A Leibel
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, CA, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, CA, USA.
| |
Collapse
|
4
|
Ryan N, Leahy-Warren P, Mulcahy H, O’Mahony S, Philpott L. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review protocol. PLoS One 2024; 19:e0304787. [PMID: 38837966 PMCID: PMC11152305 DOI: 10.1371/journal.pone.0304787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE The objective of this scoping review is to review the research evidence regarding the impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes. INTRODUCTION Perinatal stress which refers to psychological stress experienced by individuals during pregnancy and the postpartum period is emerging as a public health concern. Early exposure of infants to perinatal maternal stress can potentially lead to metabolic, immune, and neurobehavioral disorders that extend into adulthood. The role of the gut and human milk microbiome in the microbiome-gut-brain axis as a mechanism of stress transfer has been previously reported. A transfer of colonised aberrant microbiota from mother to infant is proposed to predispose the infant to a pro- inflammatory microbiome with dysregulated metabolic process thereby initiating early risk of chronic diseases. The interplay of perinatal maternal stress and its relationship to the maternal and infant gut and human milk microbiome requires further systematic examination in the literature. INCLUSION CRITERIA This scoping review is an exploratory mapping review which will focus on the population of mothers and infants with the exploration of the key concepts of maternal stress and its impact on the maternal and infant gut and human milk microbiome in the context of the perinatal period. It will focus on the pregnancy and the post-natal period up to 6 months with infants who are exclusively breastfed. METHODS This study will be guided by the Joanna Briggs Institute's (JBI) methodology for scoping reviews along with use of the Prisma Scr reporting guideline. A comprehensive search will be conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus. A search strategy with pre-defined inclusion and exclusion criteria will be used to retrieve peer reviewed data published in English from 2014 to present. Screening will involve a three-step process with screening tool checklists. Results will be presented in tabular and narrative summaries, covering thematic concepts and their relationships. This protocol is registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | | | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Ireland
| | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| |
Collapse
|
5
|
Cohen A, Turjeman S, Levin R, Tal S, Koren O. Comparison of canine colostrum and milk using a multi-omics approach. Anim Microbiome 2024; 6:19. [PMID: 38650014 PMCID: PMC11034113 DOI: 10.1186/s42523-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.
Collapse
Affiliation(s)
- Alisa Cohen
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Smadar Tal
- Koret School of Veterinary Medicine, The Hebrew University Veterinary Teaching Hospital, Hebrew University of Jerusalem, Rehovot, Israel
- Tel-Hai Academic College, Upper Galilee, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
6
|
Kahhaleh FG, Barrientos G, Conrad ML. The gut-lung axis and asthma susceptibility in early life. Acta Physiol (Oxf) 2024; 240:e14092. [PMID: 38251788 DOI: 10.1111/apha.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
Asthma is the most common chronic disease among children, with more than 300 million cases worldwide. Over the past several decades, asthma incidence has grown, and epidemiological studies identify the modernized lifestyle as playing a strong contributing role in this phenomenon. In particular, lifestyle factors that modify the maternal gut microbiome during pregnancy, or the infant microbiome in early life, can act as developmental programming events which determine health or disease susceptibility later in life. Microbial colonization of the gut begins at birth, and factors such as delivery mode, breastfeeding, diet, antibiotic use, and exposure to environmental bacteria influence the development of the infant microbiome. Colonization of the gut microbiome is crucial for proper immune system development and disruptions to this process can predispose a child to asthma development. Here, we describe the importance of early-life events for shaping immune responses along the gut-lung axis and why they may provide a window of opportunity for asthma prevention.
Collapse
Affiliation(s)
- Fariz G Kahhaleh
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
7
|
Dinleyici M, Pérez-Brocal V, Arslanoglu S, Aydemir O, Sevuk Ozumut S, Tekin N, Vandenplas Y, Moya A, Dinleyici EC. Composition of Microbiota in Transient and Mature Human Milk: Significant Changes in Large for Gestational Age Group. Nutrients 2024; 16:208. [PMID: 38257101 PMCID: PMC10818272 DOI: 10.3390/nu16020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The composition of the human milk (HM) microbiota and, consequently, the microorganisms that are passed on to the infant through breastfeeding, can be influenced by various factors such as the mother's health and diet, gestational age, delivery mode, lactation stage, method of infant feeding, and geographical location. The aim of the Human Milk-Gest Study was to compare the microbiota of transient (postpartum 7-15 days) and mature HM (postpartum 45-90 days) of 44 mothers, and to investigate any potential changes associated with preterm birth, mode of delivery, and birth weight in relation to gestational age. The data were classified into five study groups: normal spontaneous delivery-term (NS-T) newborns, cesarean delivery-term (CS-T) newborns, preterm (PT) newborns (with a gestational age of less than 37 weeks), small for gestational age (SGA) newborns, and large for gestational age (LGA) newborns. An analysis of differential abundance was conducted using ANCOM-BC to compare the microbial genera between transient and mature HM samples as well as between other study groups. A significant difference was detected between HM samples at different sampling times and between the study groups (p < 0.01). In transient HM samples, Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group compared to the NS-T, CS-T, PT, and SGA groups. In mature HM samples, Burkholderiaceae_uc, Ralstonia, Pelomonas, and Klebsiella were significantly dominant in the LGA group compared to the NS-T, CS-T, and PT groups, while Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group compared to the SGA group. Differences were also detected between the transient and mature HM samples in the CS-T, PT, SGA, and LGA groups, but no differences occurred in the NS-T groups. In conclusion, we showed that Ralstonia, Burkholderiaceae_uc, and Pelomonas were significantly dominant in the LGA group in transient HM and continued in mature HM. The body mass index (BMI) of the mothers in the LGA group was not >30 at conception, however, the maternal BMI at birth and maternal weight gain during pregnancy were higher than in the other groups. The nutritional composition of HM is specifically designed to meet infant nutritional requirements during early life. Evaluating the effects of HM microbiota on infant microbiota composition and short- and long-term health effects in larger studies would be useful.
