1
|
Markoska R, Stojković R, Filipović M, Jurin M, Špada V, Kavre Piltaver I, Pavelić K, Marković D, Kraljević Pavelić S. Study of zeolite clinoptilolite d-glucose adsorption properties in vitro and in vivo. Chem Biol Interact 2023; 382:110641. [PMID: 37482210 DOI: 10.1016/j.cbi.2023.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Beneficial effects of a natural zeolite clinoptilolite in vivo on mammals, including humans, have been empirically observed and documented in literature. The positive biological activities have been associated to its detoxifying and antioxidative properties, and its immunostimulative and adsorption properties. Herein, we present the in vitro and in vivo study of clinoptilolite zeolite materials adsorption properties for d-glucose. In particular, we present data on the interaction of d-glucose on the tested zeolites' surface obtained by scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDS) and quantification by ultra high-performance liquid chromatography (UHPLC). We also present results on the reduction of blood glucose levels in mice pre-treated with clinoptilolite in vivo upon feeding with d-glucose. In vivo results were in line with the in vitro adsorption and/or interaction properties of tested zeolite materials for d-glucose and were quantified by UHPLC as well (11.34% for TMAZ; 10.82% for PMA and 8.76% for PMAO2). In vivo experiments in mice showed that PMA zeolite reduces blood glucose levels upon 15 min for 13% (at p < 0.05) up to 19.11% upon 120 min (without statistical significance) in clinoptilolite pre-treated mice fed by addition of d-glucose. Due to lack of explicit mechanistic knowledge on zeolite clinoptilolite interactions or adsorption with sugars in vitro and in vivo, presented study provides novel insights into these aspects for researchers in the field. The presented data merit further investigations as the material clearly shows a potential in management of hyperglycemia, such as for example in obese people, people with diabetes and people with metabolic syndrome where it could help regulate blood glucose levels.
Collapse
Affiliation(s)
- Rumenka Markoska
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Ranko Stojković
- Rudjer Boskovic Institute, Division of Molecular Medicine, Laboratory for Chiral Technologies, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marko Filipović
- Juraj Dobrila University of Pula, Zagrebacka 30, 52100 Pula, Croatia
| | - Mladenka Jurin
- Rudjer Boskovic Institute, Division of Organic Chemistry and Biochemistry, Laboratory for Chiral Technologies, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Vedrana Špada
- Istarsko Veleučilište - Università Istriana di scienze applicate, Riva 6, 52100 Pula, Croatia
| | - Ivna Kavre Piltaver
- University of Rijeka, Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Krešimir Pavelić
- Juraj Dobrila University of Pula, Zagrebacka 30, 52100 Pula, Croatia
| | - Dean Marković
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka, Faculty of Health Studies, Ulica Viktora Cara Emina 5, 51 000 Rijeka, Croatia.
| |
Collapse
|
2
|
Zeng M, van Pijkeren JP, Pan X. Gluco-oligosaccharides as potential prebiotics: Synthesis, purification, structural characterization, and evaluation of prebiotic effect. Compr Rev Food Sci Food Saf 2023; 22:2611-2651. [PMID: 37073416 DOI: 10.1111/1541-4337.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Prebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria. However, the prebiotic effects (non-digestibility, selective fermentability, and potential health effects) of GlcOS are highly variable due to their complex structure originating from different synthesis processes. The relationship between GlcOS structure and their potential prebiotic effects has not been fully understood. To date, a comprehensive summary of the knowledge of GlcOS is still missing. Therefore, this review provides an overview of GlcOS as potential prebiotics, covering their synthesis, purification, structural characterization, and prebiotic effect evaluation. First, GlcOS with different structures are introduced. Then, the enzymatic and chemical processes for GlcOS synthesis are critically reviewed, including reaction mechanisms, substrates, catalysts, the structures of resultant GlcOS, and the synthetic performance (yield and selectivity). Industrial separation techniques for GlcOS purification and structural characterization methods are discussed in detail. Finally, in vitro and in vivo studies to evaluate the non-digestibility, selective fermentability, and associated health effects of different GlcOS are extensively reviewed with a special focus on the GlcOS structure-function relationship.
