1
|
March C, Thormann M, Hass P, Georgiades M, Sensse M, Herrmann T, Omari J, Pech M, Damm R. Mortality and postinterventional complications after ablative treatment of liver malignancies: A cohort study of 4374 patients. Brachytherapy 2024; 23:743-750. [PMID: 39179474 DOI: 10.1016/j.brachy.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE Ablative therapies for primary and secondary liver malignancies are increasingly adopted in current guidelines. Nevertheless, surgical resection remains the gold standard in most curative therapy settings. Extensive studies on mortality and morbidity after ablative treatment of the liver are missing. We investigated complications and mortality after ablative treatment in a large, unselected study cohort. MATERIALS AND METHODS Standardized patient and treatment data in 4374 percutaneous and angiographic ablative procedures of the liver from the DRG-based hospital reimbursement system (diagnosis-related groups) of an academic hospital in Germany were retrospectively evaluated. We analyzed descriptive patient data, length of stay (LOS), pre-existing medical conditions, previous gastrointestinal surgeries, severe complications, and occurrence of death. RESULTS Treatment of secondary liver malignancies constituted over two-thirds of all procedures (71%, n = 3053). The mean LOS was 4.1 ± 3.5 days. Severe complications were documented in 1.4% and in-house death in 0.2% of cases, significantly more often after treatment with chemoembolization of primary liver malignancies (p = 0.003; p = 0.0001). Previous partial liver resection, partial bowel resection, and chronic renal failure were independent risk factors for the occurrence of severe complications. CONCLUSION Severe complications and in-hospital death are rare in the treatment of primary and secondary liver malignancies with percutaneous and angiographic procedures. They are a viable alternative or addition to a surgical approach in treating liver lesions.
Collapse
Affiliation(s)
- Christine March
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Maximilian Thormann
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Peter Hass
- Department of Radiotherapy and Radiooncology, Helios Klinikum Erfurt, Erfurt, Germany
| | - Marilena Georgiades
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Maximilian Sensse
- Data Integration Center, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tim Herrmann
- Data Integration Center, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jazan Omari
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of diagnostic and interventional Radiology, Klinikum Frankfurt (Oder), Frankfurt (Oder), Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Robert Damm
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Karius A, Leifeld LM, Strnad V, Fietkau R, Bert C. First implementation of an innovative infra-red camera system integrated into a mobile CBCT scanner for applicator tracking in brachytherapy-Initial performance characterization. J Appl Clin Med Phys 2024; 25:e14364. [PMID: 38626753 PMCID: PMC11244686 DOI: 10.1002/acm2.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024] Open
Abstract
PURPOSE To enable a real-time applicator guidance for brachytherapy, we used for the first time infra-red tracking cameras (OptiTrack, USA) integrated into a mobile cone-beam computed tomography (CBCT) scanner (medPhoton, Austria). We provide the first description of this prototype and its performance evaluation. METHODS We performed assessments of camera calibration and camera-CBCT registration using a geometric calibration phantom. For this purpose, we first evaluated the effects of intrinsic parameters such as camera temperature or gantry rotations on the tracked marker positions. Afterward, calibrations with various settings (sample number, field of view coverage, calibration directions, calibration distances, and lighting conditions) were performed to identify the requirements for achieving maximum tracking accuracy based on an in-house phantom. The corresponding effects on camera-CBCT registration were determined as well by comparing tracked marker positions to the positions determined via CBCT. Long-term stability was assessed by comparing tracking and a ground-truth on a weekly basis for 6 weeks. RESULTS Robust tracking with positional drifts of 0.02 ± 0.01 mm was feasible using the system after a warm-up period of 90 min. However, gantry rotations affected the tracking and led to inaccuracies of up to 0.70 mm. We identified that 4000 samples and full coverage were required to ensure a robust determination of marker positions and camera-CBCT registration with geometric deviations of 0.18 ± 0.03 mm and 0.42 ± 0.07 mm, respectively. Long-term stability showed deviations of more than two standard deviations from the initial calibration after 3 weeks. CONCLUSION We implemented for the first time a standalone combined camera-CBCT system for tracking in brachytherapy. The system showed high potential for establishing corresponding workflows.
Collapse
Affiliation(s)
- Andre Karius
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Lisa Marie Leifeld
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
3
|
Auer TA, Müller L, Schulze D, Anhamm M, Bettinger D, Steinle V, Haubold J, Zopfs D, Pinto Dos Santos D, Eisenblätter M, Gebauer B, Kloeckner R, Collettini F. CT-guided High-Dose-Rate Brachytherapy versus Transarterial Chemoembolization in Patients with Unresectable Hepatocellular Carcinoma. Radiology 2024; 310:e232044. [PMID: 38319166 DOI: 10.1148/radiol.232044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Background CT-guided high-dose-rate (HDR) brachytherapy (hereafter, HDR brachytherapy) has been shown to be safe and effective for patients with unresectable hepatocellular carcinoma (HCC), but studies comparing this therapy with other local-regional therapies are scarce. Purpose To compare patient outcomes of HDR brachytherapy and transarterial chemoembolization (TACE) in patients with unresectable HCC. Materials and Methods This multi-institutional retrospective study included consecutive treatment-naive adult patients with unresectable HCC who underwent either HDR brachytherapy or TACE between January 2010 and December 2022. Overall survival (OS) and progression-free survival (PFS) were compared between patients matched for clinical and tumor characteristics by propensity score matching. Not all patients who underwent TACE had PFS available; thus, a different set of patients was used for PFS and OS analysis for this treatment. Hazard ratios (HRs) were calculated from Kaplan-Meier survival curves. Results After propensity matching, 150 patients who underwent HDR brachytherapy (median age, 71 years [IQR, 63-77 years]; 117 males) and 150 patients who underwent TACE (OS analysis median age, 70 years [IQR, 63-77 years]; 119 male; PFS analysis median age, 68 years [IQR: 63-76 years]; 119 male) were analyzed. Hazard of death was higher in the TACE versus HDR brachytherapy group (HR, 4.04; P < .001). Median estimated PFS was 32.8 months (95% CI: 12.5, 58.7) in the HDR brachytherapy group and 11.6 months (95% CI: 4.9, 22.7) in the TACE group. Hazard of disease progression was higher in the TACE versus HDR brachytherapy group (HR, 2.23; P < .001). Conclusion In selected treatment-naive patients with unresectable HCC, treatment with CT-guided HDR brachytherapy led to improved OS and PFS compared with TACE. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Chapiro in this issue.
Collapse
Affiliation(s)
- Timo A Auer
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Lukas Müller
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Daniel Schulze
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Melina Anhamm
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Dominik Bettinger
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Verena Steinle
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Johannes Haubold
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - David Zopfs
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Daniel Pinto Dos Santos
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Michel Eisenblätter
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Bernhard Gebauer
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Roman Kloeckner
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| | - Federico Collettini
- From the Department of Radiology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany (T.A.A., M.A., B.G., F.C.); Berlin Institute of Health, Berlin, Germany (T.A.A., F.C.); Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz, Mainz, Germany (L.M.); Institute of Biometry and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany (D.S.); Department of Medicine II, University of Freiburg Medical Center, Freiburg, Germany (D.B.); Department of Diagnostic and Interventional Radiology, University Medical Center Heidelberg, Heidelberg, Germany (V.S.); Institute of Diagnostic and Interventional Radiology and Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany (J.H.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (D.Z., D.P.d.S.); Institute of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany (D.P.d.S.); Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, Bielefeld University, Bielefeld, Germany (M.E.); and Institute of Interventional Radiology, University Hospital Schleswig-Holstein-Campus Lübeck, Lübeck, Germany (R.K.)
