1
|
Piotrowska J, Jordan C, Harasek M, Bica-Schröder K. Development of Hollow Fiber Membranes Functionalized with Ionic Liquids for Enhanced CO 2 Separation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12236-12248. [PMID: 39148517 PMCID: PMC11323277 DOI: 10.1021/acssuschemeng.4c04597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
The combination of CO2-selective ionic liquids (ILs) with block copolymers, such as Pebax 1657, has demonstrated an enhancement of the gas separation capabilities of polymeric membranes. In the current work, the development of composite membranes by applying a thin, concentrated selective layer made of Pebax/imidazolium-based ionic liquids (ILs) is presented. The objective of the experiments was to determine the optimized IL loading and investigate how the alteration of the anion impacts the properties of the membranes. Two membrane configurations have been studied: coated flat sheet membranes, supported on a porous poly(ether sulfone) (PES) layer, as well as composite hollow fiber membranes, supported on commercial polypropylene (PP) hollow fibers. Coated hollow fiber composites were fabricated using a continuous coating method, offering a straightforward scalability in the manufacturing process. The determined mechanical pressure stability of hollow fiber composites reached up to 5 bar, indicating their potential for various industrial gas separation applications. It was found that the Pebax 1657-based coating containing 40 wt % [C6mim][NTf2] yielded membranes with the best gas separation properties, for both the coated flat sheet and the hollow fiber configurations. The CO2 permeance of hollow fibers reached 23.29 GPU, whereas the CO2/N2 ideal selectivity stood at 8.7, suggesting the necessity of the further enhancement of the coating technique, which can be achieved, for example, through application of multiple coatings. Nonetheless, the superior ideal selectivity of the CO2/CO separation, reaching 12.44, gave a promising outlook for further novel membrane applications, which involve the separation of the aforementioned gases.
Collapse
Affiliation(s)
- Julia
A. Piotrowska
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Christian Jordan
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/E166, Vienna 1060, Austria
| | - Michael Harasek
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/E166, Vienna 1060, Austria
| | - Katharina Bica-Schröder
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| |
Collapse
|
2
|
Li Y, Liu X, Guo Q. Adsorption Mechanisms of CO 2 on Macroporous Ion-Exchange Resin Organic Amine Composite Materials by the Density Functional Theory. ACS OMEGA 2024; 9:17541-17550. [PMID: 38645365 PMCID: PMC11025073 DOI: 10.1021/acsomega.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
The adsorption mechanisms of CO2 on macroporous cation exchange resin (MCER), D001 ion-exchange resin, and macroporous ion-exchange resin organic amine composite materials (MCER-DEA and D001-PEI) were studied by density functional theory (DFT). The adsorption energies and Mulliken atomic charges in the adsorption process were analyzed, indicating that CO2 on MCER and D001 were physisorbed. The adsorption heat of the adsorption process of MCER-DEA and D001-PEI was calculated by the Monte Carlo method, and it was found that the adsorption process of CO2 by MCER-DEA and D001-PEI was both physical adsorption and chemical adsorption. Besides, the chemical adsorption mechanism of CO2 by MCER-DEA and D001-PEI was investigated by analyzing the free energy barrier and the Gibbs free energy change of the involved chemical reactions and the results showed that the free energy barrier required for MCER-DEA to generate zwitterion was 26.23 kcal/mol, which is 1.74 times that of D001-PEI (15.04 kcal/mol); meanwhile, the free energy barriers of the deprotonation process of zwitterions in MCER-DEA and D001-PEI were 16.23 and 9.89 kcal/mol, respectively, indicating that D001-PEI chemically adsorbs CO2 and requires more energy than MCER-DEA chemical adsorption of CO2. D001-PEI is more conducive to the chemical adsorption of CO2. In addition, H2O molecules were incorporated on the polymer models to study the influence of humidity on the CO2 adsorption mechanism. The analysis revealed that the adsorption of CO2 slowed under humid conditions.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory Base
of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinmin Liu
- State Key Laboratory Base
of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingjie Guo
- State Key Laboratory Base
of Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
4
|
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023; 52:2497-2527. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Ionic liquid (IL)-based gels (ionogels) have received considerable attention due to their unique advantages in ionic conductivity and their biphasic liquid-solid phase property. In ionogels, the negligibly volatile ionic liquid is retained in the interconnected 3D pore structure. On the basis of these physical features as well as the chemical properties of well-chosen ILs, there is emerging interest in the anti-bacterial and biocompatibility aspects. In this review, the recent achievements of ionogels for biomedical applications are summarized and discussed. Following a brief introduction of the various types of ILs and their key physicochemical and biological properties, the design strategies and fabrication methods of ionogels are presented by means of different confining networks. These sophisticated ionogels with diverse functions, aimed at biomedical applications, are further classified into several active domains, including wearable strain sensors, therapeutic delivery systems, wound healing and biochemical detections. Finally, the challenges and possible strategies for the design of future ionogels by integrating materials science with a biological interface are proposed.