Collapse
Affiliation(s)
- Meijun Zeng
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Xue N, Svensson B, Bai Y. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages - A review. Carbohydr Polym 2022; 275:118705. [PMID: 34742430 DOI: 10.1016/j.carbpol.2021.118705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
A variety of glucosaccharides composed of glucosyl residues can be classified into α- and β-type and have wide application in food and medicine areas. Among these glucosaccharides, β-type, such as cellulose and α-type, such as starch and starch derivatives, both contain 1 → 4 linkages and are well studied. Notably, in past decades also α1 → 6 glucosaccharides obtained increasing attention for unique physiochemical and biological properties. Especially in recent years, α1 → 6 glucosaccharides of different molecular weight distribution have been created and proved to be functional. However, compared to β- type and α1 → 4 glucosaccharides, only few articles provide a systematic overview of α1 → 6 glucosaccharides. This motivated, the present first comprehensive review on structure, function and synthesis of these α1 → 6 glucosaccharides, aiming both at improving understanding of traditional α1 → 6 glucosaccharides, such as isomaltose, isomaltooligosaccharides and dextrans, and to draw the attention to newly explored α1 → 6 glucosaccharides and their derivatives, such as cycloisomaltooligosaccharides, isomaltomegalosaccharides, and isomalto/malto-polysaccharides.
Collapse
Affiliation(s)
- Naixiang Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
5
|
DeJaco RF, Dorneles de Mello M, Nguyen HGT, Jeon MY, Zee RD, Tsapatsis M, Siepmann JI. Vapor- and Liquid-Phase Adsorption of Alcohol and Water in Silicalite-1 Synthesized in Fluoride Media. AIChE J 2019; 66. [PMID: 33281192 DOI: 10.1002/aic.16868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this work, batch-adsorption experiments and molecular simulations are employed to probe the adsorption of binary mixtures containing ethanol or a linear alkane-1,n-diol solvated in water or ethanol onto silicate-1. Since the batch-adsorption experiments require an additional relationship to determine the amount of solute (and solvent adsorbed, as only the bulk liquid reservoir can be probed directly, molecular simulations are used to provide a relationship between solute and solvent adsorption for input to the experimental bulk measurements. The combination of bulk experimental measurements and simulated solute-solvent relationship yields solvent and solute loadings that are self-consistent with simulation alone, and allow for an assessment of the various assumptions made in literature. At low solution concentrations, the solute loading calculated is independent of the assumption made. At high concentrations, a negligent choice of assumption can lead to systematic overestimation or underestimation of calculated solute loading.
Collapse
Affiliation(s)
- Robert F. DeJaco
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN
- Department of Chemistry and Chemical Theory Center University of Minnesota Minneapolis MN
| | | | - Huong Giang T. Nguyen
- Facility for Adsorbent Characterization and Testing, Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg MD
| | - Mi Young Jeon
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN
| | - Roger D. Zee
- Facility for Adsorbent Characterization and Testing, Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg MD
| | - Michael Tsapatsis
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN
- Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore MD
- Department of Research and Exploratory Development, Applied Physics Laboratory Johns Hopkins University Laurel MD
| | - Joern Ilja Siepmann
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis MN
- Department of Chemistry and Chemical Theory Center University of Minnesota Minneapolis MN
| |
Collapse
|
6
|
Abi A, Hartig D, Vorländer K, Wang A, Scholl S, Jördening HJ. Continuous enzymatic production and adsorption of laminaribiose in packed bed reactors. Eng Life Sci 2018; 19:4-12. [PMID: 32624950 DOI: 10.1002/elsc.201800110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022] Open
Abstract
Bienzymatic production of laminaribiose from sucrose and glucose was combined with adsorption on zeolite BEA to introduce a first capture and purification step. Downstream processing including washing and desorption steps was characterized and optimized on a milliliter scale in batch mode. Results were then transferred to a packed bed system for enzymatic production and adsorption where the influence of adsorbent particle diameter on purity and productivity was evaluated. Finally, a continuous enzymatic production of laminaribiose was conducted over 10 days. The subsequent downstream processing of the loaded zeolites led to purities of over 0.5 gLaminaribiose gsugar -1 in the desorbate with a total productivity of 5.6 mgLaminaribiose Lenzyme bed -1 h-1 without the use of recycles.
