1
|
Lau B, Wu YF, Cui S, Fu J, Jackson S, Pham D, Dubrowski P, Eswarappa S, Skinner L, Shirato H, Taguchi H, Gensheimer MF, Gee H, Chin AL, Diehn M, Loo BW, Moiseenko V, Vitzthum LK. Chest wall pain after single-fraction thoracic stereotactic ablative Radiotherapy: Dosimetric analysis from the iSABR trial. Radiother Oncol 2024; 196:110317. [PMID: 38679202 DOI: 10.1016/j.radonc.2024.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND PURPOSE Concerns over chest wall toxicity has led to debates on treating tumors adjacent to the chest wall with single-fraction stereotactic ablative radiotherapy (SABR). We performed a secondary analysis of patients treated on the prospective iSABR trial to determine the incidence and grade of chest wall pain and modeled dose-response to guide radiation planning and estimate risk. MATERIALS AND METHODS This analysis included 99 tumors in 92 patients that were treated with 25 Gy in one fraction on the iSABR trial which individualized dose by tumor size and location. Toxicity events were prospectively collected and graded based on the CTCAE version 4. Dose-response modeling was performed using a logistic model with maximum likelihood method utilized for parameter fitting. RESULTS There were 22 grade 1 or higher chest wall pain events, including five grade 2 events and zero grade 3 or higher events. The volume receiving at least 11 Gy (V11Gy) and the minimum dose to the hottest 2 cc (D2cc) were most highly correlated with toxicity. When dichotomized by an estimated incidence of ≥ 20 % toxicity, the D2cc > 17 Gy (36.6 % vs. 3.7 %, p < 0.01) and V11Gy > 28 cc (40.0 % vs. 8.1 %, p < 0.01) constraints were predictive of chest wall pain, including among a subset of patients with tumors abutting or adjacent to the chest wall. CONCLUSION For small, peripheral tumors, single-fraction SABR is associated with modest rates of low-grade chest wall pain. Proximity to the chest wall may not contraindicate single fractionation when using highly conformal, image-guided techniques with sharp dose gradients.
Collapse
Affiliation(s)
- Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yufan F Wu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sunan Cui
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Jie Fu
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Scott Jackson
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Pham
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Piotr Dubrowski
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaila Eswarappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Michael F Gensheimer
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Harriet Gee
- Department of Radiation Oncology, Westmead Hospital, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Alexander L Chin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of San Diego School of Medicine, San Diego, CA, USA
| | - Lucas K Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA.
| |
Collapse
|
2
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
3
|
Falcinelli L, Menichelli C, Casamassima F, Aristei C, Borghesi S, Ingrosso G, Draghini L, Tagliagambe A, Badellino S, di Monale e Bastia MB. Stereotactic radiotherapy for lung oligometastases. Rep Pract Oncol Radiother 2022; 27:23-31. [PMID: 35402023 PMCID: PMC8989443 DOI: 10.5603/rpor.a2022.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
30-60% of cancer patients develop lung metastases, mostly from primary tumors in the colon-rectum, lung, head and neck area, breast and kidney. Nowadays, stereotactic radiotherapy (SRT ) is considered the ideal modality for treating pulmonary metastases. When lung metastases are suspected, complete disease staging includes a total body computed tomography (CT ) and/or positron emission tomography-computed tomography (PET -CT ) scan. PET -CT has higher specificity and sensitivity than a CT scan when investigating mediastinal lymph nodes, diagnosing a solitary lung lesion and detecting distant metastases. For treatment planning, a multi-detector planning CT scan of the entire chest is usually performed, with or without intravenous contrast media or esophageal lumen opacification, especially when central lesions have to be irradiated. Respiratory management is recommended in lung SRT, taking the breath cycle into account in planning and delivery. For contouring, co-registration and/or matching planning CT and diagnostic images (as provided by contrast enhanced CT or PET-CT ) are useful, particularly for central tumors. Doses and fractionation schedules are heterogeneous, ranging from 33 to 60 Gy in 3-6 fractions. Independently of fractionation schedule, a BED10 > 100 Gy is recommended for high local control rates. Single fraction SRT (ranges 15-30 Gy) is occasionally administered, particularly for small lesions. SRT provides tumor control rates of up to 91% at 3 years, with limited toxicities. The present overview focuses on technical and clinical aspects related to treatment planning, dose constraints, outcome and toxicity of SRT for lung metastases.