Collapse
Affiliation(s)
- Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Siqi Liu
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - J Justin Koh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Nayli Erdeanna Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore.
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Chaobin He
- Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore. .,Department of Materials Science & Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore. .,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, P. R. China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
5
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
6
|
Zampino DC, Clarizia G, Bernardo P. Temperature Responsive Copolymers Films of Polyether and Bio-Based Polyamide Loaded with Imidazolium Ionic Liquids for Smart Packaging Applications. Polymers (Basel) 2023; 15:polym15051147. [PMID: 36904387 PMCID: PMC10006900 DOI: 10.3390/polym15051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Temperature-responsive materials are highly interesting for temperature-triggered applications such as drug delivery and smart packaging. Imidazolium Ionic Liquids (ILs), with a long side chain on the cation and a melting temperature of around 50 °C, were synthetized and loaded at moderate amounts (up to 20 wt%) within copolymers of polyether and a bio-based polyamide via solution casting. The resulting films were analyzed to assess their structural and thermal properties, and the gas permeation changes due to their temperature-responsive behavior. The splitting of FT-IR signals is evident, and, in the thermal analysis, a shift in the glass transition temperature (Tg) for the soft block in the host matrix towards higher values upon the addition of both ILs is also observed. The composite films show a temperature-dependent permeation with a step change corresponding to the solid-liquid phase change in the ILs. Thus, the prepared polymer gel/ILs composite membranes provide the possibility of modulating the transport properties of the polymer matrix simply by playing with temperature. The permeation of all the investigated gases obeys an Arrhenius-type law. A specific permeation behavior, depending on the heating-cooling cycle sequence, can be observed for carbon dioxide. The obtained results indicate the potential interest of the developed nanocomposites as CO2 valves for smart packaging applications.
Collapse
Affiliation(s)
- Daniela C. Zampino
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Gabriele Clarizia
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy
- Correspondence:
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|
7
|
Ranakoti L, Gangil B, Bhandari P, Singh T, Sharma S, Singh J, Singh S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules 2023; 28:485. [PMID: 36677545 PMCID: PMC9861437 DOI: 10.3390/molecules28020485] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
In the present scenario, the research is now being focused on the naturally occurring polymers that can gradually replace the existing synthetic polymers for the development of bio composites having applications in medical surgeries and human implants. With promising mechanical properties and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio material. In order to examine the applicability of PLA in human implants, the current article sheds light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical properties. In the latter half, various processes used for the fabrication of biomaterials are discussed in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human implants) are represented with respective advantages in the sphere of biomaterials.
Collapse
Affiliation(s)
- Lalit Ranakoti
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Brijesh Gangil
- Mechanical Engineering Department, SOET, HNB Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Prabhakar Bhandari
- Mechanical Engineering Department, SOET, K. R. Mangalam University, Gurgaon 122103, Haryana, India
| | - Tej Singh
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jujhar Singh
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
8
|
Vroulias D, Staurianou E, Ioannides T, Deimede V. Poly(ethylene oxide)-Based Copolymer-IL Composite Membranes for CO 2 Separation. MEMBRANES 2022; 13:membranes13010026. [PMID: 36676833 PMCID: PMC9863429 DOI: 10.3390/membranes13010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 05/31/2023]
Abstract
Poly(ethylene oxide) (PEO)-based copolymers are at the forefront of advanced membrane materials for selective CO2 separation. In this work, free-standing composite membranes were prepared by blending imidazolium-based ionic liquids (ILs) having different structural characteristics with a PEO-based copolymer previously developed by our group, targeting CO2 permeability improvement and effective CO2/gas separation. The effect of IL loading (30 and 40 wt%), alkyl chain length of the imidazolium cation (ethyl- and hexyl- chain) and the nature of the anion (TFSI-, C(CN)3-) on physicochemical and gas transport properties were studied. Among all composite membranes, PEO-based copolymer with 40 wt% IL3-[HMIM][TFSI] containing the longer alkyl chain of the cation and TFSI- as the anion exhibited the highest CO2 permeability of 46.1 Barrer and ideal CO2/H2 and CO2/CH4 selectivities of 5.6 and 39.0, respectively, at 30 °C. In addition, almost all composite membranes surpassed the upper bound limit for CO2/H2 separation. The above membrane showed the highest water vapor permeability value of 50,000 Barrer under both wet and dry conditions and a corresponding H2O/CO2 ideal selectivity value of 1080; values that are comparable with those reported for other highly water-selective PEO-based polymers. These results suggest the potential application of this membrane in hydrogen purification and dehydration of CO2 gas streams.
