1
|
Kumar R, Dhiman S, Gupta H. Indium extraction from nitrate medium using Cyphos ionic liquid 104 and its mathematical modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107341-107349. [PMID: 36574124 DOI: 10.1007/s11356-022-24936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 10/29/2023]
Abstract
The treatment and recovery of pollutants in aquatic system is one of the greatest challenges for environmentalists throughout the world. In this study, solvent extraction of indium using phosphonium ionic liquid (Cyphos IL 104) as an extractant and its mathematical model was proposed for prediction of In(III) ion transport across a FSSLM (flat-sheet-supported liquid membrane). Solvent extraction experiments on indium have been carried out under various experimental conditions in order to assert some fundamental parameters using mathematical analysis for mass transfer process. Diffusion is the process which facilitates metal ion transport across liquid membrane, indicating the applicability of Fick's law of diffusion in model formulation. The influence of different parameters like composition of diluent, feed acidity, and ligand concentration on In(III) ion transport rate has been reported. At different extractant concentrations, the modeling outputs and experimental indium extraction were observed to be in reasonably good agreement.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, School of Sciences, IFTM University, Lodhipur Rajput, Uttar Pradesh, 244102, Moradabad, India
| | - Soniya Dhiman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Gupta
- Department of Chemistry, School of Sciences, IFTM University, Lodhipur Rajput, Uttar Pradesh, 244102, Moradabad, India.
| |
Collapse
|
2
|
Man GT, Albu PC, Nechifor AC, Grosu AR, Tanczos SK, Grosu VA, Ioan MR, Nechifor G. Thorium Removal, Recovery and Recycling: A Membrane Challenge for Urban Mining. MEMBRANES 2023; 13:765. [PMID: 37755188 PMCID: PMC10538078 DOI: 10.3390/membranes13090765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Although only a slightly radioactive element, thorium is considered extremely toxic because its various species, which reach the environment, can constitute an important problem for the health of the population. The present paper aims to expand the possibilities of using membrane processes in the removal, recovery and recycling of thorium from industrial residues reaching municipal waste-processing platforms. The paper includes a short introduction on the interest shown in this element, a weak radioactive metal, followed by highlighting some common (domestic) uses. In a distinct but concise section, the bio-medical impact of thorium is presented. The classic technologies for obtaining thorium are concentrated in a single schema, and the speciation of thorium is presented with an emphasis on the formation of hydroxo-complexes and complexes with common organic reagents. The determination of thorium is highlighted on the basis of its radioactivity, but especially through methods that call for extraction followed by an established electrochemical, spectral or chromatographic method. Membrane processes are presented based on the electrochemical potential difference, including barro-membrane processes, electrodialysis, liquid membranes and hybrid processes. A separate sub-chapter is devoted to proposals and recommendations for the use of membranes in order to achieve some progress in urban mining for the valorization of thorium.
Collapse
Affiliation(s)
- Geani Teodor Man
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 240050 Râmnicu Valcea, Romania
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea Ciuc, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Mihail-Răzvan Ioan
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.T.M.); (A.C.N.); (A.R.G.)
| |
Collapse
|
3
|
Nechifor AC, Goran A, Tanczos SK, Păncescu FM, Oprea OC, Grosu AR, Matei C, Grosu VA, Vasile BȘ, Albu PC. Obtaining and Characterizing the Osmium Nanoparticles/ n-Decanol Bulk Membrane Used for the p-Nitrophenol Reduction and Separation System. MEMBRANES 2022; 12:1024. [PMID: 36295782 PMCID: PMC9609118 DOI: 10.3390/membranes12101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Liquid membranes based on nanoparticles follow a continuous development, both from obtaining methods and characterization of techniques points of view. Lately, osmium nanoparticles have been deposited either on flat membranes, with the aim of initiating some reaction processes, or on hollow fiber membranes, with the aim of increasing the contact surface with the phases of the membrane system. This paper presents the obtainment and characterization of a liquid membrane based on osmium nanoparticles (Os-NP) dispersed in ndecanol (nDol) for the realization of a membrane system with a large contact surface between the phases, but without using a liquid membrane support. The dispersion of osmium nanoparticles in n-decanol is carried out by the method of reducing osmium tetroxide with 1-undecenoic acid (UDA). The resulting membrane was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy analysis (EDAX), thermoanalysis (TG, DSC), Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS). In order to increase the mass transfer surface, a design for the membrane system was realized with the dispersion of the membrane through the receiving phase and the dispersion of the source phase through the membrane (DBLM-dispersion bulk liquid membrane). The process performance was tested for the reduction of p-nitrophenol (pNP) from the source phase, using sodium tetra-borohydride (NaBH4), to p-aminophenol (pAP), which was transported and collected in the receiving phase. The obtained results show that membranes based on the dispersion of osmium nanoparticles in n-decanol can be used with an efficiency of over 90% for the reduction of p-nitrophenol and the separation of p-aminophenol.
