1
|
Xiong R, Zhang C, Xiong H, Huang S, Li J. Comparing the abiotic removal of glyphosate by β-MnO 2 and δ-MnO 2 colloids: Insights into kinetics and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124432. [PMID: 38925219 DOI: 10.1016/j.envpol.2024.124432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Glyphosate as an effective broad-spectrum herbicide is frequently detected in various water and soil resources. Given the ubiquity of β-MnO2 and δ-MnO2 colloids in groundwater and soil, the abiotic removal of glyphosate by MnO2 colloids was investigated. β-MnO2 colloids exhibited superior glyphosate removal efficiency, up to 37%, compared to 21% for δ-MnO2 colloids at a pH of 4.0. Glyphosate removal involved simultaneous adsorption and oxidation process, identified by HRTEM, NH3-TPD, XPS, LC-MS, FTIR analyses and the occurrence of aminomethylphosphonic acid (AMPA) and Mn2+. Moreover, adsorption dominated the removal of glyphosate by two MnO2 colloids. The solution pH had a substantial effect on glyphosate removal. Co-existing ions in the solution, such as carbonate (CO32-), phosphate (Na2HPO4, NaH2PO4) and humic acid (HA), were also found to impede glyphosate removal. Phosphate, in particular, exhibited a strong competitive effect for adsorption sites on both MnO2 colloids. Of them, the removal of glyphosate by β-MnO2 colloids was more prone to occur due to its higher specific surface area, abundant oxygen vacancies, and moderate acid sites. However, δ-MnO2 colloids presented a stronger oxidation capacity than that of β-MnO2 colloids due to the quicker generation rate of Mn2+. Finally, AMPA was the same products by two MnO2 colloids in the oxidation process, revealing the degradation pathway based on the cleavage of C-N bond. Therefore, by comparing kinetics and mechanisms of glyphosate removal by β- and δ-MnO2 colloids, this study improves us better understanding for the behavior of glyphosate in the environment.
Collapse
Affiliation(s)
- Ruihan Xiong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan, China.
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan China
| | - Shuxin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiasen Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
2
|
Pierpaoli M, Jakóbczyk P, Ficek M, Dec B, Ryl J, Rutkowski B, Lewkowicz A, Bogdanowicz R. Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36784-36795. [PMID: 38967626 PMCID: PMC11261608 DOI: 10.1021/acsami.4c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated. This study primarily focuses on examining the impact of boron heterodoping and argon plasma treatment on CNW structures, uncovering complex interplays between specific defect-induced three-dimensional nanostructures and electrochemical performance. Moreover, the study introduces the use of defect-rich CNWs as a label-free electrode for directly oxidizing glyphosate (GLY), a common herbicide, and its metabolites (sarcosine and aminomethylphosphonic acid) for the first time. Crucially, we discovered that the presence of specific boron bonds (BC and BN), coupled with the absence of Lewis-base functional groups such as pyridinic-N, is essential for the oxidation of these analytes. Notably, the D+D* second-order combinational Raman modes at ≈2570 cm-1 emerged as a reliable indicator of the analytes' affinity. Contrary to expectations, the electrochemically active surface area and the presence of oxygen-containing functional groups played a secondary role. Argon-plasma post-treatment was found to adversely affect both the morphology and surface chemistry of CNWs, leading to an increase in sp3-hybridized carbon, the introduction of oxygen, and alterations in the types of nitrogen functional groups. Simulations support that certain defects are functional for GLY rather than AMPA. Sarcosine oxidation is the least affected by defect type.
Collapse
Affiliation(s)
- Mattia Pierpaoli
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Paweł Jakóbczyk
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Mateusz Ficek
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Bartłomiej Dec
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| | - Bogdan Rutkowski
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Krakow, A. Mickiewicza 30, Krakow 30-059, Poland
| | - Aneta Lewkowicz
- Faculty
of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland
| | - Robert Bogdanowicz
- Faculty
of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, Gdańsk 80-233, Poland
| |
Collapse
|
3
|
Trinh PB, Schäfer AI. Adsorption of glyphosate and metabolite aminomethylphosphonic acid (AMPA) from water by polymer-based spherical activated carbon (PBSAC). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131211. [PMID: 37121034 DOI: 10.1016/j.jhazmat.2023.131211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is its main metabolite. Their occurrence in ground and surface waters causes diseases in humans, while complex physico-chemical properties hinder detection and effective removal. Polymer-based spherical activated carbon (PBSAC) can adsorb many micropollutants efficiently and, hence, overcome the shortfalls of conventional treatment methods. The static adsorption of a mixture of GLY and AMPA by PBSAC was investigated with varying PBSAC properties and relevant solution chemistry. The results show that PBSAC can remove 95% GLY and 57% AMPA from an initial concentration of 1 µg/L at pH 8.2. PBSAC properties (size, activation level, and surface charge) have a strong influence on herbicide removal, where surface area plays a key role. Low to neutral pH favors non-charge interactions and results in good adsorption, while higher temperatures equally enhance GLY/AMPA adsorption by PBSAC. The work demonstrated the effective removal of GLY to meet the European guideline concentration (0.1 µg/L), while AMPA could not be removed to the required level.