Collapse
Affiliation(s)
- Meltem Dinleyici
- Department of Social Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskisehir, Türkiye;
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
| | - Sertac Arslanoglu
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Medeniyet University, 34720 Istanbul, Türkiye
| | - Ozge Aydemir
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye; (O.A.); (N.T.)
| | - Sibel Sevuk Ozumut
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Medeniyet University, 34720 Istanbul, Türkiye
| | - Neslihan Tekin
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye; (O.A.); (N.T.)
| | - Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Unversiteit Brussel, 1090 Brussels, Belgium
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), 46020 Valencia, Spain; (V.P.-B.)
- CIBER in Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC-UVEG), 46980 Valencia, Spain
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Türkiye
| |
Collapse
|
8
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
9
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
10
|
Shankar A, Das DJ, Nayar S, Thomas S. Deciphering the effect of maternal postpartum antibiotic prophylaxis on the infant gut microbiome: a whole metagenomic analysis. Future Microbiol 2023; 18:427-441. [PMID: 37204286 DOI: 10.2217/fmb-2022-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/09/2023] [Indexed: 05/20/2023] Open
Abstract
Aim: To analyze the impact of postpartum antibiotic (Ab) prophylaxis on the infant gut microbiome. Materials & methods: Whole metagenomic analysis was performed on breast milk and infant fecal samples collected from mother-infant pairs who belonged to two groups: an Ab group comprising mothers who had received a single course of Abs in the immediate postpartum period and a non-Ab group comprising mothers who had not received Abs. Results: The characteristic presence of Citrobacter werkmanii, an emerging multidrug-resistant uropathogen, and a higher relative abundance of genes encoding resistance to specific Abs were noted in samples from the Ab group compared with those from the non-Ab group. Conclusion: Policies regarding prophylactic Ab prescription across government and private health sectors in the postpartum period need to be strengthened.
Collapse
Affiliation(s)
- Aparna Shankar
- Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Devika J Das
- Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Seema Nayar
- Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, 695011, India
| | - Sabu Thomas
- Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
11
|
Wang K, Xia X, Sun L, Wang H, Li Q, Yang Z, Ren J. Microbial Diversity and Correlation between Breast Milk and the Infant Gut. Foods 2023; 12:foods12091740. [PMID: 37174279 PMCID: PMC10178105 DOI: 10.3390/foods12091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The gut microbiota is significant for infants to grow and develop in the early stages of life. The breast milk microbiota directly or indirectly influences colonizing and the development of early infant intestinal microbiota. Therefore, we wanted to study the microbial diversity and correlation between breast milk and the infant gut. By sequencing the 16S rRNA V3-V4 regions of microbiome in infant feces 1, 14, 20, 30, and 90 days after delivery as well as those in breast milk using Illumina NovaSeq, we studied the component of microbiome in both human milk and infant stools, analyzed the diversity of microbiota, and explored the relationship between them. We found that the richest bacteria in breast milk were Acinetobacter, Stenotrophomonas, Sphingopyxis, Pseudomonas, and Streptococcus, with a small amount of Lactobacillus, Bifidobacterium, and Klebsiella. The infant feces were abundant in Bifidobacterium, Escherichia-Shigella, Klebsiella, Streptococcus, Serratia, Bacteroides, and Lactobacillus, with a small number of Acinetobacter and Pseudomonas. Acinetobacter, Bifidobacterium, Klebsiella, and Lactobacillus appeared in the breast milk and infant feces, suggesting that they were transferred from the breast milk to the infant's gut.