Collapse
Affiliation(s)
- Lorenzo Falcinelli
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | | | | | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | | | | | - Serena Badellino
- Radiation Oncology Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | | |
Collapse
|
4
|
Borghesi S, Aristei C, Marampon F. Doses, fractionations, constraints for stereotactic radiotherapy. Rep Pract Oncol Radiother 2022; 27:10-14. [PMID: 35402033 PMCID: PMC8989440 DOI: 10.5603/rpor.a2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
This paper describes how to select the most appropriate stereotactic radiotherapy (SRT ) dose and fractionation scheme according to lesion size and site, organs at risk (OARs) proximity and the biological effective dose. In single-dose SRT, 15-34 Gy are generally used while in fractionated SRT 30 and 75 Gy in 2-5 fractions are administered. The ICRU Report No. 91, which is specifically dedicated to SRT treatments, provided indications for dose prescription (with its definition and essential steps), dose delivery and optimal coverage which was defined as the best planning target volume coverage that can be obtained in the irradiated district. Calculation algorithms and OAR s dose constraints are provided as well as treatment planning system characteristics, suggested beam energy and multileaf collimator leaf size. Finally, parameters for irradiation geometry and plan quality are also reported.
Collapse
Affiliation(s)
- Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Italy
| |
Collapse
|
5
|
Kapitanova I, Biswas S, Divekar S, Kemmerer EJ, Rostock RA, Forster KM, Grimm RJ, Scofield CJ, Grimm J, Emami B, Mahadevan A. Estimating the tolerance of brachial plexus to hypofractionated stereotactic body radiotherapy: a modelling-based approach from clinical experience. Radiat Oncol 2021; 16:98. [PMID: 34098991 PMCID: PMC8186142 DOI: 10.1186/s13014-021-01822-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/19/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Brachial plexopathy is a potentially serious complication from stereotactic body radiation therapy (SBRT) that has not been widely studied. Therefore, we compared datasets from two different institutions and generated a brachial plexus dose-response model, to quantify what dose constraints would be needed to minimize the effect on normal tissue while still enabling potent therapy for the tumor. METHODS Two published SBRT datasets were pooled and modeled from patients at Indiana University and the Richard L. Roudebush Veterans Administration Medical Center from 1998 to 2007, as well as the Karolinska Institute from 2008 to 2013. All patients in both studies were treated with SBRT for apically located lung tumors localized superior to the aortic arch. Toxicities were graded according to Common Terminology Criteria for Adverse Events, and a probit dose response model was created with maximum likelihood parameter fitting. RESULTS This analysis includes a total of 89 brachial plexus maximum point dose (Dmax) values from both institutions. Among the 14 patients who developed brachial plexopathy, the most common complications were grade 2, comprising 7 patients. The median follow-up was 30 months (range 6.1-72.2) in the Karolinska dataset, and the Indiana dataset had a median of 13 months (range 1-71). Both studies had a median range of 3 fractions, but in the Indiana dataset, 9 patients were treated in 4 fractions, and the paper did not differentiate between the two, so our analysis is considered to be in 3-4 fractions, one of the main limitations. The probit model showed that the risk of brachial plexopathy with Dmax of 26 Gy in 3-4 fractions is 10%, and 50% with Dmax of 70 Gy in 3-4 fractions. CONCLUSIONS This analysis is only a preliminary result because more details are needed as well as additional comprehensive datasets from a much broader cross-section of clinical practices. When more institutions join the QUANTEC and HyTEC methodology of reporting sufficient details to enable data pooling, our field will finally reach an improved understanding of human dose tolerance.