| |
Collapse
|
4
|
Kästle S, Stechele MR, Richter L, Schinner R, Öcal E, Alunni-Fabbroni M, De Toni E, Corradini S, Seidensticker M, Goldberg SN, Ricke J, Wildgruber M, Kimm MA. Peripheral blood-based cell signature indicates response to interstitial brachytherapy in primary liver cancer. J Cancer Res Clin Oncol 2023; 149:9777-9786. [PMID: 37247078 PMCID: PMC10423129 DOI: 10.1007/s00432-023-04875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Biomarkers are essential to implement personalized therapies in cancer treatment options. As primary liver tumors are increasing and treatment is coupled to liver function and activation of systemic cells of the immune system, we investigated blood-based cells for their ability to predict response to local ablative therapy. METHODS We analyzed peripheral blood cells in 20 patients with primary liver cancer at baseline and following brachytherapy. In addition to platelets, leukocytes, lymphocytes, monocytes, neutrophils and most common ratios PLR, LMR, NMR and NLR, we investigated T cell and NKT cell populations of 11 responders and 9 non-responders using flow cytometry. RESULTS We have found a peripheral blood cell signature that differed significantly between responders and non-responders treated with interstitial brachytherapy (IBT). At baseline, non-responders featured higher numbers of platelets, monocytes and neutrophils, a higher platelet-to-lymphocyte ratio and an increase in the NKT cell population with a concurrent reduction in CD16 + NKT cells. Simultaneously, a lower percentage of CD4 + T cells was present in non-responders, as also reflected in a lower CD4/8 ratio. CD45RO + memory cells were lower in both, CD4 + and CD8 + T cell populations whereas PD-1 + T cells were only present in the CD4 + T cell population. CONCLUSION Baseline blood-based cell signature may function as a biomarker to predict response following brachytherapy in primary liver cancer.
Collapse
Affiliation(s)
- Sophia Kästle
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Enrico De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
6
|
Müller C, Omari J, Mohnike K, Bär C, Pech M, Keitel V, Venerito M. Multidisciplinary Treatment of Patients with Progressive Biliary Tract Cancer after First-Line Gemcitabine and Cisplatin: A Single-Center Experience. Cancers (Basel) 2023; 15:2598. [PMID: 37174064 PMCID: PMC10177261 DOI: 10.3390/cancers15092598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Patients with unresectable biliary tract cancer (uBTC) who progress despite first-line gemcitabine plus cisplatin (GC) treatment have limited systemic options with a modest survival benefit. Data are lacking on the clinical effectiveness and safety of personalized treatment based on multidisciplinary discussion for patients with progressing uBTC. METHODS This retrospective single-center study included patients with progressive uBTC who received either best supportive care or personalized treatment based on multidisciplinary discussion, including minimally invasive, image-guided procedures (MIT); FOLFIRI; or both (MIT and FOLFIRI), between 2011 and 2021. RESULTS Ninety-seven patients with progressive uBTC were identified. Patients received best supportive care (n = 50, 52%), MIT (n = 14, 14%), FOLFIRI (n = 19, 20%), or both (n = 14, 14%). Survival after disease progression was better in patients who received MIT (8.8 months; 95% CI: 2.60-15.08), FOLFIRI (6 months; 95% CI: 3.30-8.72), or both (15.1 months; 95% CI: 3.66-26.50) than in patients receiving BSC (0.36 months; 95% CI: 0.00-1.24, p < 0.001). The most common (>10%) grade 3-5 adverse events were anemia (25%) and thrombocytopenia (11%). CONCLUSION Multidisciplinary discussion is critical for identifying patients with progressive uBTC who might benefit the most from MIT, FOLFIRI, or both. The safety profile was consistent with previous reports.
Collapse
Affiliation(s)
- Christian Müller
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, 39120 Magdeburg, Germany
| | - Jazan Omari
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Hospital, 39120 Magdeburg, Germany
| | - Konrad Mohnike
- DTZ Diagnostic and Therapeutic Center, 10243 Berlin, Germany
| | - Caroline Bär
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Hospital, 39120 Magdeburg, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Hospital, 39120 Magdeburg, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, 39120 Magdeburg, Germany
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Correlation of chemokines and growth factors with radiation-induced liver injury after interstitial high dose rate (HDR) brachytherapy of liver metastases. J Cancer Res Clin Oncol 2022; 148:2815-2826. [PMID: 35596772 PMCID: PMC9470622 DOI: 10.1007/s00432-022-04041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Background Locoregional therapies, as imaging-guided tumor-directed procedures, are emerging treatment strategies in the management of primary and secondary liver malignancies such as e.g. colorectal cancer liver metastases. As one of those, irradiation-based interstitial high dose rate brachytherapy (iBT) of liver metastases bears a risk of developing focal radiation-induced liver injury (fRILI). Since little is known about biological factors involved in hepatic dysfunction after irradiation, the aim of this study was to identify factors, that may play a role in the underlying mechanism of fRILI, and that potentially may serve as biomarkers for post-therapeutic fRILI to improve specific management and treatment of patients. Methods Twenty-two patients with hepatic malignancies (tumor patients, TP) underwent iBT with total ablative doses of radiation to the target volume ranging from e.g. 15 to 25 Gy. Hepatobiliary magnetic resonance imaging (MRI) was performed 6 weeks after iBT to quanitify fRILI. Blood samples were taken before (pre) and 6 weeks after (post) iBT from TP, and from ten healthy volunteers (HV controls) for the analyses of humoral mediators: monocyte chemoattractant protein-1 (MCP-1), chemokine (C-X3-C motif) ligand 1 (CX3CL1), vascular endothelial growth factor (VEGF) and beta-nerve growth factor (beta-NGF) using the Multi-Analyte Flow Assay via flow cytometry. Correlation analyses between the humoral mediators (pre and post iBT) with the tumor volume and fRILI were performed. Results While MCP-1 and CX3CL1 tended to decrease in TP vs. HV, VEGF was significantly decreased in TP vs. HV pre and post iBT (p < 0.05). Beta-NGF levels were significantly increased in TP vs. HV pre and post iBT (p < 0.05). Baseline circulating levels of MCP-1, VEGF and beta-NGF have shown significant positive correlations with the hepatic tumor volume (p < 0.05). Circulating levels of humoral mediators before treatment did not correlate with fRILI, while CX3CL1 and VEGF after iBT have shown significant positive correlations with fRILI (p < 0.05). Conclusion Tumor volume and threshold dose of irradiation damage correlated positively with MCP-1 and VEGF as well as NGF and CX3CL, respectively. Thus, investigation of biological mediators in blood samples from tumor patients may provide an appropriate tool to predict fRILI after interstitial HDR brachytherapy of liver metastases.