Collapse
Affiliation(s)
- Dionysios Vroulias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), GR-26504 Patras, Greece
| | - Eirini Staurianou
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Theophilos Ioannides
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), GR-26504 Patras, Greece
| | - Valadoula Deimede
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
9
|
Khurram AR, Rafiq S, Tariq A, Jamil A, Iqbal T, Mahmood H, Mehdi MS, Abdulrahman A, Ali A, Akhtar MS, Asif S. Environmental remediation through various composite membranes moieties: Performances and thermomechanical properties. CHEMOSPHERE 2022; 309:136613. [PMID: 36183888 DOI: 10.1016/j.chemosphere.2022.136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Pollution harms ecosystems and poses a serious threat to human health around the world through direct or indirect effects on air, water, and land. The importance of remediating effluents is paramount to reducing environmental concerns. CO2 emissions are removed efficiently and efficaciously with mixed matrix membranes (MMMs), which are viable replacements for less efficient and costly membranes. In the field of membrane technology, MMMs are advancing rapidly due to their good separation properties. The selection of filler to be incorporated in mixed matrix membranes is very considered very important. There has been considerable interest in MOFs, carbon nanotubes (CNTs), ionic liquids (ILs), carbon molecular sieves (CMSs), sulfonated fillers (SFs), and layered silicates (LSs) as inorganic fillers for improving the properties of mixed matrix membranes. These fillers promise superb results and long durability for mixed matrix membranes based on them. The purpose of this review is to review different fillers used in MMMs for improving separation properties, limitations, and thermomechanical properties for environmental control and remediation.
Collapse
Affiliation(s)
- Abdul Rehman Khurram
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan; Department of Food Engineering and Biotechnology, University of Engineering and Technology, Lahore, New Campus, Pakistan.
| | - Alisha Tariq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Asif Jamil
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Hamayoun Mahmood
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan
| | - Aymn Abdulrahman
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, Brno, 616 00, Czech Republic.
| |
Collapse
|
10
|
An approach for evaluating gas sorption in polymer matrix membranes based on balancing incoming and outgoing membrane mass fluxes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Lian S, Zhao Q, Zhang Z, Li R, Song C. Tailored interfacial microenvironment of mixed matrix membranes based on deep eutectic solvents for efficient CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Monteleone M, Barbieri G, Bernardo P, Borgogno A, Brunetti A, Clarizia G, Esposito E, Jansen JC, Tasselli F, Tocci E, Odeh IN, Johnson J, Kopeć KK, Giorno L. Strategies to stabilize silver salt in composite Pebax2533 ©/Ag(NH3) 2OH and Pebax ©2533 [Ag(15-crown-5-ether)] membranes for enhanced ethylene/ethane separation. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2130077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marcello Monteleone
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Giuseppe Barbieri
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Paola Bernardo
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Andrea Borgogno
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Adele Brunetti
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Gabriele Clarizia
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Elisa Esposito
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Johannes Carolus Jansen
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Franco Tasselli
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Elena Tocci
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| | - Ihab N. Odeh
- SABIC Technology Center at King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - J.R. Johnson
- SABIC Technology Center at King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Karina K. Kopeć
- SABIC Technology Center at King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - L. Giorno
- National Research Council of Italy, Institute on Membrane Technology (CNR-ITM), Rende, Italy
| |
Collapse
|
13
|
Min HJ, Kim YJ, Kang M, Seo CH, Kim JH, Kim JH. Crystalline elastomeric block copolymer/ionic liquid membranes with enhanced mechanical strength and gas separation properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
|
15
|
Salahshoori I, Babapoor A, Seyfaee A. Elevated performance of the neat, hybrid and composite membranes by the addition of nanoparticles (ZIF-67): A molecular dynamics study. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03673-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Chen Z, Zhang P, Wu H, Sun S, You X, Yuan B, Hou J, Duan C, Jiang Z. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Zunita M, Hastuti R, Alamsyah A, Khoiruddin K, Wenten IG. Ionic Liquid Membrane for Carbon Capture and Separation. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2021.1920428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Zunita
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - R. Hastuti
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - A. Alamsyah
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - K. Khoiruddin
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| | - I. G. Wenten
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung Jl, West Java, Bandung, Indonesia
| |
Collapse
|
18
|
Choi SH, Randová A, Vopička O, Lanč M, Fuoco A, Jansen JC, Friess K. Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes: A study of gas and vapour transport properties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Investigation on effect of ionic liquid on CO2 separation performance and properties of novel co-casted dual-layer PEBAX-ionic liquid/PES composite membrane. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Jiang H, Bai L, Yang B, Zeng S, Dong H, Zhang X. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Wu M, Li X, Li X. Removal of CO2 from high-temperature flue gas using PDMS/IL composite membranes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physical-crosslinking interaction between PDMS and an IL enables the membrane to separate CO2 from high-temperature flue gas.