Collapse
Affiliation(s)
- Phuong Bich Trinh
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Iris Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Musa EN, Kaur S, Gallagher TC, Anthony TM, Stickle WF, Árnadóttir L, Stylianou KC. Two Birds, One Stone: Coupling Hydrogen Production with Herbicide Degradation over Metal–Organic Framework-Derived Titanium Dioxide. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
| | - Sumandeep Kaur
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | | | | - William F. Stickle
- HP Inc., 1000 NE Circle Boulevard, Corvallis, Oregon 97330, United States
| | - Líney Árnadóttir
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | | |
Collapse
|
5
|
Kang J, Liu Z, Yu C, Wang Y, Wang X. Degradation performance of high-concentration coking wastewater by manganese oxide ore acidic oxidation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:367-379. [PMID: 35906913 DOI: 10.2166/wst.2022.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The degradation of coking wastewater using a manganese oxide ore acidic oxidation was investigated. This work was performed in three stages. Firstly, the advantageous degradation conditions were measured by the degradation tests, and under the optimal conditions percentage degradation was obtained of 91.6% chemical oxygen demand measured by potassium dichromate oxidation (CODcr), 94.7% total nitrogen (TN), 98.3% phenols, 98.2% fatty acid, 89.5% tar, and 98.9% sulphide for the oxidized effluent, simultaneously cogenerating a Mn2+concentration of 46.2 g/L for Mn-electrolytic stock solution. Secondly, the transformation analysis of the special chemical group of coking wastewater contaminants illustrated that the employment of manganese oxide ore generated the degradation of low and high molecular weight organics, especially causing polymers to break down into oligomers. Thirdly, the electrochemical characteristics of the interface between wastewater and ore revealed that the contaminant degradation of coking wastewater greatly depended on the oxidation capacity of the surface oxide species, involving a simple answer to the MnO2 oxidation for small-molecule organic materials and a strengthening response to the MnO·OH oxidation for high-weight molecule organic substances. The treatment of coking wastewater using the Mn-oxide ore acidic oxidation process is an effective and value-added method, which is particularly applicable to high-concentration coking wastewater.
Collapse
Affiliation(s)
- Jinxing Kang
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| | - Zhiguo Liu
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| | - Chen Yu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, Shandong, China, 266580
| | - Yayun Wang
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| | - Xin Wang
- China ENFI Engineering Co., Ltd, China Minmetals, No. 12, Fuxing Road, Haidian, Beijing, China, 100038 E-mail:
| |
Collapse
|
6
|
Wan Y, Liu J, Pi F, Wang J. Advances on removal of organophosphorus pesticides with electrochemical technology. Crit Rev Food Sci Nutr 2022; 63:8850-8867. [PMID: 35426753 DOI: 10.1080/10408398.2022.2062586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Widespread use of organophosphorus pesticides (OPs), especially superfluous and unreasonable use, had brought huge harm to the environment and food chain. It is because only a small part of the pesticides sprayed reached the target, and the rest slid across the soil, causing pollution of groundwater and surface water resources. These pesticides accumulate in the environment, causing environmental pollution. Therefore, in recent years, the control and degradation of OPs have become a public spotlight and research hotspot. Due to its unique advantages such as versatility, environmental compatibility, controllability, and cost-effectiveness compatibility, electrochemical technology has become one of the most promising methods for degradation of OPs. The fundamental knowledge about electrochemical degradation on OPs was introduced in this review. Then, a comprehensive overview of four main types of practical electrochemical technologies to degrade pesticides were presented and evaluated. The knowledge contained herein should conduce to better understand the degradation of pesticides by electrochemical technology, and better exploit the degradation of pesticides in the environment and food. Overall, the objective of this review is to provide comprehensive guidance for rational design and application of electrochemical technology in the degradation of OPs for the safety of the environment and food chain in the future.