Collapse
|
8
|
Damm R, Damm R, Heinze C, Surov A, Omari J, Pech M, Powerski M. Radioablation of Upper Abdominal Malignancies by CT-Guided, Interstitial HDR Brachytherapy: A Multivariate Analysis of Catheter Placement Assisted by Ultrasound Imaging. ROFO-FORTSCHR RONTG 2021; 194:62-69. [PMID: 34649287 DOI: 10.1055/a-1545-4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the use of ultrasound (US) during catheter placement in interstitial brachytherapy (iBT) of abdominal malignancies as an alternative to computed tomography (CT) fluoroscopy. MATERIALS AND METHODS Catheter placement for CT-guided iBT was, if US visibility was sufficient, assisted by sonography in 52 consecutive patients with 82 lesions (liver N = 62; kidney N = 16; peritoneum N = 4) of various malignancies. We collected data on lesion visibility, location, depth, size, and dosimetry. Comparison of CT fluoroscopy versus US-assisted catheter placement was performed by Fisher's exact test for frequencies and U-test for lesion visibility and dosimetric data. Factors predicting the utility of sonography were determined in a lesion-based multivariate regression analysis. A p-value < 0.05 was regarded as statistically significant. RESULTS 150 catheters (1 to 6 per lesion; mean diameter 3.6 ± 2.4 cm) were implanted. CT fluoroscopy was used for 44 catheters, and US was used for 106 catheters. Lesion visibility assessed by 5-point Likert scale was significantly better in US (median 2 vs. 3; p = 0.011) and effective dose was significantly reduced if US guidance was applicable (median 1.75 vs. 8.19 mSv; p = 0.014). In a multivariate regression analysis, we identified increased lesion size and caudal location within the target organ to independently predict the utility of ultrasound in catheter placement for iBT. CONCLUSION Sonography is a helpful technique to assist CT-guided interstitial brachytherapy of upper abdominal malignancies. Especially for larger lesions localized in the lower liver segments or lower half of the kidney, superior visibility can be expected. As the effective dose of the patient is also reduced, radiation exposure of the medical staff may be indirectly lowered. KEY POINTS · Ultrasound-assisted catheter placement in CT-guided brachytherapy of upper abdominal malignancies significantly improves lesion visibility.. · Predictors of successful ultrasound application are larger lesions within the lower portion of the liver and kidney.. · By reducing the need for CT fluoroscopy during intervention, radiation exposure to the medical staff may be indirectly lowered.. CITATION FORMAT · Damm R, Damm R, Heinze C et al. Radioablation of Upper Abdominal Malignancies by CT-Guided, Interstitial HDR Brachytherapy: A Multivariate Analysis of Catheter Placement Assisted by Ultrasound Imaging. Fortschr Röntgenstr 2022; 194: 62 - 69.
Collapse
Affiliation(s)
- Robert Damm
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| | - Romy Damm
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| | - Constanze Heinze
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| | - Alexey Surov
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| | - Jazan Omari
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| | - Maciej Pech
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| | - Maciej Powerski
- Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Germany
| |
Collapse
|
9
|
Label-free functional and structural imaging of liver microvascular complex in mice by Jones matrix optical coherence tomography. Sci Rep 2021; 11:20054. [PMID: 34625574 PMCID: PMC8501041 DOI: 10.1038/s41598-021-98909-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
We demonstrate label-free imaging of the functional and structural properties of microvascular complex in mice liver. The imaging was performed by a custom-built Jones-matrix based polarization sensitive optical coherence tomography (JM-OCT), which is capable of measuring tissue's attenuation coefficient, birefringence, and tiny tissue dynamics. Two longitudinal studies comprising a healthy liver and an early fibrotic liver model were performed. In the healthy liver, we observed distinctive high dynamics beneath the vessel at the initial time point (0 h) and reappearance of high dynamics at 32-h time point. In the early fibrotic liver model, we observed high dynamics signal that reveals a clear network vascular structure by volume rendering. Longitudinal time-course imaging showed that these high dynamics signals faded and decreased over time.
Collapse
|
10
|
Duque AS, van Wagenberg T, Seidensticker M, Streitparth F, Walter F, Parodi K, Verhaegen F, Ricke J, Belka C, Paiva Fonseca G, Corradini S, Landry G. Validation of the collapsed cone algorithm for HDR liver brachytherapy against Monte Carlo simulations. Brachytherapy 2021; 20:936-947. [PMID: 34001415 DOI: 10.1016/j.brachy.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To validate the collapsed cone (CC) algorithm against Monte Carlo (MC) simulations for model-based dose calculations in high-dose-rate (HDR) liver brachytherapy. METHODS AND MATERIALS Doses for liver brachytherapy treatment plans of 10 cases were retrospectively recalculated with a model-based approach using Monte Carlo n-Particle Code (MCNP) 6 (Dm,m-MC) and Oncentra Brachy ACE (Dm,m-ACE). Tissue segmentation consisted of assigning uniform compositions and mass densities to predefined Hounsfield Unit (HU) thresholds. Resulting doses were compared according to dose volume histogram parameters typical for clinical routine. These included the percentage liver volume receiving 5 Gy (V5Gy) or 10 Gy (V10Gy), the maximum dose to one cubic centimeter (D1cc) of organs at risk, the clinical target volume (CTV) fractions receiving 150% (V150), 100% (V100), 95% (V95) and 90% (V90) of the prescribed dose and the absolute doses to 95% (D95) and 90% (D90) of the CTV volumes. RESULTS Doses from Oncentra Brachy ACE agreed well with MC simulations. Differences were seen far from the source, in low-density regions and bone structures. Median percentage deviations were 1.1% for the liver V5Gy and 0.4% for the liver V10Gy, with deviations of largest magnitude amounting to 2.2% and 1.0%, respectively. Organs at risk had median deviations ranging from 0.3% to 1.5% for D1cc, with outliers ranging up to 4.6%. CTV volume parameter deviations ranged between -1.5% and 0.5%, dose parameter deviations ranged mostly between -2% and 1%, with two outliers at -4.0% and -3.4% for a small CTV.
Collapse
Affiliation(s)
- Anna Sophie Duque
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Teun van Wagenberg
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Florian Streitparth
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jens Ricke
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany.
| |
Collapse
|
11
|
Appalanaido GK, Bahajjaj SIBZA, Shukor SA, Ahmad MZ, Francis HCH. Case Report-Staged brachytherapy achieving complete metabolic response in unresectable oligometastatic colorectal cancer to the liver. Oxf Med Case Reports 2021; 2021:omab016. [PMID: 33948189 PMCID: PMC8081016 DOI: 10.1093/omcr/omab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Liver is the most common site for metastasis from colorectal cancer (CRC). Non-surgical treatment options for oligometastatic CRC confined to the liver which represents an intermediate state in the metastatic cascade are fast expanding. Currently, several liver-directed local therapeutic options are available, such as hepatic arterial infusion (HAI) therapy, radio-frequency ablation (RFA), transarterial chemoembolization (TACE), stereotactic body radiotherapy and high dose rate brachytherapy (HDRBT). Many factors such as patient's fitness, liver function (LF), tumour size, location of the tumour in the liver and scheduling of systemic therapy need to be considered when selecting patients for surgery or local liver-directed therapy. This case report illustrates a successful local treatment with staged HDRBT for a large and unresectable, liver only oligometastatic disease from CRC. This patient underwent 4 cycles of chemotherapy (FOLFOX 4) followed by primary tumour resection and first stage of HDRBT to liver for a residual 14 cm tumour after the chemotherapy. After completing a further 4 cycles of chemotherapy with the same regimen, the tumour remained stable at 8 cm. She underwent a second stage of HDRBT to the same lesion and a repeat PET-CT scan done 8 weeks after the second HDRBT showed complete metabolic response. To our knowledge, this is the largest CRC metastatic liver lesion that has been successfully treated with HDRB.
Collapse
Affiliation(s)
- Gokula Kumar Appalanaido
- Department of Radiotherapy & Oncology, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Syadwa Abdul Shukor
- Department of Radiotherapy & Oncology, Sarawak General Hospital, Kuching, Malaysia
| | - Muhammad Zabidi Ahmad
- Department of Radiology, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Ho Cho Hao Francis
- Department of Radiation Oncology, National University Cancer Institute Singapore
| |
Collapse
|
12
|
Zheng Y, Jiang S, Yang Z, Wei L. Automatic needle detection using improved random sample consensus in CT image-guided lung interstitial brachytherapy. J Appl Clin Med Phys 2021; 22:121-131. [PMID: 33764659 PMCID: PMC8035571 DOI: 10.1002/acm2.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/19/2021] [Accepted: 02/06/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose To develop a method for automatically detecting needles from CT images, which can be used in image‐guided lung interstitial brachytherapy to assist needle placement assessment and dose distribution optimization. Material and Methods Based on the preview model parameters evaluation, local optimization combining local random sample consensus, and principal component analysis, the needle shaft was detected quickly, accurately, and robustly through the modified random sample consensus algorithm. By tracing intensities along the axis, the needle tip was determined. Furthermore, multineedles in a single slice were segmented at once using successive inliers deletion. Results The simulation data show that the segmentation efficiency is much higher than the original random sample consensus and yet maintains a stable submillimeter accuracy. Experiments with physical phantom demonstrate that the segmentation accuracy of described algorithm depends on the needle insertion depth into the CT image. Application to permanent lung brachytherapy image is also validated, where manual segmentation is the counterparts of the estimated needle shape. Conclusions From the results, the mean errors in determining needle orientation and endpoint are regulated within 2° and 1 mm, respectively. The average segmentation time is 0.238 s per needle.