Collapse
Affiliation(s)
- Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Goran
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
| | - Florentina Mihaela Păncescu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- National Research Center for Micro and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania
| |
Collapse
|
4
|
Removal of Pb2+, Cu2+, and Cd2+ Ions from a Saline Wastewater Using Emulsion Liquid Membrane: Applying Response Surface Methodology for Optimization and Data Analysis. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ferencz (Dinu) A, Grosu AR, Al-Ani HNA, Nechifor AC, Tanczos SK, Albu PC, Crăciun ME, Ioan MR, Grosu VA, Nechifor G. Operational Limits of the Bulk Hybrid Liquid Membranes Based on Dispersion Systems. MEMBRANES 2022; 12:membranes12020190. [PMID: 35207110 PMCID: PMC8877906 DOI: 10.3390/membranes12020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022]
Abstract
Liquid membranes usually have three main constructive variants: bulk liquid membranes (BLM), supported liquid membranes (SLM) and emulsion liquid membranes (ELM). Designing hybrid variants is very topical, with the main purpose of increasing the flow of substance through the membrane but also of improving the selectivity. This paper presents the operational limits of some kind of hybrid membrane constituted as a bulk liquid membrane (BLM), but which works by dispersing the aqueous source (SP) and receiving (RP) phases, with the membrane itself being a dispersion of nanoparticles in an organic solvent (NP–OSM). The approached operational parameters were the volume of phases of the hybrid membrane system, the thickness of the liquid membrane, the working temperature, the flow of aqueous phases, the droplet size of the aqueous phases dispersed across the membrane, the nature and concentration of nanoparticles in the membrane, the pH difference between the aqueous phases, the nature of the organic solvent, the salt concentration in the aqueous phases and the nature of transported chemical species. For this study, silver ion (SI) and p-nitrophenol (PNP) were chosen as transportable chemical species, the n-aliphatic alcohols (C6…C12) as membrane organic solvents, 10–undecenoic acid (UDAc) and 10-undecylenic alcohol (UDAl) as carriers and magnetic iron oxides as nanoparticles dispersed in the membrane phase. Under the experimentally established operating conditions, separation efficiencies of over 90% were obtained for both ionic and molecular chemical species (silver ions and p-nitrophenol). The results showed the possibility of increasing the flow of transported chemical species by almost 10 times for the silver ion and approximately 100 times for p-nitrophenol, through the appropriate choice of operational parameters, but they also exposed their limits in relation to the stability of the membrane system.
Collapse
Affiliation(s)
- Andreea Ferencz (Dinu)
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (A.R.G.); (H.N.A.A.-A.); (M.E.C.); (G.N.)
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (A.R.G.); (H.N.A.A.-A.); (M.E.C.); (G.N.)
| | - Hussam Nadum Abdalraheem Al-Ani
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (A.R.G.); (H.N.A.A.-A.); (M.E.C.); (G.N.)
- Chemical Industries Department, Institute of Technology, Middle Technical University, Al Zafaraniyah, Baghdad 10074, Iraq
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (A.R.G.); (H.N.A.A.-A.); (M.E.C.); (G.N.)
- Correspondence: (A.C.N.); (V.-A.G.)
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania;
| | - Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Mihaela Emanuela Crăciun
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (A.R.G.); (H.N.A.A.-A.); (M.E.C.); (G.N.)
| | - Mihail-Răzvan Ioan
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (M.-R.I.)
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
- Correspondence: (A.C.N.); (V.-A.G.)