Collapse
Affiliation(s)
- Akram Abi
- Institute for Technical Chemistry Technische Universität Braunschweig Braunschweig Germany
| | - Dave Hartig
- Institute for Chemical and Thermal Process Engineering Technische Universität Braunschweig Braunschweig Germany
| | - Karl Vorländer
- Institute for Chemical and Thermal Process Engineering Technische Universität Braunschweig Braunschweig Germany
| | - Anqi Wang
- Institute for Technical Chemistry Technische Universität Braunschweig Braunschweig Germany
| | - Stephan Scholl
- Institute for Chemical and Thermal Process Engineering Technische Universität Braunschweig Braunschweig Germany
| | - Hans-Joachim Jördening
- Institute for Technical Chemistry Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
7
|
Nguyen H, DeJaco RF, Mittal N, Siepmann JI, Tsapatsis M, Snyder MA, Fan W, Saha B, Vlachos DG. A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing. Annu Rev Chem Biomol Eng 2017; 8:115-137. [PMID: 28301730 DOI: 10.1146/annurev-chembioeng-060816-101303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With technological advancement of thermocatalytic processes for valorizing renewable biomass carbon, development of effective separation technologies for selective recovery of bioproducts from complex reaction media and their purification becomes essential. The high thermal sensitivity of biomass intermediates and their low volatility and high reactivity, along with the use of dilute solutions, make the bioproducts separations energy intensive and expensive. Novel separation techniques, including solvent extraction in biphasic systems and reactive adsorption using zeolite and carbon sorbents, membranes, and chromatography, have been developed. In parallel with experimental efforts, multiscale simulations have been reported for predicting solvent selection and adsorption separation. We discuss various separations that are potentially valuable to future biorefineries and the factors controlling separation performance. Particular emphasis is given to current gaps and opportunities for future development.
Collapse
Affiliation(s)
- Hannah Nguyen
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| | - Robert F DeJaco
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455.,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Nitish Mittal
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - J Ilja Siepmann
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455.,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Tsapatsis
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mark A Snyder
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Wei Fan
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003
| | - Basudeb Saha
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; ,
| | - Dionisios G Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, Delaware 19716; , .,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
8
|
Using the local adsorption equilibrium distribution based on a Langmuir type adsorption model to investigate liquid phase adsorption of sugars on zeolite BEA. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
van den Bergh J, Wiedenhof W, Siwy D, Heinerman H. Monosaccharide separation from ZnCl2 molten salt hydrates by zeolite beta. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9868-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL. Phenomena Affecting Catalytic Reactions at Solid–Liquid Interfaces. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02532] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable
Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yu Noda
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Long Qi
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Elise M. Albuquerque
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Robert M. Rioux
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802-4400, United States
| | - Susannah L. Scott
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
11
|
Hartig D, Waluga T, Scholl S. Expanding the elution by characteristic point method to columns with a finite number of theoretical plates. J Chromatogr A 2015; 1413:77-84. [PMID: 26319624 DOI: 10.1016/j.chroma.2015.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/19/2022]
Abstract
The elution by characteristic point (ECP) method provides a rapid approach to determine whole isotherm data with small material usage. It is especially desired wherever the adsorbent or the adsorbate is expensive, toxic or only available in small amounts. However, the ECP method is limited to adsorbents that are well optimized for chromatographic use and therefore provide a high number of theoretical plates when packed into columns (2000 or more for Langmuir type isotherms are suggested). Here we present a novel approach that uses a new profile correction to apply the ECP method to poorly optimized adsorbents with less than 200 theoretical plates. Non-ideality effects are determined using a dead volume marker injection and the resulting marker profile is used to compensate the named effects considering their dependency from the actual concentration instead of assuming rectangular profiles. Experimental and literature data are used to compare the new ECP approach with batch method results.