Collapse
Affiliation(s)
- Yongnan Zheng
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Lin Wei
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Wust P, Beck M, Dabrowski R, Neumann O, Zschaeck S, Kaul D, Modest DP, Stromberger C, Gebauer B, Ghadjar P. Radiotherapeutic treatment options for oligotopic malignant liver lesions. Radiat Oncol 2021; 16:51. [PMID: 33726751 PMCID: PMC7970808 DOI: 10.1186/s13014-021-01779-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
Background Several radiotherapeutic approaches for patients with oligotopic malignant liver lesions unfit for surgical resection exist. The most advanced competitive techniques are high-dose-rate (HDR) brachytherapy, Cyberknife, volume-modulated-arc therapy (VMAT) and Tomotherapy. We evaluated the optimal technique by a planning study for a single ablative dose with different lesion sizes.
Methods We compared dose distributions of HDR-brachytherapy with stereotactic ablative radiotherapy using the Cyberknife, VMAT or Tomotherapy. Tumor-control-probabilities (TCP), normal-tissue-complication-probabilities (NTCP) were determined in a theoretical framework applying a single dose of 20 Gy (demanding 95% coverage) for intrahepatic lesions of 1–5 cm in size. We evaluated therapeutic ratios by TCP (mean dose in the lesion) relative to high-dose (conformality) or low-dose liver exposition in dependency on the lesion size for each technique. In addition, we considered treatment times and accuracy (clinical target volume vs planning target volume). Results HDR-brachtherapy has the highest therapeutic ratios with respect to high-dose as well as low-dose liver exposition even for extended lesions, and the Cyberknife being suited second best. However, for lesions ≥ 3 cm diameter the therapeutic ratios of all ablative techniques are increasingly converging, and better tolerance and shorter treatment times of noninvasive external techniques become more important. On the other hand, mean tumor doses of HDR-brachytherapy of near 60 Gy are unattainable by the other techniques gaining only 22–34 Gy, and the conformality of HDR-brachytherapy is still rather good for lesions ≥ 3 cm diameter. Conclusions HDR-brachytherapy is by far the most effective technique to treat intrahepatic lesions by a single fraction, but sparing of the surroundings declines with increasing lesion size and approaches the benchmarks of external beam radiosurgery techniques. External beam radiotherapy has the advantage to use suitable fractionation schedules.
Collapse
Affiliation(s)
- Peter Wust
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus Beck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Robert Dabrowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Oliver Neumann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sebastian Zschaeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik P Modest
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Oncology, Berlin, Germany
| | - Carmen Stromberger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernhard Gebauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Pirus Ghadjar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
14
|
Folkert MR, Gottumukkala S, Nguyen NT, Taggar A, Sur RK. Review of brachytherapy complications - Upper gastrointestinal tract. Brachytherapy 2020; 20:1005-1013. [PMID: 33358330 DOI: 10.1016/j.brachy.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
While brachytherapy applications are not widely used for cancer diagnoses in the upper GI tract (including the esophagus, liver, stomach, and pancreas), they have a clear role in palliation and symptom management and occasionally definitive locoregional treatment. With the increasing use of image-guided techniques, the incidence of side effects and complications has shown to be lower than many other alternative treatment modalities, making brachytherapy approaches a preferred treatment option. This review examines procedural complications and acute and chronic adverse effects from radiation associated with esophageal, hepatobiliary, and pancreatic brachytherapy and their management.
Collapse
Affiliation(s)
| | | | - Nhu Tram Nguyen
- McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| | - Amandeep Taggar
- University of Toronto, Odette Cancer Centre, Toronto, Ontario, Canada
| | - Ranjan Kumar Sur
- McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Jerg KI, Austermühl RP, Roth K, Große Sundrup J, Kanschat G, Hesser JW, Wittmayer L. Diffuse domain method for needle insertion simulations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3377. [PMID: 32562345 DOI: 10.1002/cnm.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
We present a new strategy for needle insertion simulations without the necessity of meshing. A diffuse domain approach on a regular grid is applied to overcome the need for an explicit representation of organ boundaries. A phase field function captures the transition of tissue parameters and boundary conditions are imposed implicitly. Uncertainties of a volume segmentation are translated in the width of the phase field, an approach that is novel and overcomes the problem of defining an accurate segmentation boundary. We perform a convergence analysis of the diffuse elastic equation for decreasing phase field width, compare our results to deformation fields received from conforming mesh simulations and analyze the diffuse linear elastic equation for different widths of material interfaces. Then, the approach is applied to computed tomography data of a patient with liver tumors. A three-class U-Net is used to automatically generate tissue probability maps serving as phase field functions for the transition of elastic parameters between different tissues. The needle tissue interaction forces are approximated by the absolute gradient of a phase field function, which eliminates the need for explicit boundary parameterization and collision detection at the needle-tissue interface. The results show that the deformation field of the diffuse domain approach is comparable to the deformation of a conforming mesh simulation. Uncertainties of tissue boundaries are included in the model and the simulation can be directly performed on the automatically generated voxel-based probability maps. Thus, it is possible to perform easily implementable patient-specific elastomechanical simulations directly on voxel data.
Collapse
Affiliation(s)
- Katharina I Jerg
- Mannheim Institue for Intelligent Systems in Medicine, Heidelberg University, Heidelberg, Germany
| | - René Phillip Austermühl
- Mannheim Institue for Intelligent Systems in Medicine, Heidelberg University, Heidelberg, Germany
| | - Karsten Roth
- Heidelberg Collaboratory for Image Processing (HCI), Heidelberg University, Heidelberg, Germany
| | - Jonas Große Sundrup
- Institute of Computer Engineering (ZITI), Heidelberg University, Heidelberg, Germany
| | - Guido Kanschat
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Jürgen W Hesser
- Mannheim Institue for Intelligent Systems in Medicine, Heidelberg University, Heidelberg, Germany
| | - Lisa Wittmayer
- Mannheim Institue for Intelligent Systems in Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Duque AS, Corradini S, Kamp F, Seidensticker M, Streitparth F, Kurz C, Walter F, Parodi K, Verhaegen F, Ricke J, Belka C, Fonseca GP, Landry G. The dosimetric impact of replacing the TG-43 algorithm by model based dose calculation for liver brachytherapy. Radiat Oncol 2020; 15:60. [PMID: 32151255 PMCID: PMC7063719 DOI: 10.1186/s13014-020-01492-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. METHODS We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V5Gy and V10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D1cc). Target coverage was assessed by calculating V150, V100, V95 and V90 as well as D95 and D90. For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. RESULTS TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. CONCLUSIONS In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.