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (A.R.G.); (H.N.A.A.-A.); (M.E.C.); (G.N.)
| |
Collapse
|
6
|
Albu PC, Ferencz (Dinu) A, Al-Ani HNA, Tanczos SK, Oprea O, Grosu VA, Nechifor G, Bungău SG, Grosu AR, Goran A, Nechifor AC. Osmium Recovery as Membrane Nanomaterials through 10-Undecenoic Acid Reduction Method. MEMBRANES 2021; 12:membranes12010051. [PMID: 35054577 PMCID: PMC8781728 DOI: 10.3390/membranes12010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
The recovery of osmium from residual osmium tetroxide (OsO4) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10-undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in t-butanol and the reducing agent, 10-undecenoic acid (UDA), in i-propanol, t-butanol or n-decanol solution. The membranes containing osmium nanoparticles (Os-NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, p-nitrophenol (PNP) to p-aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10-4 mmol s-1 and 8.05 × 10-4 mmol s-1.
Collapse
Affiliation(s)
- Paul Constantin Albu
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (A.C.N.)
| | - Andreea Ferencz (Dinu)
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Hussam Nadum Abdalraheem Al-Ani
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
- Chemical Industries Department, Institute of Technology, Middle Technical University, Al Zafaraniyah, Baghdad 10074, Iraq
| | - Szidonia-Katalin Tanczos
- Department of Bioengineering, University Sapientia of Miercurea-Ciuc, 500104 Miercurea-Ciuc, Romania
- Correspondence: (S.-K.T.); (V.-A.G.)
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Vlad-Alexandru Grosu
- Department of Electronic Technology and Reliability, Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania
- Correspondence: (S.-K.T.); (V.-A.G.)
| | - Gheorghe Nechifor
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Simona Gabriela Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - Alexandra Raluca Grosu
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Alexandru Goran
- Analytical Chemistry and Environmental Engineering Department, University Politehnica of Bucharest, 011061 Bucharest, Romania; (A.F.); (H.N.A.A.-A.); (G.N.); (A.R.G.); (A.G.)
| | - Aurelia Cristina Nechifor
- Radioisotopes and Radiation Metrology Department (DRMR), IFIN Horia Hulubei, 023465 Măgurele, Romania; (P.C.A.); (A.C.N.)
| |
Collapse
|
7
|
Transport and Separation of the Silver Ion with n-decanol Liquid Membranes Based on 10-undecylenic Acid, 10-undecen-1-ol and Magnetic Nanoparticles. MEMBRANES 2021; 11:membranes11120936. [PMID: 34940437 PMCID: PMC8707525 DOI: 10.3390/membranes11120936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
This paper presents a transport and recovery of silver ions through bulk liquid membranes based on n-decanol using as carriers 10-undecylenic acid and 10-undecylenyl alcohol. The transport of silver ions across membranes has been studied in the presence of two types of magnetic oxide nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver ions by bulk liquid membranes using 10-undecylenic acid and 10-undecylenyl alcohol as carriers were performed by comparison with lead ions. The configuration of the separation module has been specially designed for the chosen separation process. Convective-generating magnetic nanoparticles were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested were tested for silver ion transport and separation through n-decanol liquid membranes with selected carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase, pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl alcohol.