Collapse
Affiliation(s)
- Mian Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China
| | - Xuehua Li
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China
| | - Xiaobing Li
- National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, No. 1 Daxue Road, South, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
22
|
Clarizia G, Bernardo P. A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether- block-amide) Copolymers as Membranes for CO 2 Separation. Polymers (Basel) 2021; 14:10. [PMID: 35012033 PMCID: PMC8747106 DOI: 10.3390/polym14010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023] Open
Abstract
An inspiring challenge for membrane scientists is to exceed the current materials' performance while keeping the intrinsic processability of the polymers. Nanocomposites, as mixed-matrix membranes, represent a practicable response to this strongly felt need, since they combine the superior properties of inorganic fillers with the easy handling of the polymers. In the global strategy of containing the greenhouse effect by pursuing a model of sustainable growth, separations involving CO2 are some of the most pressing topics due to their implications in flue gas emission and natural gas upgrading. For this purpose, Pebax copolymers are being actively studied by virtue of a macromolecular structure that comprises specific groups that are capable of interacting with CO2, facilitating its transport with respect to other gas species. Interestingly, these copolymers show a high versatility in the incorporation of nanofillers, as proved by the large number of papers describing nanocomposite membranes based on Pebax for the separation of CO2. Since the field is advancing fast, this review will focus on the most recent progress (from the last 5 years), in order to provide the most up-to-date overview in this area. The most recent approaches for developing Pebax-based mixed-matrix membranes will be discussed, evidencing the most promising filler materials and analyzing the key-factors and the main aspects that are relevant in terms of achieving the best effectiveness of these multifaceted membranes for the development of innovative devices.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy;
| |
Collapse
|
23
|
Asensio-Delgado S, Pardo F, Zarca G, Urtiaga A. Absorption separation of fluorinated refrigerant gases with ionic liquids: Equilibrium, mass transport, and process design. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Chen W, Zhang Z, Yang C, Liu J, Shen H, Yang K, Wang Z. PIM-based mixed-matrix membranes containing MOF-801/ionic liquid nanocomposites for enhanced CO2 separation performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119581] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Preparation and characterization of modified halloysite nanotubes—Pebax nanocomposite membranes for CO2/CH4 separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Development of Breathable Pebax ®/PEG Films for Optimization of the Shelf-Life of Fresh Agri-Food Products. MEMBRANES 2021; 11:membranes11090692. [PMID: 34564509 PMCID: PMC8470709 DOI: 10.3390/membranes11090692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
In this work, thin transparent breathable films were prepared for food packaging applications. The films were obtained by the solvent casting method from both the binary blends Pebax® MH1657 copolymer/ hydroxyl-terminated polyethylene glycol (PEGOH) and Pebax® MH1657/polyethylene glycol dimethyl ether (PEGDME) as well as the ternary blend Pebax® MH1657/PEGOH/PEGDME with a 50/50 and 37.5/62.5 PEGOH/PEGDME weight ratio for additive amounts comprised between 0 and 50 wt.%. The microstructure of these materials was investigated by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) analyses. Regardless of the PEG’s nature, for a PEG amount inferior to 30 wt.%, the Pebax® and PEG phases were totally miscible. For higher amounts, a phase separation was obtained. In the presence of PEG, a decrease in crystallinity was obtained. The effects of the nature and amount of PEG on the thermo-mechanical, hydration, and gas (CO2, O2) transport properties were investigated. A study of the film’s stability in terms of composition over time was also performed. From this work, a wide range of films could be proposed with a stable composition over time and adjustable mechanical and gas transport properties for the prolongation of the shelf-life of highly breathable fresh products.
Collapse
|
27
|
Preparation of alumina nanotubes for incorporation into CO2 permselective Pebax-based nanocomposite membranes. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Yang B, Bai L, Wang Z, Jiang H, Zeng S, Zhang X, Zhang X. Exploring NH 3 Transport Properties by Tailoring Ionic Liquids in Pebax-Based Hybrid Membranes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingbing Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Bai
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenlei Wang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Haiyan Jiang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojuan Zeng
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochun Zhang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| |
Collapse
|
29
|
Organic vapour permeation in amorphous and semi-crystalline rubbery membranes: Experimental data versus prediction by solubility parameters. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Wu Y, Zhao D, Chen S, Ren J, Hua K, Li H, Deng M. The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. NANOMATERIALS 2021; 11:nano11030607. [PMID: 33671036 PMCID: PMC7997425 DOI: 10.3390/nano11030607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer-IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer-IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNF.