Collapse
Affiliation(s)
- Anna Sophie Duque
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Florian Streitparth
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, Maastricht, 6229 ET, The Netherlands
| | - Jens Ricke
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, Maastricht, 6229 ET, The Netherlands
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany. .,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany.
| |
Collapse
|
17
|
Efficacy and safety of percutaneous computed tomography-guided high-dose-rate interstitial brachytherapy in treatment of oligometastatic lymph node metastases of retroperitoneal space. J Contemp Brachytherapy 2019; 11:436-442. [PMID: 31749852 PMCID: PMC6854865 DOI: 10.5114/jcb.2019.88141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To assess efficacy, safety, and outcome of computed tomography (CT)-guided high-dose-rate (HDR) interstitial brachytherapy in patients with oligometastatic lymph node metastases of the retroperitoneal space. Material and methods 24 patients with a total of 47 retroperitoneal lymph node metastases from different primary tumors were treated with CT-guided interstitial brachytherapy using an 192Ir source (single fraction irradiation). Every three months after treatment, clinical and imaging follow-up were conducted to evaluate local control and safety. Results Median follow-up was 9.6 months (range, 2.9-39.0 months). Local tumor control rate was 95.7%. The median diameter of the gross tumor volume was 2.2 cm (range, 1-8.6 cm), treated with a median D100 (minimal enclosing tumor dose) of 14.9 Gy (range, 4.5-20.6 Gy). One severe adverse event (grade three) was recorded. Cumulative median progression-free survival was 4.2 months (range, 1.4-23.7 months), and cumulative median overall survival after interstitial brachytherapy was 15.9 months (range, 3.8-39.0 months). Conclusions CT-guided HDR interstitial brachytherapy is a safe and feasible method for local ablation of oligometastatic lymph node metastases of the retroperitoneal space, and might provide a well-tolerated additional therapeutic option in the multidisciplinary management of selected patients.
Collapse
|
18
|
Omari J, Heinze C, Wilck A, Hass P, Seidensticker M, Seidensticker R, Mohnike K, Ricke J, Pech M, Powerski M. Efficacy and safety of CT-guided high-dose-rate interstitial brachytherapy in primary and secondary malignancies of the pancreas. Eur J Radiol 2019; 112:22-27. [PMID: 30777214 DOI: 10.1016/j.ejrad.2018.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate efficacy and safety of CT-guided iBT in patients with primary and secondary malignancies of the pancreas. MATERIAL AND METHODS 13 patients with 13 lesions of the pancreatic corpus and tail were included: 8 secondary malignancies (metastatic lesions = ML) and 5 primary malignancies, including 3 primary tumors (PT) and 2 isolated locoregional recurrences (ILR) after surgical resection were treated with image-guided iBT using a 192iridium source (single fraction irradiation). Every 3 months after treatment clinical and imaging follow-up were conducted to evaluate efficacy. Peri- and postinterventional complications were assessed descriptively. RESULTS The median diameter of the gross tumor volume (GTV) was 3 cm (range 1-6.5 cm), treated with a median D100 (minimal enclosing tumor dose) of 15.3 Gy (range 9.2-25.4 Gy). Local tumor control (LTC) was 92.3% within a median follow-up period of 6.7 months (range 3.2-55.7 months). Cumulative median progression free survival (PFS) was 6.2 months (range 2.8-25.7 months; PFS of primary and secondary malignancies was 5.8 and 6.2 months, respectively). Cumulative median over all survival (OS) after iBT was 16.2 months (range 3.3-55.7 months; OS of primary and secondary malignancies was 7.4 months and 45.6 months, respectively). 1 patient developed mild acute pancreatits post iBT, spontanously resolved within 1 week. No severe adverse events (grade 3+) were recorded. CONCLUSION Image-guided iBT is a safe and particularly effective treatment in patients with primary and secondary malignancies of the pancreas and might provide a well-tolerated additional therapeutic option in the multidisciplinary management of selected patients.
Collapse
Affiliation(s)
- Jazan Omari
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany.
| | - Constanze Heinze
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany.
| | - Antje Wilck
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany.
| | - Peter Hass
- Department of Radiotherapy, University Hospital Magdeburg, Germany.
| | | | | | - Konrad Mohnike
- Diagnostisch Therapeutische Zentrum (DTZ), Berlin, Germany.
| | - Jens Ricke
- Department of Radiology, University Hospital Munich, Germany.
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany; 2nd Department of Radiology, Medical University of Gdansk, Poland.
| | - Maciej Powerski
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Germany.
| |
Collapse
|
19
|
Needle track seeding in hepatocellular carcinoma after local ablation by high-dose-rate brachytherapy: a retrospective study of 588 catheter placements. J Contemp Brachytherapy 2018; 10:516-521. [PMID: 30662474 PMCID: PMC6335555 DOI: 10.5114/jcb.2018.80626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose Needle track seeding in the local treatment of hepatocellular carcinoma (HCC) is not yet evaluated for catheter-based high-dose-rate brachytherapy (HDR-BT), a novel local ablative technique. Material and methods We report a retrospective analysis of 100 patients treated on 233 HCC lesions by HDR-BT (using 588 catheters in total). No needle or catheter track irradiation was used. Minimum required follow-up with imaging was 6 months. In case of suspected needle track seeding (intra- and/or extrahepatic) in follow-up, image fusion of follow-up CT/MRI with 3D irradiation plan was used to verify the location of a new tumor deposit within the path of a brachytherapy catheter at the time of treatment. Results We identified 9 needle track metastases, corresponding to a catheter-based risk of 1.5% for any location of occurrence. A total of 7 metastases were located within the liver (catheter-based risk, 1.2%), and 2 metastases were located extrahepatic (catheter-based risk, 0.3%). Eight out of 9 needle track metastases were successfully treated by further HDR-BT. Conclusions The risk for needle track seeding after interstitial HDR-BT of HCC is comparable to previous reports of percutaneous biopsies and radiofrequency ablation (RFA), especially in case of extrahepatic needle track metastases. To compensate for the risk of seeding, a track irradiation technique similar to track ablation in RFA should be implemented in clinical routine.
Collapse
|
20
|
Herrmann E, Terribilini D, Manser P, Fix MK, Toporek G, Candinas D, Weber S, Aebersold DM, Loessl K. Accuracy assessment of a potential clinical use of navigation-guided intra-operative liver metastasis brachytherapy-a planning study. Strahlenther Onkol 2018; 194:1030-1038. [PMID: 30022277 PMCID: PMC6208950 DOI: 10.1007/s00066-018-1334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/28/2018] [Indexed: 11/29/2022]
Abstract
For patients with inoperable liver metastases, intra-operative liver high dose-rate brachytherapy (HDR-BT) is a promising technology enabling delivery of a high radiation dose to the tumor, while sparing healthy tissue. Liver brachytherapy has been described in the literature as safe and effective for the treatment of primary or secondary hepatic malignancies. It is preferred over other ablative techniques for lesions that are either larger than 4 cm or located in close proximity to large vessels or the common bile duct. In contrast to external beam radiation techniques, organ movements do not affect the size of the irradiated volume in intra-operative HDR-BT and new technical solutions exist to support image guidance for intra-operative HDR-BT. We have retrospectively analyzed anonymized CT datasets of 5 patients who underwent open liver surgery (resection and/or ablation) in order to test whether the accuracy of a new image-guidance method specifically adapted for intra-operative HDR-BT is high enough to use it in similar situations and whether patients could potentially benefit from navigation-guided intra-operative needle placement for liver HDR-BT.