Collapse
Affiliation(s)
- Irina Kapitanova
- Department of Psychiatry, Mount Sinai St. Luke's Hospital, New York, NY, USA
| | - Sharmi Biswas
- Department of Pediatric Nephrology, Weill Cornell Medicine, New York, NY, USA
| | - Sabrina Divekar
- Sackler School of Medicine, Tel Aviv University, New York, NY, USA
| | - Eric J Kemmerer
- Department of Radiation Oncology, Geisinger Cancer Institute, 100 N Academy Ave, Danville, PA, 17822, USA
| | - Robert A Rostock
- Department of Radiation Oncology, Geisinger Cancer Institute, 100 N Academy Ave, Danville, PA, 17822, USA
| | - Kenneth M Forster
- Department of Radiation Oncology, Geisinger Cancer Institute, 100 N Academy Ave, Danville, PA, 17822, USA
| | - Rachel J Grimm
- Department of Radiation Oncology, Thomas Jefferson Hospital, Philadelphia, PA, USA
| | - Carla J Scofield
- Department of Radiation Oncology, Geisinger Cancer Institute, 100 N Academy Ave, Danville, PA, 17822, USA
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, 100 N Academy Ave, Danville, PA, 17822, USA.
- Department of Medical Imaging and Radiation Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Bahman Emami
- Department of Radiation Oncology, Loyola University Medical Center, Chicago, IL, USA
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, 100 N Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|
6
|
Mahadevan A, Emami B, Grimm J, Kleinberg LR, Redmond KJ, Welsh JS, Rostock R, Kemmerer E, Forster KM, Stanford J, Shah S, Asbell SO, LaCouture TA, Scofield C, Butterwick I, Xue J, Muacevic A, Adler JR. Potential Clinical Significance of Overall Targeting Accuracy and Motion Management in the Treatment of Tumors That Move With Respiration: Lessons Learnt From a Quarter Century of Stereotactic Body Radiotherapy From Dose Response Models. Front Oncol 2021; 10:591430. [PMID: 33634020 PMCID: PMC7900559 DOI: 10.3389/fonc.2020.591430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To determine the long-term normal tissue complication probability with stereotactic body radiation therapy (SBRT) treatments for targets that move with respiration and its relation with the type of respiratory motion management (tracking vs. compression or gating). METHODS A PubMed search was performed for identifying literature regarding dose, volume, fractionation, and toxicity (grade 3 or higher) for SBRT treatments for tumors which move with respiration. From the identified papers logistic or probit dose-response models were fitted to the data using the maximum-likelihood technique and confidence intervals were based on the profile-likelihood method in the dose-volume histogram (DVH) Evaluator. RESULTS Pooled logistic and probit models for grade 3 or higher toxicity for aorta, chest wall, duodenum, and small bowel suggest a significant difference when live motion tracking was used for targeting tumors with move with respiration which was on the average 10 times lower, in the high dose range. CONCLUSION Live respiratory motion management appears to have a better toxicity outcome when treating targets which move with respiration with very steep peripheral dose gradients. This analysis is however limited by sparsity of rigorous data due to poor reporting in the literature.
Collapse
Affiliation(s)
- Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Bahman Emami
- Department of Radiation Oncology, Loyola University Medical Center, Chicago, IL, United States
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James S. Welsh
- Department of Radiation Oncology, Loyola University Medical Center, Chicago, IL, United States
| | - Robert Rostock
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Eric Kemmerer
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Kenneth M. Forster
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Jason Stanford
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Sunjay Shah
- Department of Radiation Oncology, Helen F. Graham Cancer Center, Christiana Care Health System, Newark, DE, United States
| | - Sucha O. Asbell
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tamara A. LaCouture
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Carla Scofield
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Ian Butterwick
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, PA, United States
| | - Jinyu Xue
- Department of Radiation Oncology, New York University, New York City, NY, United States
| | | | - John R. Adler
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Milano MT, Mihai A, Kang J, Singh DP, Verma V, Qiu H, Chen Y, Kong FM(S. Stereotactic body radiotherapy in patients with multiple lung tumors: a focus on lung dosimetric constraints. Expert Rev Anticancer Ther 2019; 19:959-969. [DOI: 10.1080/14737140.2019.1686980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael T. Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alina Mihai
- Department of Radiation Oncology, Beacon Hospital, Beacon Court, Dublin, Ireland
| | - John Kang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Deepinder P Singh
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
8
|