Collapse
|
32
|
Effect of the CO2-philic ionic liquid [BMIM][Tf2N] on the single and mixed gas transport in PolyActive™ membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Effect of triglyceride on the microstructure and gas permeation performance of Pebax-based blend membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Friess K, Izák P, Kárászová M, Pasichnyk M, Lanč M, Nikolaeva D, Luis P, Jansen JC. A Review on Ionic Liquid Gas Separation Membranes. MEMBRANES 2021; 11:97. [PMID: 33573138 PMCID: PMC7911519 DOI: 10.3390/membranes11020097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
Ionic liquids have attracted the attention of the industry and research community as versatile solvents with unique properties, such as ionic conductivity, low volatility, high solubility of gases and vapors, thermal stability, and the possibility to combine anions and cations to yield an almost endless list of different structures. These features open perspectives for numerous applications, such as the reaction medium for chemical synthesis, electrolytes for batteries, solvent for gas sorption processes, and also membranes for gas separation. In the search for better-performing membrane materials and membranes for gas and vapor separation, ionic liquids have been investigated extensively in the last decade and a half. This review gives a complete overview of the main developments in the field of ionic liquid membranes since their first introduction. It covers all different materials, membrane types, their preparation, pure and mixed gas transport properties, and examples of potential gas separation applications. Special systems will also be discussed, including facilitated transport membranes and mixed matrix membranes. The main strengths and weaknesses of the different membrane types will be discussed, subdividing them into supported ionic liquid membranes (SILMs), poly(ionic liquids) or polymerized ionic liquids (PILs), polymer/ionic liquid blends (physically or chemically cross-linked 'ion-gels'), and PIL/IL blends. Since membrane processes are advancing as an energy-efficient alternative to traditional separation processes, having shown promising results for complex new separation challenges like carbon capture as well, they may be the key to developing a more sustainable future society. In this light, this review presents the state-of-the-art of ionic liquid membranes, to analyze their potential in the gas separation processes of the future.
Collapse
Affiliation(s)
- Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Magda Kárászová
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Mariia Pasichnyk
- Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 135, 165 02 Prague, Czech Republic; (M.K.); (M.P.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (K.F.); (P.I.); (M.L.)
| | - Daria Nikolaeva
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | - Patricia Luis
- Materials & Process Engineering, UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium; (D.N.); (P.L.)
| | | |
Collapse
|
35
|
Rashid TU. Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114916] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Pardo F, Zarca G, Urtiaga A. Effect of feed pressure and long-term separation performance of Pebax-ionic liquid membranes for the recovery of difluoromethane (R32) from refrigerant mixture R410A. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Moon EW, Yang JS, Yoon SR, Ha JH. Application of colorimetric indicators to predict the fermentation stage of kimchi. J Food Sci 2020; 85:4170-4179. [PMID: 33190231 DOI: 10.1111/1750-3841.15532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Cabbage kimchi, a popular side dish in Korean cuisine, produces several fermentation by-products (FBPs). Kimchi is praised for its flavor, taste, and texture when suitably fermented at 0.7% to 0.9% total acidity, or a pH of approximately 4.1. Beyond this acidity level, the quality of the product decreases, negatively impacting consumers' purchase preferences. Therefore, the current study seeks to develop an optimally fermented (OptF) kimchi indicator that can be inserted into product packaging to evaluate its utility at 4 and 10 °C. A gradual change in the total color difference (ΔE) was observed during the kimchi fermentation stage, and the highest ΔE values were observed at 4 (34.87) and 10 °C (37.99), after 9 weeks. Moreover, the color-change response function value F(Xc) was more linear at 4 and 10 °C (0.981 and 0.984, respectively) compared to the ΔE over time, during kimchi fermentation. Coefficients of determination for F(Xc)-carbon dioxide (0.983), F(Xc)-pH (0.979), and F(Xc)-titratable acidity (0.974) were sufficient to meet the optimal polynomial regression model, while that for F(Xc)-lactic acid bacteria (0.881) was not. Standardized residuals of predicted data indicated that 95% of the residuals were in the range of -2.0 to 2.0. The regression analysis further suggested that the OptF kimchi indicator could be used as a kimchi fermentation indicator. PRACTICAL APPLICATION: Cabbage kimchi, a traditional Korean fermented food, produces several fermentation by-products. After the optimal fermenting stage, the sensory evaluation of cabbage kimchi and consumers' purchase preference decreases. This study describes an optimally fermented kimchi indicator and its utility at 4 and 10 °C. Our results demonstrate the ability of this indicator to predict the freshness and fermentation stage of kimchi without the need for sensory evaluation. This method could help increase the purchase preference for commercial kimchi.