Collapse
Affiliation(s)
- E Herrmann
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstr., 3010, Bern, Switzerland.
| | - D Terribilini
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - G Toporek
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - D Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Berne University Hospital, University of Berne, Bern, Switzerland
| | - S Weber
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - D M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstr., 3010, Bern, Switzerland
| | - K Loessl
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Freiburgstr., 3010, Bern, Switzerland
| |
Collapse
|
21
|
Kieszko D, Cisek P, Kordzińska-Cisek I, Grzybowska-Szatkowska L. Treatment of hepatic metastases with computed tomography-guided interstitial brachytherapy. Oncol Lett 2018; 15:8717-8722. [PMID: 29928323 PMCID: PMC6004646 DOI: 10.3892/ol.2018.8415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to evaluate the efficacy, safety and tolerability of local treatment of liver metastases of various types of cancer using brachytherapy with computed tomography (CT) imaging. Retrospective analysis of 61 patients with unresectable hepatic metastases treated with CT-guided interstitial high dose rate (HDR) brachytherapy of the liver between April 2014 and December 2016 was performed. Patients were treated with a single fractional dose of 15-25 Gy. Statistical analysis was performed on local relapse free survival (LRFS), progression free survival (PFS) and overall survival (OS) rates across the group. In the 6 and 12-month follow-up periods, the 6- and 12-month LRFS rates were 88.7 and 70.7%, PFS rates were 78.1 and 53.8% and the OS rates were 96.7 and 79.6%, respectively. In the Cox regression analysis, the 100% isodose was a statistically significant predictor of LRFS (P=0.01) and PFS (P=0.02), but it was not significant in OS (P=0.07). The 90% isodose was a statistically significant predictor of LRFS (P=0,03) but not significant in PFS (P=0.17) or OS (P=0.25). In all patients, no serious complications were observed. Overall, 30% of patients experienced pain at the injection site, and 50% exhibited nausea or vomiting. In 2 patients, minor subcapsular bleeding occurred without clinical significance, and 1 patient was diagnosed with a pneumothorax that was not clinically significant. Brachytherapy HDR with CT imaging is an effective and safe method of local treatment of liver metastases. The effectiveness of the treatment is probably dose-dependent, and increases with increasing dosage.
Collapse
Affiliation(s)
- Dariusz Kieszko
- Department of Brachytherapy, St. John's Cancer Center, 20-090 Lublin, Poland
| | - Paweł Cisek
- Department of Brachytherapy, St. John's Cancer Center, 20-090 Lublin, Poland
- Department of Oncology, Medical University of Lublin, 20-059 Lublin, Poland
- Correspondence to: Dr Paweł Cisek, Department of Brachytherapy, St John's Cancer Center, 7 Jaczewskiego, 20-090 Lublin, Poland, E-mail:
| | | | | |
Collapse
|
22
|
Radioactive seed migration following parotid gland interstitial brachytherapy. Brachytherapy 2017; 16:1219-1224. [PMID: 28927732 DOI: 10.1016/j.brachy.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/11/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. METHODS AND MATERIALS Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. RESULTS The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. CONCLUSIONS In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs.
Collapse
|
23
|
Gottumukkala S, Tumati V, Hrycushko B, Folkert M. Endoluminal and Interstitial Brachytherapy for the Treatment of Gastrointestinal Malignancies: a Systematic Review. Curr Oncol Rep 2017; 19:2. [PMID: 28110462 DOI: 10.1007/s11912-017-0561-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiation therapy is an integral component in the multimodality management of many gastrointestinal (GI) cancers at all stages of clinical presentation. With recent advances in technology and radiation delivery, external beam radiation therapy (EBRT) can be delivered with reduced toxicity. However, despite these advances, EBRT doses are still limited by the presence of radiosensitive serial structures near clinical targets in the GI tract. Relative to EBRT techniques, brachytherapy techniques have a lower integral dose and more rapid fall-off, allowing for high-dose delivery with little normal tissue exposure. Given the unique characteristics of brachytherapy, it is an attractive strategy to treat GI malignancies. This review addresses the application of both high-dose rate brachytherapy (HDRBT) and low-dose rate brachytherapy (LDRBT) to multiple GI malignancies for both definitive and palliative management.
Collapse
Affiliation(s)
- Sujana Gottumukkala
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vasu Tumati
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brian Hrycushko
- Department of Medical Physics and Engineering, Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Folkert
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Iridium-Knife: Another knife in radiation oncology. Brachytherapy 2017; 16:884-892. [PMID: 28392144 DOI: 10.1016/j.brachy.2017.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 (192Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. METHODS AND MATERIALS Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. RESULTS Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. CONCLUSIONS Both 3D 192Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife.
Collapse
|
25
|
Tanderup K, Ménard C, Polgar C, Lindegaard JC, Kirisits C, Pötter R. Advancements in brachytherapy. Adv Drug Deliv Rev 2017; 109:15-25. [PMID: 27637454 DOI: 10.1016/j.addr.2016.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/14/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022]
Abstract
Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherapy makes it attractive for boosting limited size target volumes to very high doses while sparing normal tissues. Significant developments over the last decades have increased the use of 3D image guided procedures with the utilization of CT, MRI, US and PET. This has taken brachytherapy to a new level in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications.
Collapse
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Cynthia Ménard
- Centre Hospitalier de l'Université de Montréal, Montréal and Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Csaba Polgar
- Center of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| | | | - Christian Kirisits
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Richard Pötter
- Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Henken KR, Seevinck PR, Dankelman J, van den Dobbelsteen JJ. Manually controlled steerable needle for MRI-guided percutaneous interventions. Med Biol Eng Comput 2016; 55:235-244. [PMID: 27108292 PMCID: PMC5272900 DOI: 10.1007/s11517-016-1490-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/18/2016] [Indexed: 12/03/2022]
Abstract
This study aims to develop and evaluate a manually controlled steerable needle that is compatible with and visible on MRI to facilitate full intra-procedural control and accurate navigation in percutaneous interventions. The steerable needle has a working channel that provides a lumen to a cutting stylet or a therapeutic instrument. A steering mechanism based on cable-operated compliant elements is integrated in the working channel. The needle can be steered by adjusting the orientation of the needle tip through manipulation of the handle. The steering mechanism is evaluated by recording needle deflection at constant steering angles. A steering angle of 20.3° results in a deflection of 9.1–13.3 mm in gelatin and 4.6–18.9 mm in porcine liver tissue at an insertion depth of 60 mm. Additionally, the possibility to control the needle path under MRI guidance is evaluated in a gelatin phantom. The needle can be steered to targets at different locations while starting from the same initial position and orientation under MRI guidance with generally available sequences. The steerable needle offers flexibility to the physician in control and choice of the needle path when navigating the needle toward the target position, which allows for optimization of individual treatment and may increase target accuracy.
Collapse
Affiliation(s)
- Kirsten R Henken
- TUDelft, Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Peter R Seevinck
- Imaging Division, Image Sciences Institute, University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jenny Dankelman
- TUDelft, Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | | |
Collapse
|
27
|
Schnapauff D, Collettini F, Steffen I, Wieners G, Hamm B, Gebauer B, Maurer MH. Activity-based cost analysis of hepatic tumor ablation using CT-guided high-dose rate brachytherapy or CT-guided radiofrequency ablation in hepatocellular carcinoma. Radiat Oncol 2016; 11:26. [PMID: 26911437 PMCID: PMC4766654 DOI: 10.1186/s13014-016-0606-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Purpose To analyse and compare the costs of hepatic tumor ablation with computed tomography (CT)-guided high-dose rate brachytherapy (CT-HDRBT) and CT-guided radiofrequency ablation (CT-RFA) as two alternative minimally invasive treatment options of hepatocellular carcinoma (HCC). Materials and methods An activity based process model was created determining working steps and required staff of CT-RFA and CT-HDRBT. Prorated costs of equipment use (purchase, depreciation, and maintenance), costs of staff, and expenditure for disposables were identified in a sample of 20 patients (10 treated by CT-RFA and 10 by CT-HDRBT) and compared. A sensitivity and break even analysis was performed to analyse the dependence of costs on the number of patients treated annually with both methods. Results Costs of CT-RFA were nearly stable with mean overall costs of approximately 1909 €, 1847 €, 1816 € and 1801 € per patient when treating 25, 50, 100 or 200 patients annually, as the main factor influencing the costs of this procedure was the single-use RFA probe. Mean costs of CT-HDRBT decreased significantly per patient ablation with a rising number of patients treated annually, with prorated costs of 3442 €, 1962 €, 1222 € and 852 € when treating 25, 50, 100 or 200 patients, due to low costs of single-use disposables compared to high annual fix-costs which proportionally decreased per patient with a higher number of patients treated annually. A break-even between both methods was reached when treating at least 55 patients annually. Conclusion Although CT-HDRBT is a more complex procedure with more staff involved, it can be performed at lower costs per patient from the perspective of the medical provider when treating more than 55 patients compared to CT-RFA, mainly due to lower costs for disposables and a decreasing percentage of fixed costs with an increasing number of treatments.