Chipko C, Ojwang J, Gharai LR, Deng X, Mukhopadhyay N, Weiss E. Characterization of Chest Wall Toxicity During Long-term Follow Up After Thoracic Stereotactic Body Radiation Therapy. Pract Radiat Oncol 2019; 9:e338-e346. [PMID: 30731275 DOI: 10.1016/j.prro.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/28/2018] [Accepted: 01/27/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Chest wall (CW) pain and rib fractures are frequently diagnosed after stereotactic body radiation therapy (SBRT) for malignant lung tumors. We hypothesize that multiple risk factors, including bone mineral density (BMD), are associated with CW toxicity, and that CW pain and rib fractures often evolve into chronic clinical problems. METHODS AND MATERIALS A total of 118 lung tumors treated with SBRT in 100 patients with a minimum follow-up period of 2 years were retrospectively analyzed. The incidence, clinical course, and related demographic, clinical, and dosimetric factors of CW pain and rib fractures were analyzed. In addition, BMD was assessed, and the radiographic appearance of radiation-induced rib fractures and their healing process were characterized. RESULTS The median follow-up was 49 months (range, 24-106 months). CW pain developed in 33 of 118 treatments (28%) after, on average, 12.5 months (range, 0-50 months), and was more common in women (P = .04). The mean duration of CW pain was 25 months (range, 2-63 months), and 36% of patients never had resolution of CW pain. A total of 34 of 118 treatments (29%) resulted in rib fractures at a mean time of 22 months (range, 3-46 months); rib fractures were more common in women, African Americans, upper/middle lobe tumors, and patients with lower BMD (P < .05). The mean duration of rib fractures was 25 months (range, 5-41 months), and only 16 rib fractures (47%) healed. Shorter CW planning target volume distance resulted in a higher risk for both rib fractures and CW pain (P = .01). Sixty-seven percent of fractures developed surrounding soft tissue fibrosis, and 62% (21 of 34 fractures) heterotopic ossification. Diabetes, body mass index, and steroid use were not associated with CW pain or rib fracture. CONCLUSIONS Several factors were associated with a higher risk of SBRT-related CW toxicity. Optimal CW sparing (eg, volumetric modulated arc therapy, lower dose per fraction) should be considered in this patient group without compromising tumor control. SBRT-induced rib fractures commonly heal abnormally and result in potential chronic CW pain.
Collapse
Affiliation(s)
- Christopher Chipko
- Department of Radiation Oncology, Virginia Commonwealth University Health Systems, Richmond, Virginia.
| | - Julius Ojwang
- Department of Radiation Oncology, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Leila Rezai Gharai
- Department of Diagnostic Radiology, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Xiaoyan Deng
- Department of Biostatistics, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Nitai Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University Health Systems, Richmond, Virginia
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University Health Systems, Richmond, Virginia
| |
Collapse
|
9
|
Xue J, Emami B, Grimm J, Kubicek GJ, Asbell SO, Lanciano R, Welsh JS, Peng L, Quon H, Laub W, Gui C, Spoleti N, Das IJ, Goldman HW, Redmond KJ, Kleinberg LR, Brady LW. Clinical evidence for dose tolerance of the central nervous system in hypofractionated radiotherapy. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13566-018-0367-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Ma JT, Liu Y, Sun L, Milano MT, Zhang SL, Huang LT, Jing W, Zhao JZ, Han CB, Kong FMS. Chest Wall Toxicity After Stereotactic Body Radiation Therapy: A Pooled Analysis of 57 Studies. Int J Radiat Oncol Biol Phys 2018; 103:843-850. [PMID: 30496884 DOI: 10.1016/j.ijrobp.2018.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE The significance of clinical and dosimetric risk factors in relation to chest wall (CW) injury after stereotactic body radiation therapy (SBRT) for lung tumors were analyzed through a meta-analysis of 57 published studies. METHODS AND MATERIALS Studies related to CW injury after lung SBRT were obtained through searching PubMed, Embase, and Cochrane electronic databases. An estimate of the incidence of CW pain (CWP) or rib fracture (RF) was derived using a Bayesian hierarchical model. Linear regression analysis was performed to assess the relationship between CWP or RF and clinical or dosimetric factors. RESULTS A total of 57 studies incorporating 5985 cases reporting clinical data on CW injury after SBRT were analyzed. The overall CWP and RF rates by Bayesian hierarchical modeling were 11.0% (95% confidence interval [CI], 8.0-14.4) and 6.3% (95% CI, 3.7-9.7), respectively. The rates of grade ≥2 and grade ≥3 CWP were 6.2% (95% CI, 3.88-8.93) and 1.2% (95% CI, 0.48-2.12), respectively. Sex was significantly correlated with RF (P < .001), with female patients having a greater risk of RF than male patients (hazard ratio = 0.59; 95% CI, 0.46-0.76). No correlation was found between RF, grade ≥2 CWP, or grade ≥3 CWP, with the clinical and dosimetric factors of age, tumor size, origin of lung tumor, gross tumor volume, planning target volume, fractional dose, number of fractions, or biologically effective dose. However, tumor to CW distance (<16-25 mm), body mass index, maximum dose (Dmax) of 0.5 to 5 cm3, and the volume of CW or ribs receiving >30 Gy were significantly associated with CWP and RF. CONCLUSIONS The overall rates of RF and grade ≥2 CWP after thoracic SBRT are relatively low. Sex, tumor to CW distance, maximum dose, and the radiation exposure of the CW or ribs are factors associated with the risk of CW toxicity after SBRT.