Collapse
Affiliation(s)
- Eun Woo Moon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Ji-Su Yang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - So-Ra Yoon
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| |
Collapse
|
38
|
Ramos F, Forsyth M, Pringle JM. Organic Ionic Plastic Crystal-Based Composite Membranes for Light Gas Separation: The Impact of Varying Ion Type and Casting Method. CHEMSUSCHEM 2020; 13:5740-5748. [PMID: 32902204 DOI: 10.1002/cssc.202001921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The promise of organic ionic plastic crystals (OIPCs) for development of a novel type of gas separation membrane with competitive gas selectivity for CO2 /N2 was recently demonstrated. This work aimed to design more selective membranes by investigating a different type of OIPC and a new membrane preparation method. Two different OIPCs were solvent-cast or co-cast with poly(vinylidene difluoride) (PVDF), and their gas transport properties were compared. The first OIPC, methyl(diethyl)isobutylphosphonium hexafluorophosphate ([P122i4 ][PF6 ]), was previously studied using the co-cast method, and this was used as a benchmark. The second, N-methyl-N-ethylpyrrolidinium bis(fluorosulfonyl)imide ([C2 mpyr][FSI]), was investigated for the first time for gas separation applications, achieving high selectivities (α CO 2 / N 2 >40). The thermophysical properties of the composites indicated that the co-casting method is a good way to fabricate solid, mechanically stable and durable membranes. Additionally, the enhanced molecular interactions indicated in OIPC/PVDF co-cast composites point to a new approach for synthesis of other highly selective OIPC-based membranes.
Collapse
Affiliation(s)
- Fernando Ramos
- Institute for Frontier Materials, Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
| |
Collapse
|
39
|
Bernardo P, Zampino D, Clarizia G. Triggering the gas transport in PVdF-HFP membranes via imidazolium ionic liquids. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Microscopic and macroscopic investigation on the gas diffusion in poly(ether-block-amide) membranes doped with polysorbate nonionic surfactants. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Experimental and modeling study of CO2 separation by modified Pebax 1657 TFC membranes. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0598-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Mazzei IR, Nikolaeva D, Fuoco A, Loïs S, Fantini S, Monteleone M, Esposito E, Ashtiani SJ, Lanč M, Vopička O, Friess K, Vankelecom IFJ, Jansen JC. Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax ® 1657 Composite Membranes and Their Gas Separation Performance. MEMBRANES 2020; 10:E224. [PMID: 32911723 PMCID: PMC7560140 DOI: 10.3390/membranes10090224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
Poly(ionic liquid)s are an innovative class of materials with promising properties in gas separation processes that can be used to boost the neat polymer performances. Nevertheless, some of their properties such as stability and mechanical strength have to be improved to render them suitable as materials for industrial applications. This work explored, on the one hand, the possibility to improve gas transport and separation properties of the block copolymer Pebax® 1657 by blending it with poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate (PEVI-DEP). On the other hand, Pebax® 1657 served as a support for the PIL and provided mechanical resistance to the samples. Pebax® 1657/PEVI-DEP composite membranes containing 20, 40, and 60 wt.% of PEVI-DEP were cast from solutions of the right proportion of the two polymers in a water/ethanol mixture. The PEVI-DEP content affected both the morphology of the dense membranes and gas transport through the membranes. These changes were revealed by scanning electron microscopy (SEM), time-lag, and gravimetric sorption measurements. Pebax® 1657 and PEVI-DEP showed similar affinity towards CO2, and its uptake or solubility was not influenced by the amount of PIL in the membrane. Therefore, the addition of the PIL did not lead to improvements in the separation of CO2 from other gases. Importantly, PEVI-DEP (40 wt.%) incorporation affected and improved permeability and selectivity by more than 50% especially for the separation of light gases, e.g., H2/CH4 and H2/CO2, but higher PEVI-DEP concentrations lead to a decline in the transport properties.