Collapse
Affiliation(s)
- D Schnapauff
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - F Collettini
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - I Steffen
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - G Wieners
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - B Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - B Gebauer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - M H Maurer
- Department of Radiology, University of Bern, Inselspital, Freiburgstr. 10, 3010, Bern, Switzerland.
| |
Collapse
|
28
|
Spectral CT with monochromatic imaging and metal artifacts reduction software for artifacts reduction of ¹²⁵I radioactive seeds in liver brachytherapy. Jpn J Radiol 2015; 33:694-705. [PMID: 26456321 DOI: 10.1007/s11604-015-0482-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the optimal monochromatic energy for artifacts reduction from (125)I seeds as well as image improvement in the vicinity of seeds on monochromatic images with and without metal artifacts reduction software (MARS) and to compare this with traditional 120-kVp images, so as to evaluate the application value of gemstone spectral imaging for reducing artifacts from (125)I seeds in liver brachytherapy. MATERIALS AND METHODS A total of 45 tumors from 25 patients treated with (125)I seed brachytherapy in the liver were enrolled in this study. Multiphasic spectral computed tomography (CT) scanning was performed for each patient. After a delay time of 15 s of portal vein phase, a traditional 120-kVp scan was performed, focusing on several planes of (125)I seeds only. The artifact index (AI) in the vicinity of seeds and the standard deviation (SD) of the CT density of region of interest in the outside liver parenchyma were calculated. Artifact appearance was evaluated and classified on reconstructed monochromatic S and 120-kVp images. Image quality in the vicinity of seeds of three data sets were evaluated using a 1-5 scale scoring method. The Friedman rank-sum test was used to estimate the scoring results of image quality. RESULTS The greatest noise in monochromatic images was found at 40 keV (SD = 27.38, AI = 206.40). The optimal monochromatic energy was found at 75 keV, which provided almost the least image noise (SD = 10.01) and good performance in artifact reduction (AI = 102.73). Image noise and AI reduction at 75 keV was decreased by 63.44 and 50.23%, compared with at 40 keV. Near-field thick artifacts were obvious in all 45 lesions, in 120-kVp images, and 75-keV images, but basically reduced in 75 keV MARS images and artifacts completely invisible in 7 lesions. The number of diagnosable images (score ≥3) was significantly more in the 75-keV MARS group (28/45), and the 75-keV group (22/45) than in the 120-kVp group (11/45) (p < 0.0167 for both). Compared with 120-kVp images alone, 75-keV images plus 75-keV MARS images can increase tumor visibility around seeds and increase the proportion of diagnostic images to 84.4% (38/45). CONCLUSION Spectral CT producing 75-keV MARS images could substantially reduce near-field thick artifacts caused by (125)I seeds and improve image quality, even to a state of being completely free from artifacts. Spectral CT imaging (with and without MARS) can provide more accurate CT images for estimating efficacy after (125)I seed brachytherapy in the liver.
Collapse
|
29
|
Local Therapy Options for Oligometastatic Disease in the Liver. CURRENT COLORECTAL CANCER REPORTS 2015. [DOI: 10.1007/s11888-015-0279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Hass P, Mohnike K. Extending the Frontiers Beyond Thermal Ablation by Radiofrequency Ablation: SBRT, Brachytherapy, SIRT (Radioembolization). VISZERALMEDIZIN 2015; 30:245-52. [PMID: 26288597 PMCID: PMC4513802 DOI: 10.1159/000366088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic spread of the primary is still defined as the systemic stage of disease in treatment guidelines for various solid tumors. This definition is the rationale for systemic therapy. Interestingly and despite the concept of systemic involvement, surgical resection as a local treatment has proven to yield long-term outcomes in a subset of patients with limited metastatic disease, supporting the concept of oligometastatic disease. Radiofrequency ablation has yielded favorable outcomes in patients with hepatocellular carcinoma and colorectal metastases, and some studies indicate its prognostic potential in combined treatments with systemic therapies. However, some significant technical limitations apply, such as size limitation, heat sink effects, and unpredictable heat distribution to adjacent risk structures. Interventional and non-invasive radiotherapeutic techniques may overcome these limitations, expanding the options for oligometastatic patients and cytoreductive concepts. Current data suggest very high local control rates even in large tumors at any given location in the human body. The article focusses on the characteristics and possibilities of stereotactic body radiation therapy, interstitial high-dose-rate brachytherapy, and Yttrium-90 radioembolization. In this article, we discuss the differences of the technical preferences as well as their impact on indications. Current data is presented and discussed with a focus on application in oligometastatic or cytoreductive concepts in different tumor biologies.
Collapse
Affiliation(s)
- Peter Hass
- Department of Radiotherapy, Universitätsklinik Magdeburg AÖR, Magdeburg, Germany ; International School of Image-Guided Interventions/Deutsche Akademie für Mikrotherapie, Magdeburg, Germany
| | - Konrad Mohnike
- International School of Image-Guided Interventions/Deutsche Akademie für Mikrotherapie, Magdeburg, Germany ; Department of Radiology and Nuclear Medicine, Universitätsklinik Magdeburg AÖR, Magdeburg, Germany
| |
Collapse
|
31
|
CT-guided high-dose-rate brachytherapy of unresectable hepatocellular carcinoma. Strahlenther Onkol 2014; 191:405-12. [DOI: 10.1007/s00066-014-0781-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
|
32
|
Brinkhaus G, Lock JF, Malinowski M, Denecke T, Neuhaus P, Hamm B, Gebauer B, Stockmann M. CT-Guided High-Dose-Rate Brachytherapy of Liver Tumours Does Not Impair Hepatic Function and Shows High Overall Safety and Favourable Survival Rates. Ann Surg Oncol 2014; 21:4284-92. [DOI: 10.1245/s10434-014-3835-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 12/25/2022]
|
33
|
Orcutt KP, Libby B, Handsfield LL, Moyer G, Showalter TN. CT-on-rails-guided HDR brachytherapy: single-room, rapid-workflow treatment delivery with integrated image guidance. Future Oncol 2014; 10:569-75. [DOI: 10.2217/fon.13.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Brachytherapy is an important component of multidisciplinary cancer care for a variety of solid tumors. Most systems require moving the patient to multiple locations for treatment planning and delivery after the applicator is placed. A dedicated computed tomography (CT)-on-rails brachytherapy suite was installed at our institution to allow image-guided brachytherapy and a rapid scan–plan–treat workflow that is well suited to a busy quaternary care medical center. The suite consists of an OR couch with CT-compatible insert, a CT-on-rails imaging unit, a Varian Varisource iX HDR afterloader and full anesthesia capabilities. The explicit goal was to provide the ability to perform applicator placement, CT-guided treatment planning, and treatment delivery efficiently and without moving the patient. The dedicated CT-on-rails suite for high-dose-rate brachytherapy offers image-guided brachytherapy capabilities with a rapid workflow that lends itself well to efficient, high-quality care that can meet the demands of a large-volume referral center capable of high patient throughput.