Collapse
Affiliation(s)
- Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester School of Medicine, Rochester, New York
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian-Zhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Feng-Ming Spring Kong
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
11
|
Jereczek-Fossa BA, Muto M, Durante S, Ferrari A, Piperno G, Fodor C, Comi S, Ricotti R, Garibaldi C, Dicuonzo S, Mazza S, Golino F, Spaggiari L, De Marinis F, Orecchia R, Ciardo D, Fossati P. Stereotactic body radiation therapy for mediastinal lymph node metastases: how do we fly in a 'no-fly zone'? Acta Oncol 2018; 57:1532-1539. [PMID: 30280618 DOI: 10.1080/0284186x.2018.1486040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the treatment-induced toxicity (as primary endpoint) and the efficacy (as secondary endpoint) of stereotactic body radiation therapy (SBRT) in the treatment of mediastinal lymph nodes (LNs) in the so-called no-fly zone (NFZ) in cancers with various histology. MATERIAL AND METHODS Forty-two patients were retrospectively analyzed. Institutional dose/volume constraints for organs at risk (OARs) derived by published data were strictly respected. The correlation between treatment-related variables and toxicity was investigated by logistic regression, Chi-squared test or Fisher's exact test. Overall survival (OS), cause-specific survival (CSS), progression-free survival (PFS) and local control (LC) were collected from the follow-up reports. The impact of potential predictive factors on LC, PFS and OS were estimated by Cox proportional-hazard regression. RESULTS Median follow-up time was 16 months (range 1-41). Four patients had esophageal G1 toxicity. Ten and six patients had G1 and G2 pulmonary toxicity, respectively. Treatment site and irradiation technique were significantly correlated with G ≥ 2 and G ≥ 1 toxicity, respectively. OS probability at 19 months was 88.3% and corresponded to CSS. LC probability at 16 months was 66.3% (median LC duration: 22 months, range 1-41). Fifteen patients (35.7%) were disease-free at 25 months (median time, range 1-41). The biologically effective dose (BED) and the target dose coverage indexes were significantly correlated with LC. CONCLUSIONS SBRT can be considered as a safe treatment option for selected patients with oligo-metastases/recurrences in the NFZ, if strict dose/volume constraints are applied.