Collapse
Affiliation(s)
- Dave Hartig
- Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, D-38106 Braunschweig, Germany
| | - Thomas Waluga
- Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, D-38106 Braunschweig, Germany
| | - Stephan Scholl
- Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, D-38106 Braunschweig, Germany.
| |
Collapse
|
12
|
Seibel J, Jördening HJ, Buchholz K. Extending synthetic routes for oligosaccharides by enzyme, substrate and reaction engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 120:163-93. [PMID: 20182930 DOI: 10.1007/10_2009_54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The integration of all relevant tools for bioreaction engineering has been a recent challenge. This approach should notably favor the production of oligo- and polysaccharides, which is highly complex due to the requirements of regio- and stereoselectivity. Oligosaccharides (OS) and polysaccharides (PS) have found many interests in the fields of food, pharmaceuticals, and cosmetics due to different specific properties. Food, sweeteners, and food ingredients represent important sectors where OS are used in major amounts. Increasing attention has been devoted to the sophisticated roles of OS and glycosylated compounds, at cell or membrane surfaces, and their function, e.g., in infection and cancer proliferation. The challenge for synthesis is obvious, and convenient approaches using cheap and readily available substrates and enzymes will be discussed. We report on new routes for the synthesis of oligosaccharides (OS), with emphasis on enzymatic reactions, since they offer unique properties, proceeding highly regio- and stereoselective in water solution, and providing for high yields in general.
Collapse
Affiliation(s)
- Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | | | |
Collapse
|
13
|
Kuhn RC, Mazutti MA, Filho FM. Separation and purification of fructooligosaccharides on a zeolite fixed-bed column. J Sep Sci 2014; 37:927-33. [DOI: 10.1002/jssc.201300979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Raquel Cristine Kuhn
- Department of Chemical Engineering; Federal University of Santa Maria; Santa Maria RS Brazil
| | - Marcio Antonio Mazutti
- Department of Chemical Engineering; Federal University of Santa Maria; Santa Maria RS Brazil
| | - Francisco Maugeri Filho
- Laboratory of Bioprocess Engineering; Food Engineering Department; University of Campinas, UNICAMP; Campinas SP Brazil
| |
Collapse
|
14
|
Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. J Catal 2013. [DOI: 10.1016/j.jcat.2013.06.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
León M, Swift TD, Nikolakis V, Vlachos DG. Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6597-605. [PMID: 23642168 DOI: 10.1021/la401138g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A comprehensive study of the adsorption of the compounds involved in the reaction of dehydration of fructose to 5-hydroxymethyl furfural (HMF) on the zeolite H-BEA with SiO2/Al2O3 = 18 has been carried out. Furthermore, a method for the estimation of the real adsorption loading from the experimentally measured excess adsorption is developed and applied to calculate the adsorption isotherms both in the case of single-solute and multisolute mixtures. It was found that zeolite H-BEA adsorbs HMF and levulinic acid from water mixtures to greater extent than sugars and formic acid, which prefer to partition in the aqueous phase. HMF and levulinic acid adsorption isotherms could be fitted in a Redlich-Peterson isotherm model, while the adsorption of formic acid is better fitted using the Freundlich model and sugars via the Henry model. Adsorption loadings decreased with increasing temperature (0, 25, and 40 °C), which is characteristic of an exothermic process. From the temperature dependence of the isotherms, the limiting heat of adsorption at zero coverage was determined using van't Hoff equation. Given the importance and the complexity of multicomponent systems, several experiments of adsorption of multisolute solutions have been carried out. In most of the cases, the ideal adsorbed solution theory (IAST) has been proven to satisfactorily predict adsorption from multisolute mixtures using as input the single-solute isotherms.
Collapse
Affiliation(s)
- Marta León
- Catalysis Center for Energy Innovation, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | | | | | | |
Collapse
|
16
|
Lin Q, Xiao H, Liu GQ, Liu Z, Li L, Yu F. Production of Maltose Syrup by Enzymatic Conversion of Rice Starch. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0681-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr 2011; 51:394-409. [PMID: 21491266 DOI: 10.1080/10408391003628955] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This critical review article presents the current state of knowledge on isomalto-oligosaccharides, some well known functional oligosaccharides in Asia, to evaluate their potential as emergent prebiotics in the American and European functional food market. It includes first a unique inventory of the different families of compounds which have been considered as IMOs and their specific structure. A description has been given of the different production methods including the involved enzymes and their specific activities, the substrates, and the types of IMOs produced. Considering the structural complexity of IMO products, specific characterization methods are described, as well as purification methods which enable the body to get rid of digestible oligosaccharides. Finally, an extensive review of their techno-functional and nutritional properties enables placing IMOs inside the growing prebiotic market. This review is of particular interest considering that IMO commercialization in America and Europe is a topical subject due to the recent submission by Bioneutra Inc. (Canada) of a novel food file to the UK Food Standards Agency, as well as several patents for IMO production.