Collapse
Affiliation(s)
- Irene R. Mazzei
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende (CS), Italy; (I.R.M.); (M.M.); (E.E.); (J.C.J.)
| | - Daria Nikolaeva
- Membrane Technology Group (MTG), cMACS, Faculty Bio-science Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium;
| | - Alessio Fuoco
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende (CS), Italy; (I.R.M.); (M.M.); (E.E.); (J.C.J.)
| | - Sandrine Loïs
- SOLVIONIC, Site Bioparc 195, route D’Espagne, BP1169, 31036 Toulouse CEDEX 1, France; (S.L.); (S.F.)
| | - Sébastien Fantini
- SOLVIONIC, Site Bioparc 195, route D’Espagne, BP1169, 31036 Toulouse CEDEX 1, France; (S.L.); (S.F.)
| | - Marcello Monteleone
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende (CS), Italy; (I.R.M.); (M.M.); (E.E.); (J.C.J.)
| | - Elisa Esposito
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende (CS), Italy; (I.R.M.); (M.M.); (E.E.); (J.C.J.)
| | - Saeed Jamali Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (S.J.A.); (M.L.); (O.V.); (K.F.)
| | - Marek Lanč
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (S.J.A.); (M.L.); (O.V.); (K.F.)
| | - Ondřej Vopička
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (S.J.A.); (M.L.); (O.V.); (K.F.)
| | - Karel Friess
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic; (S.J.A.); (M.L.); (O.V.); (K.F.)
| | - Ivo F. J. Vankelecom
- Membrane Technology Group (MTG), cMACS, Faculty Bio-science Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium;
| | - Johannes Carolus Jansen
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/C, 87036 Rende (CS), Italy; (I.R.M.); (M.M.); (E.E.); (J.C.J.)
| |
Collapse
|
43
|
Shirinia M, Abdollahi M, Omidkhah M. Simultaneous enhancement of CO2 permeability and CO2/CH4 and CO2/N2 selectivity via incorporating dense, rubbery and CO2-philic vinyl acetate- based copolymers into poly(ethylene oxide-b-amide 6) membranes. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Effect of Nafion and APTEOS functionalization on mixed gas separation of PEBA-FAU membranes: Experimental study and MD and GCMC simulations. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Rostamizadeh M, Sadatnia B, Norouzbahari S, Ghadimi A. Enhancing the gas separation properties of mixed matrix membranes via impregnation of sieve phases with metal and nonmetal promoters. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Deng J, Dai Z, Deng L. Effects of the Morphology of the ZIF on the CO 2 Separation Performance of MMMs. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01946] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- School of Chemical, Biological and Material Engineering, University of Oklahoma, 73019 Norman, Oklahoma, United States
| | - Zhongde Dai
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- College of Architecture & Environment, Sichuan University, 610065 Chengdu, China
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
47
|
Clarizia G, Bernardo P, Carroccio SC, Ussia M, Restuccia C, Parafati L, Calarco A, Zampino D. Heterogenized Imidazolium-Based Ionic Liquids in Pebax ®Rnew. Thermal, Gas Transport and Antimicrobial Properties. Polymers (Basel) 2020; 12:E1419. [PMID: 32630521 PMCID: PMC7361949 DOI: 10.3390/polym12061419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
Imidazolium-based ionic liquids (ILs) have interesting antimicrobial activity and their inclusion in a flexible film is ideal to take advantage of their properties in practical applications. Poly(ether-block-amide) (Pebax®Rnew) films were prepared by solution casting, loading two synthetized ILs (1-hexadecyl-3-methylimidazolium dimethyl-5-sulfoisophthalate [Hdmim][DMSIP], IL1 and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate [OOMmim][PF6], IL2) up to 5 wt.%. The ILs were characterized by 1H NMR and MALDI-TOF spectroscopy. The films were investigated for miscibility, morphology, wettability, spectral properties and gas transport. The films display a good thermal stability (>200 °C). Differential scanning calorimetry (DSC) proves phase separation in the blends, that is consistent with FTIR analysis and with the island-like surface morphology observed in the micrographs. Gas permeability tests revealed that the IL-loaded films are dense and poreless, keeping the selectivity of the polymer matrix with a somewhat lessened permeability owing to the impermeable ILs crystals. The film antimicrobial activity, evaluated against Gram-negative and Gram-positive bacterial strains, was correlated to the structure of the incorporated ILs. The smaller IL2 salt did not modify the hydrophobic nature of the neat polymer and was readily released from the films. Instead, IL1, having a longer alkyl chain in the cation, provided a promising antimicrobial activity with a good combination of hydrophilicity, permeability and thermal stability.