Collapse
Affiliation(s)
- Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
7
|
Castrejón-Godínez ML, Tovar-Sánchez E, Valencia-Cuevas L, Rosas-Ramírez ME, Rodríguez A, Mussali-Galante P. Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms 2021; 9:2322. [PMID: 34835448 PMCID: PMC8625783 DOI: 10.3390/microorganisms9112322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Glyphosate is a broad-spectrum herbicide extensively used worldwide to eliminate weeds in agricultural areas. Since its market introduction in the 70's, the levels of glyphosate agricultural use have increased, mainly due to the introduction of glyphosate-resistant transgenic crops in the 90's. Glyphosate presence in the environment causes pollution, and recent findings have proposed that glyphosate exposure causes adverse effects in different organisms, including humans. In 2015, glyphosate was classified as a probable carcinogen chemical, and several other human health effects have been documented since. Environmental pollution and human health threats derived from glyphosate intensive use require the development of alternatives for its elimination and proper treatment. Bioremediation has been proposed as a suitable alternative for the treatment of glyphosate-related pollution, and several microorganisms have great potential for the biodegradation of this herbicide. The present review highlights the environmental and human health impacts related to glyphosate pollution, the proposed alternatives for its elimination through physicochemical and biological approaches, and recent studies related to glyphosate biodegradation by bacteria and fungi are also reviewed. Microbial remediation strategies have great potential for glyphosate elimination, however, additional studies are needed to characterize the mechanisms employed by the microorganisms to counteract the adverse effects generated by the glyphosate exposure.
Collapse
Affiliation(s)
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (E.T.-S.); (L.V.-C.)
| | - Leticia Valencia-Cuevas
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (E.T.-S.); (L.V.-C.)
| | | | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| |
Collapse
|
8
|
Sadatsharifi M, Ingersoll DW, Purgel M. The fate of a hazardous herbicide: a DFT-based ab initio study on glyphosate degradation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1018-1028. [PMID: 34288996 DOI: 10.1039/d1em00100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glyphosate degradation has been extensively examined; however, only a few detailed computational studies have been performed on the topic so far. There are substantial differences between the degradation products of glyphosate, as AMPA (aminomethylphosphonic acid) is toxic while sarcosine intermediate is non-toxic. These species can have different effects on the environment and, indirectly, on the human body. We performed calculations using density functional theory and post-Hartree-Fock correlated ab initio methods to find the possible mechanisms for the degradation process by small (hydroxyl, peroxyl, and superoxide) radicals. We found that direct sarcosine formation is strongly dependent on the concentration of the radical species. AMPA and glycine were mostly formed as aldehyde derivatives, while in addition to the former, glyoxylate and bicarbonate are formed alternatively. A significant pH effect was also found for the competitive reactions determined by the calculated rate constants of the elementary steps. Overall barriers showed similarities by DFT but ab initio methods could separate them.
Collapse
Affiliation(s)
| | - Daniel W Ingersoll
- St. Mary's College of Maryland, 47645 College Drive, St. Mary's City, MD 20686-3001, USA
| | - Mihály Purgel
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|
9
|
Espinoza-Montero PJ, Vega-Verduga C, Alulema-Pullupaxi P, Fernández L, Paz JL. Technologies Employed in the Treatment of Water Contaminated with Glyphosate: A Review. Molecules 2020; 25:E5550. [PMID: 33256069 PMCID: PMC7730355 DOI: 10.3390/molecules25235550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Glyphosate [N-(phosphonomethyl)-glycine] is a herbicide with several commercial formulations that are used generally in agriculture for the control of various weeds. It is the most used pesticide in the world and comprises multiple constituents (coadjutants, salts, and others) that help to effectively reach the action's mechanism in plants. Due to its extensive and inadequate use, this herbicide has been frequently detected in water, principally in surface and groundwater nearest to agricultural areas. Its presence in the aquatic environment poses chronic and remote hazards to human health and the environment. Therefore, it becomes necessary to develop treatment processes to remediate aquatic environments polluted with glyphosate, its metabolites, and/or coadjutants. This review is focused on conventional and non-conventional water treatment processes developed for water polluted with glyphosate herbicide; it describes the fundamental mechanism of water treatment processes and their applications are summarized. It addressed biological processes (bacterial and fungi degradation), physicochemical processes (adsorption, membrane filtration), advanced oxidation processes-AOPs (photocatalysis, electrochemical oxidation, photo-electrocatalysis, among others) and combined water treatment processes. Finally, the main operating parameters and the effectiveness of treatment processes are analyzed, ending with an analysis of the challenges in this field of research.