Collapse
|
8
|
Osmium Nanoparticles-Polypropylene Hollow Fiber Membranes Applied in Redox Processes. NANOMATERIALS 2021; 11:nano11102526. [PMID: 34684968 PMCID: PMC8537536 DOI: 10.3390/nano11102526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022]
Abstract
Composite membranes play a very important role in the separation, concentration, and purification processes, but especially in membrane reactors and membrane bioreactors. The development of composite membranes has gained momentum especially through the involvement of various nanoparticles, polymeric, oxide, or metal, that have contributed to increasing their reactivity and selectivity. This paper presents the preparation and characterization of an active metal nanoparticle-support polymer type composite membrane, based on osmium nanoparticles obtained in situ on a polypropylene hollow fiber membrane. Osmium nanoparticles are generated from a solution of osmium tetroxide in tert-butyl alcohol by reduction with molecular hydrogen in a contactor with a polypropylene membrane. The composite osmium-polypropylene hollow fiber obtained membranes (Os-PPM) were characterized from the morphological and structural points of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), X-ray diffraction analysis (XRD), Fourier transform Infrared (FTIR) spectroscopy, thermal gravimetric analysis, and differential scanning calorimetry (TGA, DSC). The process performance was tested in a redox process of p-nitrophenol and 10-undecylenic (10-undecenoic) acid, as a target substance of biological or biomedical interest, in solutions of lower aliphatic alcohols in a membrane contactor with a prepared composite membrane. The characteristics of osmium nanoparticles-polypropylene hollow fiber membranes open the way to biological and biotechnological applications. These membranes do not contaminate the working environment, operate at relatively low temperatures, provide a large contact area between reactants, allow successive oxidation and reduction operations in the same module, and help to recover the reaction mass by ultrafiltration. The results obtained show that the osmium-polypropylene composite membrane allows the reduction of p-nitrophenol or the oxidation of 10-undecylenic acid, the conversion depending on the concentration in the lower aliphatic alcohol, the nature of the lower aliphatic alcohol, and the oxidant or reducing flow through the membrane contactor.
Collapse
|
9
|
Reactional Processes on Osmium-Polymeric Membranes for 5-Nitrobenzimidazole Reduction. MEMBRANES 2021; 11:membranes11080633. [PMID: 34436396 PMCID: PMC8400646 DOI: 10.3390/membranes11080633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Membranes are associated with the efficient processes of separation, concentration and purification, but a very important aspect of them is the realization of a reaction process simultaneously with the separation process. From a practical point of view, chemical reactions have been introduced in most membrane systems: with on-liquid membranes, with inorganic membranes or with polymeric and/or composite membranes. This paper presents the obtaining of polymeric membranes containing metallic osmium obtained in situ. Cellulose acetate (CA), polysulfone (PSf) and polypropylene hollow fiber membranes (PPM) were used as support polymer membranes. The metallic osmium is obtained directly onto the considered membranes using a solution of osmium tetroxide (OsO4), dissolved in tert–butyl alcohol (t–Bu–OH) by reduction with molecular hydrogen. The composite osmium–polymer (Os–P)-obtained membranes were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), energy-dispersive spectroscopy analysis (EDAX), Fourier Transform Infra-Red (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The process performance was tested for reduction of 5–nitrobenzimidazole to 5–aminobenzimidazole with molecular hydrogen. The paper presents the main aspects of the possible mechanism of transformation of 5–nitrobenzimidazole to 5–aminobenzimidazole with hydrogen gas in the reaction system with osmium–polymer membrane (Os–P).
Collapse
|
10
|
Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene Fiber Matrix. MEMBRANES 2021; 11:membranes11060429. [PMID: 34198951 PMCID: PMC8228197 DOI: 10.3390/membranes11060429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/26/2023]
Abstract
The separation, concentration and transport of the amino acids through membranes have been continuously developed due to the multitude of interest amino acids of interest and the sources from which they must be recovered. At the same time, the types of membranes used in the sepa-ration of the amino acids are the most diverse: liquids, ion exchangers, inorganic, polymeric or composites. This paper addresses the recuperative separation of three amino acids (alanine, phe-nylalanine, and methionine) using membranes from cellulosic derivatives in polypropylene ma-trix. The microfiltration membranes (polypropylene hollow fibers) were impregnated with solu-tions of some cellulosic derivatives: cellulose acetate, 2-hydroxyethyl-cellulose, methyl 2-hydroxyethyl-celluloseand sodium carboxymethyl-cellulose. The obtained membranes were characterized in terms of the separation performance of the amino acids considered (retention, flux, and selectivity) and from a morphological and structural point of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and thermal gravimetric analyzer (TGA). The re-sults obtained show that phenylalanine has the highest fluxes through all four types of mem-branes, followed by methionine and alanine. Of the four kinds of membrane, the most suitable for recuperative separation of the considered amino acids are those based on cellulose acetate and methyl 2-hydroxyethyl-cellulose.