Collapse
Affiliation(s)
- Dorothee Goffin
- Department of Industrial Biological Chemistry, University of Liege - Gembloux Agro-Bio Tech, Passage des D´eport´es, 2, B-5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Lin Q, Xiao H, Zhao J, Li L, Yu FE, Liu X, Cheng X. Production of isomalto-oligosaccharide syrup from rice starch using an one-step conversion method. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02623.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Holtkamp M, Scholl S. Adsorption properties of BEA zeolites and their aluminum phosphate extrudates for purification of isomaltose. ADSORPTION 2011. [DOI: 10.1007/s10450-011-9339-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Selective adsorption of aromatic ketones on kerolite clay for separation in biocatalytic applications. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Holtkamp M, Scholl S. Downstream Processing for Isomaltose following a Reaction Integrated Adsorption. CHEM-ING-TECH 2011. [DOI: 10.1002/cite.201000167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Erhardt FA, Rosenstock P, Hellmuth H, Jördening HJ. Development of a multiphase reaction system for integrated synthesis of isomaltose with a new glucosyltransferase variant. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242420903474866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Jördening HJ, Erhardt F, Holtkamp M, Buchholz K, Scholl S. Verfahrens- und Katalysatordesign als Aufarbeitungsstrategie für die enzymatische Darstellung von Isomaltose. CHEM-ING-TECH 2008. [DOI: 10.1002/cite.200800033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Fernandes FAN, Rodrigues S. Evaluation of Enzymatic Reactors for Large-Scale Panose Production. Appl Biochem Biotechnol 2007; 142:95-104. [DOI: 10.1007/s12010-007-0046-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
|
25
|
Heper M, Türker L, Kincal NS. Sodium, ammonium, calcium, and magnesium forms of zeolite Y for the adsorption of glucose and fructose from aqueous solutions. J Colloid Interface Sci 2007; 306:11-5. [PMID: 17067614 DOI: 10.1016/j.jcis.2006.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
The kinetics of adsorption by sodium, ammonium, calcium and magnesium forms of zeolite Y from aqueous solutions containing 25% w/v of either one or an equimolar mixture of glucose (G) and fructose (F) have been studied batch-wise at 50 degrees C. The adsorption of aqueous pure G was fast, while that of aqueous pure F depended on the cationic form, approaching that of G on the Mg-Y, and slowing down in the sequence of Mg2+ > NH4+ > Ca2+ > Na+ of the cations. The adsorption behavior from solutions containing both G and F indicated significant hindering effects of F on G on Na-Y. Na-Y and Mg-Y did not exhibit rate-based selectivity, while Ca-Y an NH4-Y adsorbed G faster than F. Addition of CaCl2 to the mixture of Ca-Y and aqueous solution of G and F improved the separation, by hindering the adsorption of F. Addition of NH4Cl to the mixture of the sugar solution and NH4-Y, on the other hand, had a negative effect on the separation. NH4-Y was found to be desorbing about 30% of the adsorbed sugars and this value was found to be around 50% for Ca-Y. Re-adsorption experiments resulted in similar or somewhat higher percentages of amounts adsorbed compared to adsorption on fresh samples. Both NH4-Y and Ca-Y were found to be re-adsorbing around 50% of the sugars they adsorbed on fresh samples.
Collapse
Affiliation(s)
- Misket Heper
- Middle East Technical University, Department of Chemical Engineering, Ankara, 06531, Turkey
| | | | | |
Collapse
|
26
|
Ergezinger M, Bohnet M, Berensmeier S, Bucholz K. Integrated Enzymatic Synthesis and Adsorption of Isomaltose in a Multiphase Fluidized Bed Reactor. Eng Life Sci 2006. [DOI: 10.1002/elsc.200620151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Bornscheuer UT, Buchholz K. Highlights in Biocatalysis - Historical Landmarks and Current Trends. Eng Life Sci 2005. [DOI: 10.1002/elsc.200520089] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
28
|
Integrierte enzymatische Synthese und Adsorption von Isomaltose in einem Mehrphasenreaktor. CHEM-ING-TECH 2005. [DOI: 10.1002/cite.200407065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|