Collapse
Affiliation(s)
- Kevin P Orcutt
- Department of Radiation Oncology, University of Virginia School of Medicine,1215 Lee Street, Box 800383, Charlottesville, VA 22908, USA
| | - Bruce Libby
- Department of Radiation Oncology, University of Virginia School of Medicine,1215 Lee Street, Box 800383, Charlottesville, VA 22908, USA
| | - Lydia L Handsfield
- Department of Radiation Oncology, University of Virginia School of Medicine,1215 Lee Street, Box 800383, Charlottesville, VA 22908, USA
| | - Grace Moyer
- Department of Radiation Oncology, University of Virginia School of Medicine,1215 Lee Street, Box 800383, Charlottesville, VA 22908, USA
| | - Timothy N Showalter
- Department of Radiation Oncology, University of Virginia School of Medicine,1215 Lee Street, Box 800383, Charlottesville, VA 22908, USA
| |
Collapse
|
34
|
Rusthoven CG, Schefter TE. Rationale for ablation of oligometastatic disease and the role of stereotactic body radiation therapy for hepatic metastases. Hepat Oncol 2014; 1:81-94. [PMID: 30190943 PMCID: PMC6114003 DOI: 10.2217/hep.13.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Management paradigms for metastatic solid tumors are evolving. Once regarded as uniformly incurable, today there is recognition of an intermediate oligometastatic state, where ablation of metastatic foci may improve disease control and prolong survival. In the setting of limited colorectal liver metastases, hepatic resection has resulted in favorable long-term outcomes, but is technically unsuitable for most patients. Stereotactic body radiation therapy represents an effective, noninvasive means of tumor ablation, supported by a large body of prospective evidence specific to hepatic metastases. This review examines the current rationale for ablation of oligometastatic disease, including various objectives beyond indefinite disease-free survival. The role of stereotactic body radiation therapy for ablation of hepatic metastases is then comprehensively reviewed.
Collapse
Affiliation(s)
- Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado Denver, 1665 North Aurora Court, Suite 1032, Mail Stop F706, Aurora, CO 80045, USA
| | - Tracey E Schefter
- Department of Radiation Oncology, University of Colorado Denver, 1665 North Aurora Court, Suite 1032, Mail Stop F706, Aurora, CO 80045, USA
| |
Collapse
|
35
|
High-dose-rate interstitial brachytherapy for liver metastases: first study from India. J Contemp Brachytherapy 2013; 5:70-5. [PMID: 23878550 PMCID: PMC3708149 DOI: 10.5114/jcb.2013.36175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/09/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
Purpose To study the safety and efficacy of high-dose-rate interstitial brachytherapy (HDRIBT) in patients with liver metastases (LM). Material and methods Between 2009 and 2011, 10 patients with 12 metastatic lesions in the liver were enrolled in this prospective trial. All patients had either refused surgery or found ineligible for surgery due to various factors. Under CT guidance, 16 gauze blind end stainless steel or rigid plastic brachytherapy needle was inserted in the center of lesion through the percutaneous route. Generally, a single interstitial brachytherapy (IBT) needle for lesions up to 3 cm and multiple needles for lesions more than 3 cm in diameter were inserted. Treatment was delivered with a single high-dose-rate (HDR) dose of 20 Gy prescribed to the target. The needles were removed immediately after the treatment. The endpoints of study were acute complications and local control of the disease. Results The median size of the lesion was 3.8 cm (2.7-7.0 cm). The average time for the entire IBT procedure was 65 minutes (50-105 minutes). Median follow up was 9 months (3-17 months). None of the patients had fatal complications. Minor complications like pain, nausea/vomiting, and asymptomatic pleural effusion were observed in 3, 2 and 1 patients, respectively. Local control rate at 12 months was 75%. The 1-year local progression free survival (LPFS) was 33%. Conclusion Although limited by small sample size, the results of our first study from India suggest that HDRIBT is a safe and effective non surgical option for LM.
Collapse
|
36
|
Computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT) ablation of metastases adjacent to the liver hilum. Eur J Radiol 2013; 82:e509-14. [PMID: 23791521 DOI: 10.1016/j.ejrad.2013.04.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate technical feasibility and clinical outcome of computed tomography-guided high-dose-rate-brachytherapy (CT-HDRBT) ablation of metastases adjacent to the liver hilum. MATERIALS AND METHODS Between November 2007 and May 2012, 32 consecutive patients with 34 metastases adjacent to the liver hilum (common bile duct or hepatic bifurcation ≤5 mm distance) were treated with CT-HDRBT. Treatment was performed by CT-guided applicator placement and high-dose-rate brachytherapy with an iridium-192 source. MRI follow-up was performed 6 weeks and every 3 months post intervention. The primary endpoint was local tumor control (LTC); secondary endpoints included time to progression (TTP) and overall survival (OS). RESULTS Patients were available for MRI evaluation for a mean follow-up time of 18.75 months (range: 3-56 months). Mean tumor diameter was 4.3 cm (range: 1.3-10.7 cm). One major complication was observed. Four (11.8%) local recurrences were observed after a local tumor control of 5, 8, 9 and 10 months, respectively. Twenty-two patients (68.75%) experienced a systemic tumor progression during the follow up period. Mean TTP was 12.9 months (range: 2-56 months). Nine patients died during the follow-up period. Median OS was 20.24 months. CONCLUSION Minimally invasive CT-HDRBT is a safe and effective option also for unresectable liver metastases adjacent to the liver hilum that would have been untreatable by thermal ablation.
Collapse
|
37
|
Collettini F, Schippers AC, Schnapauff D, Denecke T, Hamm B, Riess H, Wust P, Gebauer B. Percutaneous ablation of lymph node metastases using CT-guided high-dose-rate brachytherapy. Br J Radiol 2013; 86:20130088. [PMID: 23659925 DOI: 10.1259/bjr.20130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To assess the technical feasibility, safety and clinical outcome of CT-guided high-dose-rate brachytherapy (CT-HDRBT) for achieving local tumour control (LTC) in isolated lymph node metastases. METHODS From January 2008 to December 2011, 10 patients (six males and four females) with isolated nodal metastases were treated with CT-HDRBT. Five lymph node metastases were para-aortic, three were at the liver hilum, one at the coeliac trunk and one was a left iliac nodal metastasis. The mean lesion diameter was 36.5 mm (range 12.0-67.0 mm). Patients were followed up by either contrast-enhanced CT or MRI 6 weeks and then every 3 months after the end of treatment. The primary end point was LTC. Secondary end points included primary technical effectiveness rate, adverse events and progression-free survival. RESULTS The first follow-up examination after 6 weeks revealed complete coverage of all nodal metastases treated. There was no peri-interventional mortality or major complications. The mean follow-up period was 13.2 months (range 4-20 months). 2 out of 10 patients (20%) showed local tumour progression 9 and 10 months after ablation. 5 out of 10 patients (50%) showed systemic tumour progression. The mean progression-free interval was 9.2 months (range 2-20 months). CONCLUSION CT-HDRBT is a safe and effective technique for minimally invasive ablation of nodal metastases. ADVANCES IN KNOWLEDGE CT-HDRBT of lymph node metastases is feasible and safe. CT-HDRBT might be a viable therapeutic alternative to obtain LTC in selected patients with isolated lymph node metastases.
Collapse
Affiliation(s)
- F Collettini
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Badakhshi H, Grün A, Stromberger C, Budach V, Boehmer D. Oligometastases: the new paradigm and options for radiotherapy. A critical review. Strahlenther Onkol 2013; 189:357-62. [PMID: 23512205 DOI: 10.1007/s00066-013-0326-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/06/2013] [Indexed: 01/22/2023]
Abstract
Traditional oncology distinguishes between two separate and incommensurable states in the evolution of solid malignancies: the localized disease, which is curable; and the disseminated status, which is per se palliative. Recently, a huge body of evidence suggests a fundamental change in the understanding of cancer, indicating an intermediate state in the trajectory of solid malignancies: the oligometastatic state. The following review will critically analyse existing hypotheses and facts from the basic sciences and try to contextualize it in regard to the clinical evidence available to date. Consecutively, it will try to draw possible clinical consequences for application of radiotherapy in this specific clinical scenario.
Collapse
Affiliation(s)
- H Badakhshi
- Department for Radiation Oncology, Charité University Medicine, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | |
Collapse
|