Collapse
Affiliation(s)
- Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Matteo Muto
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
- Department of Clinical Medicine and Surgery, Federico II University School of Medicine, Naples, Italy
| | - Stefano Durante
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Annamaria Ferrari
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Gaia Piperno
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Cristiana Fodor
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Stefania Comi
- Unit of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Rosalinda Ricotti
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | | | - Samantha Dicuonzo
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Stefano Mazza
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Federica Golino
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Division of Thoracic Surgery, European Institute of Oncology, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy
| | - Roberto Orecchia
- Scientific Direction, European Institute of Oncology, Milan, Italy
| | - Delia Ciardo
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Piero Fossati
- Division of Radiation Oncology, European Institute of Oncology, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
- Clinical Division, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| |
Collapse
|
12
|
Chao HH, Valdes G, Luna JM, Heskel M, Berman AT, Solberg TD, Simone CB. Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non-small-cell lung cancer treated with stereotactic body radiation therapy. J Appl Clin Med Phys 2018; 19:539-546. [PMID: 29992732 PMCID: PMC6123157 DOI: 10.1002/acm2.12415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/24/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Chest wall toxicity is observed after stereotactic body radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine learning algorithms to identify toxicity predictors to develop dose–volume constraints. Materials and methods Twenty‐five patient, tumor, and dosimetric features were recorded for 197 consecutive patients with Stage I NSCLC treated with SBRT, 11 of whom (5.6%) developed CTCAEv4 grade ≥2 chest wall pain. Decision tree modeling was used to determine chest wall syndrome (CWS) thresholds for individual features. Significant features were determined using independent multivariate methods. These methods incorporate out‐of‐bag estimation using Random forests (RF) and bootstrapping (100 iterations) using decision trees. Results Univariate analysis identified rib dose to 1 cc < 4000 cGy (P = 0.01), chest wall dose to 30 cc < 1900 cGy (P = 0.035), rib Dmax < 5100 cGy (P = 0.05) and lung dose to 1000 cc < 70 cGy (P = 0.039) to be statistically significant thresholds for avoiding CWS. Subsequent multivariate analysis confirmed the importance of rib dose to 1 cc, chest wall dose to 30 cc, and rib Dmax. Using learning‐curve experiments, the dataset proved to be self‐consistent and provides a realistic model for CWS analysis. Conclusions Using machine learning algorithms in this first of its kind study, we identify robust features and cutoffs predictive for the rare clinical event of CWS. Additional data in planned subsequent multicenter studies will help increase the accuracy of multivariate analysis.
Collapse
Affiliation(s)
- Hann-Hsiang Chao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gilmer Valdes
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiation Oncology, University of California - San Francisco, San Francisco, CA, USA
| | - Jose M Luna
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Heskel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy D Solberg
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiation Oncology, University of California - San Francisco, San Francisco, CA, USA
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Hoffmann L, Knap MM, Khalil AA, Lutz CM, Sloth Møller D. The NARLAL2 dose escalation trial: dosimetric implications of inter-fractional changes in organs at risk. Acta Oncol 2018; 57:473-479. [PMID: 28830293 DOI: 10.1080/0284186x.2017.1366049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Phase II trials suggested that survival rates for locally advanced lung cancer could be increased by radiotherapy dose escalation. However, results of the phase III RTOG 0617 trial illustrated an imminent risk of treatment-related death. This could be thwarted with strict constraints to organs at risk (OARs) and control of the delivered dose. This study investigates the impact of anatomical changes during radiotherapy on escalated dose distributions used in the Danish NARLAL2 dose escalation trial. MATERIAL AND METHODS The phase III NARLAL2 trial randomizes patients between a standard and an escalated treatment plan. In the escalated arm, mean doses up to 95 Gy/33 fractions (tumour) and 74 Gy/33 fractions (lymph nodes) are delivered to the most 18fluorodeoxyglucose-positron emission tomography (18FDG PET) active regions. The dose distributions are limited by strict constraints to OARs. For a group of 27 patients, a surveillance scan (sCT) was acquired at fraction 11. The original-escalated treatment plans were recalculated on the sCTs and the impact of inter-fractional changes evaluated. RESULTS A total of 13 patients (48%) had overdosage of least one OAR. Constraints for the oesophagus, trachea and aorta were violated in 26% of the patients. No overdosage was seen for heart or bronchi. For the connective tissue (all tissue in the mediastinum not identified as OAR or tumour) overdosage was seen in 41% of the patients and for the chest wall in 30% of the patients. The main reason for overdosage was tumour shrinkage. CONCLUSIONS Anatomical changes during radiotherapy caused one or more OAR constraint violations for approximately half of the patient cohort. The main cause was tumour shrinkage. For lung cancer radiotherapy dose escalation trials, we recommend incorporation of adaptive radiotherapy strategies.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Azza Ahmed Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | | |
Collapse
|
14
|
Milano MT, Kong FMS, Movsas B. Stereotactic body radiotherapy as salvage treatment for recurrence of non-small cell lung cancer after prior surgery or radiotherapy. Transl Lung Cancer Res 2018; 8:78-87. [PMID: 30788237 DOI: 10.21037/tlcr.2018.08.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatment options for thoracic recurrences of non-small cell lung cancer (NSCLC) are limited. Stereotactic body radiation therapy (SBRT) is an emerging, potentially effective technology to manage recurrent NSCLC, although with limited prospective studies. This work reviews the outcomes of patients undergoing salvage SBRT for pulmonary recurrences after prior resection or prior radiotherapy for NSCLC. Following salvage SBRT, after prior external beam radiation (SBRT or conventionally fractionated), the 2-year overall survival (OS) ranged from 37% to 79% in 11 of the studies (397 patients) reviewed here, while the 2-year local control (LC) ranged from 37% to 90% in 6 studies that reported that outcome. Toxicity risks are acceptable albeit with appreciable risks of severe to potentially fatal toxicity, necessitating the need to weigh risks vs. benefits in the re-irradiation setting. There were fewer studies on the use of SBRT after prior resection. Following salvage SBRT, after prior resection, the 2-year OS ranged from 56% to 68% in 4 studies (131 patients) reviewed here, while the 2-year LC ranged from 83% to 100% in 3 of these studies. SBRT in the salvage setting after prior resection appeared to be well-tolerated, with toxicity risks comparable to historical patients treated with SBRT alone (i.e., SBRT without prior resection, which is not reviewed here). The data are limited due to the retrospective nature of published studies (all but 4 with <40 patients), with various clinical scenarios (i.e., original NSCLC stage, prior treatment, location of target amenable to salvage SBRT) and a range of SBRT dosing and techniques. More studies are needed to better understand the tumor control, survival and toxicity of SBRT for salvage therapy of NSCLC patients, as well as the potentially prognostic factors that could affect these outcomes.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Feng-Ming Spring Kong
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute at Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
15
|
D'Andrea M, Strolin S, Ungania S, Cacciatore A, Bruzzaniti V, Marconi R, Benassi M, Strigari L. Radiobiological Optimization in Lung Stereotactic Body Radiation Therapy: Are We Ready to Apply Radiobiological Models? Front Oncol 2018; 7:321. [PMID: 29359121 PMCID: PMC5766682 DOI: 10.3389/fonc.2017.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Lung tumors are often associated with a poor prognosis although different schedules and treatment modalities have been extensively tested in the clinical practice. The complexity of this disease and the use of combined therapeutic approaches have been investigated and the use of high dose-rates is emerging as effective strategy. Technological improvements of clinical linear accelerators allow combining high dose-rate and a more conformal dose delivery with accurate imaging modalities pre- and during therapy. This paper aims at reporting the state of the art and future direction in the use of radiobiological models and radiobiological-based optimizations in the clinical practice for the treatment of lung cancer. To address this issue, a search was carried out on PubMed database to identify potential papers reporting tumor control probability and normal tissue complication probability for lung tumors. Full articles were retrieved when the abstract was considered relevant, and only papers published in English language were considered. The bibliographies of retrieved papers were also searched and relevant articles included. At the state of the art, dose–response relationships have been reported in literature for local tumor control and survival in stage III non-small cell lung cancer. Due to the lack of published radiobiological models for SBRT, several authors used dose constraints and models derived for conventional fractionation schemes. Recently, several radiobiological models and parameters for SBRT have been published and could be used in prospective trials although external validations are recommended to improve the robustness of model predictive capability. Moreover, radiobiological-based functions have been used within treatment planning systems for plan optimization but the advantages of using this strategy in the clinical practice are still under discussion. Future research should be directed toward combined regimens, in order to potentially improve both local tumor control and survival. Indeed, accurate knowledge of the relevant parameters describing tumor biology and normal tissue response is mandatory to correctly address this issue. In this context, the role of medical physicists and the AAPM in the development of radiobiological models is crucial for the progress of developing specific tool for radiobiological-based optimization treatment planning.