Collapse
|
11
|
Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. NANOMATERIALS 2021; 11:nano11051204. [PMID: 34062891 PMCID: PMC8147404 DOI: 10.3390/nano11051204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
The present study introduces the process performances of nitrophenols pertraction using new liquid supported membranes under the action of a magnetic field. The membrane system is based on the dispersion of silver–iron oxide nanoparticles in n-alcohols supported on hollow microporous polypropylene fibers. The iron oxide–silver nanoparticles are obtained directly through cyclic voltammetry electrolysis run in the presence of soluble silver complexes ([AgCl2]−; [Ag(S2O3)2]3−; [Ag(NH3)2]+) and using pure iron electrodes. The nanostructured particles are characterized morphologically and structurally by scanning electron microscopy (SEM and HFSEM), EDAX, XRD, and thermal analysis (TG, DSC). The performances of the nitrophenols permeation process are investigated in a variable magnetic field. These studies show that the flux and extraction efficiency have the highest values for the membrane system embedding iron oxide–silver nanoparticles obtained electrochemically in the presence of [Ag(NH3)2]+ electrolyte. It is demonstrated that the total flow of nitrophenols through the new membrane system depends on diffusion, convection, and silver-assisted transport.
Collapse
|
12
|
Dash S, Mohanty S. Mathematical Modeling Aspect in Solvent Extraction of Metals. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1648294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Swagatika Dash
- Process Modelling and Instrumentation Department, CSIR- Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
- Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) CampusTechnology, Ghaziabad, Uttar Pradesh, India
| | - Swati Mohanty
- Process Modelling and Instrumentation Department, CSIR- Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India
- Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) CampusTechnology, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Enhancement mechanism of an improved liquid membrane using selective permeation retardant for heavy metal ions separation. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Kamran Haghighi H, Irannajad M, Fortuny A, Sastre AM. Mathematical modeling on non-dispersive extraction of germanium from aqueous solutions using Aliquat 336. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2489-2499. [PMID: 30767914 DOI: 10.2166/wst.2019.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the mathematical modeling of the facilitated transport of germanium (non-dispersive extraction) through a flat sheet membrane with an Aliquat 336 carrier was described. The flat sheet supported liquid membrane (FSSLM) experiments were performed under conditions germanium ≈ 100 mg/L, tartaric acid concentration of 2.76 mmol/L, and carrier concentrations of 2.5-10%v/v. The extraction equilibrium, mass transfer, and diffusion equations based on Fick's law were the principles of modeling. Modeling was carried out by programming in Matlab mathematical software to obtain the extraction (Kex) and mass transfer constants (Km) as the objective parameters. According to the model resolution, Kex and Km were found to be 0.178 and 9.25 × 10-2 cm/s, respectively. The correlation coefficients between model and experimental data relating to the Aliquat 336 concentrations of 2.5, 5, 7.5, and 10%v/v were found as 0.96, 0.98, 0.99, and 0.92. The parameters of root mean square error, bias, and scatter index showed the model accuracy. In addition, diffusion coefficients relating to Aliquat 336 concentrations of 2.5, 5, 7.5, and 10%v/v were calculated using mass transfer coefficients to be 2.4 × 10-4, 2.23 × 10-4, 1.91 × 10-4, and 1.79 × 10-4 cm2/s, respectively.
Collapse
Affiliation(s)
- Hossein Kamran Haghighi
- Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran E-mail:
| | - Mehdi Irannajad
- Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran, Iran E-mail:
| | - Agustin Fortuny
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EPSEVG, Av. Víctor Balaguer s/n, 08800 Vilanova i la Geltrú, Spain
| | - Ana Maria Sastre
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, ESTEIB, Av. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Belova VV. Free supported liquid membranes. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2016. [DOI: 10.1134/s0040579516040059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Surfactant-assisted transport of lead ion through a bulk liquid membrane containing dicyclohexyl-18-crown-6: efficient removal of lead from blood serum and sea water. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0839-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Szczepański P. A new method for estimation of the overall mass transfer coefficient in pertraction. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Li G, Xue J, Liu N, Yu L. Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2888-2895. [PMID: 27332833 DOI: 10.2166/wst.2016.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k(1), k(2), R(m)(max), t(max), J(a)(max), J(d)(max)) were also calculated. Apparently, increase in membrane entrance (k(1)) and exit rate (k(2)) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.
Collapse
Affiliation(s)
- Guoping Li
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Juanqin Xue
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Nina Liu
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| | - Lihua Yu
- College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China E-mail:
| |
Collapse
|