Collapse
Affiliation(s)
- Kaili Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lina Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qiu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Taylor R, Keane D, Borrego P, Arcaro K. Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review. Nutrients 2023; 15:nu15061420. [PMID: 36986148 PMCID: PMC10051234 DOI: 10.3390/nu15061420] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
While it is widely recognized that nutrition during pregnancy and lactation can affect the microbiome of breast milk as well as the formation of the infant gut microbiome, we are only just beginning to understand the extent to which maternal diet impacts these microbiomes. Given the importance of the microbiome for infant health, we conducted a comprehensive review of the published literature to explore the current scope of knowledge regarding associations between maternal diet and the breast milk and infant gut microbiomes. Papers included in this review assessed either diet during lactation or pregnancy, and the milk and/or infant gut microbiome. Sources included cohort studies, randomized clinical trials, one case-control study, and one crossover study. From an initial review of 808 abstracts, we identified 19 reports for a full analysis. Only two studies assessed the effects of maternal diet on both milk and infant microbiomes. Although the reviewed literature supports the importance of a varied, nutrient-dense maternal diet in the formation of the infant’s gut microbiome, several studies found factors other than maternal diet to have a greater impact on the infant microbiome.
Collapse
Affiliation(s)
- Rachel Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Deirdre Keane
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Paulina Borrego
- Science & Engineering Library, University of Massachusetts, Lederle Grad Research Ctr Low-Rise, 740 N Pleasant St Rm A273, Amherst, MA 01003, USA
| | - Kathleen Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
- Correspondence: ; Tel.: +1-413-577-1823
| |
Collapse
|
13
|
The Entero-Mammary Pathway and Perinatal Transmission of Gut Microbiota and SARS-CoV-2. Int J Mol Sci 2022; 23:ijms231810306. [PMID: 36142219 PMCID: PMC9499685 DOI: 10.3390/ijms231810306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother−neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection.
Collapse
|
14
|
Gómez-Torres N, Sánchez-García L, Castro I, Arroyo R, Cabañas F, González-Sánchez R, López-Azorín M, Moral-Pumarega MT, Escuder-Vieco D, Cabañes-Alonso E, Rodríguez JM, Alba C, Pellicer A. Metataxonomic Analysis of Milk Samples From SARS-CoV-2-Positive and SARS-CoV-2-Negative Women. Front Nutr 2022; 9:853576. [PMID: 35369105 PMCID: PMC8971750 DOI: 10.3389/fnut.2022.853576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To assess the impact of SARS-CoV-2 viral infection on the metataxonomic profile and its evolution during the first month of lactation. Methods Milk samples from 37 women with full-term pregnancies and mild SARS-CoV-2 infection and from 63 controls, collected in the first and fifth postpartum weeks, have been analyzed. SARS-CoV-2 RNA was assessed by reverse transcription polymerase chain reaction (RT-PCR) both in cases and controls. After DNA extraction, the V3-V4 hypervariable region of the gene 16S rRNA was amplified and sequenced using the MiSeq system of Illumina. Data were submitted for statistical and bioinformatics analyses after quality control. Results All the 1st week and 5th week postpartum milk samples were negative for SARS-CoV-2 RNA. Alpha diversity showed no differences between milk samples from the study and control group, and this condition was maintained along the observation time. Analysis of the beta-diversity also indicated that the study and control groups did not show distinct bacterial profiles. Staphyloccus and Streptococcus were the most abundant genera and the only ones that were detected in all the milk samples provided. Disease state (symptomatic or asymptomatic infection) did not affect the metataxonomic profile in breast milk. Conclusion These results support that in the non-severe SARS-CoV-2 pregnant woman infection the structure of the bacterial population is preserved and does not negatively impact on the human milk microbiota.
Collapse
Affiliation(s)
- Natalia Gómez-Torres
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Laura Sánchez-García
- Department of Neonatology, Biomedical Research Foundation-IDIPAZ, La Paz University Hospital, Madrid, Spain
- *Correspondence: Laura Sánchez-García,
| | - Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Fernando Cabañas
- Department of Neonatology, Quirónsalud Madrid University Hospital and Quirónsalud San José Hospital, Biomedical Research Foundation-IDIPAZ, La Paz University Hospital, Madrid, Spain
| | - Raquel González-Sánchez
- Department of Neonatology, Quirónsalud Madrid University Hospital and Quiroónsalud San José Hospital, Madrid, Spain
| | - Manuela López-Azorín
- Department of Neonatology, Quirónsalud Madrid University Hospital and Quiroónsalud San José Hospital, Madrid, Spain
| | | | | | - Esther Cabañes-Alonso
- Department of Neonatology, Regional Human Milk Bank, 12 de Octubre University Hospital, Madrid, Spain
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
- Claudio Alba,
| | - Adelina Pellicer
- Department of Neonatology, Biomedical Research Foundation-IDIPAZ, La Paz University Hospital, Madrid, Spain
- *Correspondence: Laura Sánchez-García,
| |
Collapse
|