Collapse
Affiliation(s)
- Gabriele Clarizia
- Institute on Membrane Technology, ITM-CNR (c/o University of Calabria), Via P. Bucci 17/C, 87036 Rende (CS), Italy;
| | - Paola Bernardo
- Institute on Membrane Technology, ITM-CNR (c/o University of Calabria), Via P. Bucci 17/C, 87036 Rende (CS), Italy;
| | - Sabrina C. Carroccio
- Institute of Polymers, Composites and Biomaterials, IPCB-CNR, via P. Gaifami 18, 95126 Catania, Italy;
- Institute for Microelectronics and Microsystems, IMM-CNR (c/o University of Catania), Via Santa Sofia 64, 95123 Catania, Italy;
| | - Martina Ussia
- Institute for Microelectronics and Microsystems, IMM-CNR (c/o University of Catania), Via Santa Sofia 64, 95123 Catania, Italy;
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems, IRET-CNR, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Daniela Zampino
- Institute of Polymers, Composites and Biomaterials, IPCB-CNR, via P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
48
|
Water Vapour Promotes CO2 Transport in Poly(ionic liquid)/Ionic Liquid-Based Thin-Film Composite Membranes Containing Zinc Salt for Flue Gas Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A poly(ionic-liquid) (PIL) matrix can be altered by incorporating additives that will disrupt the polymer chain packing, such as an ionic liquid (IL) and inorganic salts to boost their exploitation as materials for membrane production to be used in CO2 capture. Herein, potential of PIL/IL/salt blends is investigated on the example of poly(diallyldimethyl ammonium) bis(trifluoromethylsulfonyl)imide (P[DADMA][Tf2N]) with N-butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ([Pyrr14][Tf2N]) and zinc di-bis(trifluoromethylsulfonyl)imide (Zn[Tf2N]2). Composite material with IL and a higher amount of Zn2+ showed an increase in the equilibrium CO2 sorption capacity to 2.77 cm3 (STP)cm −3 bar−1. Prepared blends were successfully processed into thick, dense membranes and thin-film composite membranes. Their CO2 separation efficiency was determined using ideal and mixed-gas feed (vol% CO2 = 50 , dry and with 90% relative humidity). The dominant role of solubility in the transport mechanism is confirmed by combining direct gravimetric sorption measurements and indirect estimations from time-lag experiments. The maximum incorporated amount of Zn2+ salts increased equilibrium solubility selectivity by at least 50% in comparison to the parent PIL. All materials showed increased CO2 permeance values by at least 30% in dry conditions, and 60% in humidified conditions when compared to the parent PIL; the performance of pure PIL remained unchanged upon addition of water vapor to the feed stream. Mixed-gas selectivities for all materials rose by 10% in humidified conditions when compared to dry feed experiments. Our results confirm that the addition of IL improves the performance of PIL-based composites due to lower stiffness of the membrane matrix. The addition of Zn2+-based salt had a marginal effect on CO2 separation efficiency, suggesting that the cation participates in the facilitated transport of CO2.
Collapse
|
49
|
Tailoring the Thermal and Mechanical Properties of PolyActive TM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO 2-Phylic Ionic Liquid. Polymers (Basel) 2020; 12:polym12040890. [PMID: 32290575 PMCID: PMC7240668 DOI: 10.3390/polym12040890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 11/21/2022] Open
Abstract
The last decade has seen an exponential increase in the number of studies focused on novel applications for ionic liquids (ILs). Blends of polymers with ILs have been proposed for use in fuel cells, batteries, gas separation membranes, packaging, etc., each requiring a set of specific physico-chemical properties. In this work, blends of four grades of the poly(ether-ester) multiblock copolymer PolyActive™ with different concentrations of the CO2-philic 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIM][Tf2N] were prepared in the form of dense films by a solution casting and solvent evaporation method, in view of their potential use as gas separation membranes for CO2 capture. Depending on the polymer structure, the material properties could be tailored over a wide range by means of the IL content. All samples were dry-feeling, highly elastic self-standing dense films. The microstructure of the blends was studied by scanning electron microscopy with a backscattering detector, able to observe anisotropy in the sample, while a special topographic analysis mode allowed the visualization of surface roughness. Samples with the longest poly(ethylene oxide terephthalate) (PEOT) blocks were significantly more anisotropic than those with shorter blocks, and this heterogeneity increased with increasing IL content. DSC analysis revealed a significant decrease in the melting enthalpy and melting temperature of the crystalline PEOT domains with increasing IL content, forming an amorphous phase with Tg ≈ −50 °C, whereas the polybutylene terephthalate (PBT) phase was hardly affected. This indicates better compatibility of the IL with the polyether phase than the polyester phase. Young’s modulus was highest and most IL-dependent for the sample with the highest PEOT content and PEOT block length, due to its high crystallinity. Similarly, the sample with short PEOT blocks and high PBT content also showed a high modulus and tensile strength, but much lower maximum elongation. This study provides a detailed discussion on the correlation between the morphological, thermal, and mechanical properties of these PolyActive™/[BMIM][Tf2N] blends.
Collapse
|
50
|
Ding R, Zheng W, Yang K, Dai Y, Ruan X, Yan X, He G. Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116209] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|