Collapse
Affiliation(s)
- Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Strolin
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Ungania
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Cacciatore
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Vicente Bruzzaniti
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Raffaella Marconi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Benassi
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
16
|
Schernberg A, Hennequin C. [Normal tissue tolerance to external beam radiation therapy: Bone marrow and cortical bone structures]. Cancer Radiother 2017; 21:619-625. [PMID: 28774489 DOI: 10.1016/j.canrad.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/16/2017] [Indexed: 12/25/2022]
Abstract
In patients undergoing external radiation therapy, bone marrow and cortical bone structures are all often neglected as organs at risk. Still, from increased febrile neutropenia risk in patients undergoing chemoradiation for a pelvic tumour to increased risk of vertebral fracture when undergoing hypofractioned stereotactic radiotherapy of a spinal metastasis, adverse effects are frequent and sometimes serious. This literature review first defines the rules for contouring these structures, then the dose constraints currently recommended. This article focuses first on conventional irradiation or intensity modulation radiotherapy considering classical fractionation. Secondly, it focuses on stereotactic radiotherapy. The considered organs will be haematopoietic structures, and bone cortical structures. Current recommendations are summarised in a table.
Collapse
Affiliation(s)
- A Schernberg
- Service de radiothérapie, hôpital Tenon, hôpitaux universitaires Est parisien, 4, rue de la Chine, 75020 Paris, France.
| | - C Hennequin
- Service de cancérologie-radiothérapie, hôpital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris, France
| |
Collapse
|
17
|
De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124:1-10. [PMID: 28666551 DOI: 10.1016/j.radonc.2017.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To update literature-based recommendations for techniques used in high-precision thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. METHODS A literature search was performed to identify published articles that were considered clinically relevant and practical to use. Recommendations were categorised under the following headings: patient positioning and immobilisation, Tumour and nodal changes, CT and FDG-PET imaging, target volumes definition, radiotherapy treatment planning and treatment delivery. An adapted grading of evidence from the Infectious Disease Society of America, and for models the TRIPOD criteria, were used. RESULTS Recommendations were identified for each of the above categories. CONCLUSION Recommendations for the clinical implementation of high-precision conformal radiotherapy and stereotactic body radiotherapy for lung tumours were identified from the literature. Techniques that were considered investigational at present are highlighted.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences University of Manchester, Christie NHS Foundation Trust, UK
| | - Ditte Moeller
- Aarhus University Hospital, Department of Oncology, Denmark
| | - Ursula Nestle
- Freiburg University Medical Center (DKTK partner site), Department of Radiation Oncology, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Coen W Hurkmans
- Catharina Hospital, Department of Radiation Oncology, Eindhoven, The Netherlands
| | | | - José Belderbos
- Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | | | - Suresh Senan
- VU University Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Park Y, Kim HJ, Chang AR. Predictors of chest wall toxicity after stereotactic ablative radiotherapy using real-time tumor tracking for lung tumors. Radiat Oncol 2017; 12:66. [PMID: 28381302 PMCID: PMC5382431 DOI: 10.1186/s13014-017-0803-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background To evaluate the incidence of chest wall toxicity after lung stereotactic ablative radiotherapy (SABR) and identify risk factors for the development of rib fracture. Methods Thirty-nine patients with 49 lesions underwent SABR for primary or metastatic lung tumors using Cyberknife® with tumor tracking systems. Patient characteristics, treatment factors and variables obtained from dose-volume histograms (DVHs) were analyzed to find the association with chest wall toxicity. Four-dimensional (4D) dose calculations were done to investigate the effect of respiratory motion on dose to the ribs. Results After follow-up of median 26.7 months (range: 8.4 – 80.0), 8 patients (20.5%) experienced rib fractures and among these patients, three (37.5%) had chest wall pain at 2–3 months after SABR. Median time to rib fracture was 13.4 months (range: 8.0 – 38.5) and the 2-year actuarial risk of rib fracture was 12.2%. Dose to the 4.6 cc of the ribs (D4.6cc) and rib volume received 160 Gy or more (V160) were significant predictor for rib fracture. No significant differences between three-dimensional (3D) and 4D dose calculations were found. Conclusions Parameters from DVH are useful in predicting the risk of chest wall toxicity after SABR for lung tumors. Efforts should be made to reduce the risk of the rib fracture after lung SABR.
Collapse
Affiliation(s)
- Younghee Park
- Department of Radiation Oncology/CyberKnife Center, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 140-743, Republic of Korea
| | - Hee Jung Kim
- Department of Radiation Oncology/CyberKnife Center, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 140-743, Republic of Korea
| | - Ah Ram Chang
- Department of Radiation Oncology/CyberKnife Center, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 140-743, Republic of Korea.
| |
Collapse
|