Collapse
Affiliation(s)
- Patricio J. Espinoza-Montero
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Carolina Vega-Verduga
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Paulina Alulema-Pullupaxi
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 17-01-2184, Ecuador; (C.V.-V.); (P.A.-P.); (L.F.)
| | - Jose L. Paz
- Departamento de Física, Escuela Politécnica Nacional, Ladrón de Guevara, Quito 17-12-866, Ecuador;
| |
Collapse
|
10
|
Feng D, Soric A, Boutin O. Treatment technologies and degradation pathways of glyphosate: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140559. [PMID: 32629265 DOI: 10.1016/j.scitotenv.2020.140559] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate is one of the most widely used post-emergence broad-spectrum herbicides in the world. This molecule has been frequently detected in aqueous environment and can cause adverse effects to plants, animals, microorganisms, and humans. This review offers a comparative assessment of current treatment methods (physical, biological, and advanced oxidation process) for glyphosate wastewaters, considering their advantages and drawbacks. As for other molecules, adsorption does not destroy glyphosate. It can be used before other processes, if glyphosate concentrations are very high, or after, to decrease the final concentration of glyphosate and its by-products. Most of biological and oxidation processes can destroy glyphosate molecules, leading to by-products (the main ones being AMAP and sarcosine) that can be or not affected by these processes. This point is of major importance to control process efficiency. That is the reason why a specific focus on glyphosate degradation pathways by biological treatment or different advanced oxidation processes is proposed. However, one process is usually not efficient enough to reach the required standards. Therefore, the combination of processes (for instance biological and oxidation ones) seems to be high-performance technologies for the treatment of glyphosate-containing wastewater, due to their potential to overcome some drawbacks of each individual process. Finally, this review provides indications for future work for different treatment processes to increase their performances and gives some insights into the treatment of glyphosate or other organic contaminants in wastewater.
Collapse
Affiliation(s)
- Dan Feng
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | - Audrey Soric
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | - Olivier Boutin
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| |
Collapse
|
11
|
Feng D, Malleret L, Soric A, Boutin O. Kinetic study of glyphosate degradation in wet air oxidation conditions. CHEMOSPHERE 2020; 247:125930. [PMID: 31978662 DOI: 10.1016/j.chemosphere.2020.125930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/07/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate is one of the most widely used herbicides in the world against perennial and annual weeds. It has been reported to be a micro pollutant, and its degradation in different wastewater treatment processes must be studied. For that purpose, the kinetics of wet air oxidation of glyphosate was studied in an autoclave reactor at a temperature range of 423-523 K and under a total pressure of 15 MPa. Oxidation reactions obeyed the first-order kinetics with respect to glyphosate concentration. The activation energy for glyphosate oxidation was found to be equal to 68.4 kJ mol-1. Furthermore, the possible reaction intermediates and main end products of glyphosate degradation in the wet air oxidation process were identified and quantified using UV-spectrophotometry and liquid chromatography coupled to high resolution mass spectrometry. A degradation pathway for glyphosate oxidation was proposed.
Collapse
Affiliation(s)
- Dan Feng
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France
| | | | - Audrey Soric
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France
| | - Olivier Boutin
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| |
Collapse
|
12
|
Páez MR, Ochoa-Muñoz Y, Rodriguez-Páez J. Efficient removal of a glyphosate-based herbicide from water using ZnO nanoparticles (ZnO-NPs). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Metal modified silica for catalytic wet air oxidation (CWAO) of glyphosate under atmospheric conditions. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Guo D, Muhammad N, Lou C, Shou D, Zhu Y. Synthesis of dendrimer functionalized adsorbents for rapid removal of glyphosate from aqueous solution. NEW J CHEM 2019. [DOI: 10.1039/c8nj04433c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonated PAMAM grafted adsorbents for rapid removal of glyphosate.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Nadeem Muhammad
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Chaoyan Lou
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| | - Dan Shou
- Department of Medicine
- Zhejiang Academy of Traditional Chinese Medicine
- Hangzhou 310007
- China
| | - Yan Zhu
- Department of Chemistry
- Xixi Campus
- Zhejiang University
- Hangzhou 310028
- China
| |
Collapse
|
15
|
|
16
|
Nawaz F, Cao H, Xie Y, Xiao J, Chen Y, Ghazi ZA. Selection of active phase of MnO 2 for catalytic ozonation of 4-nitrophenol. CHEMOSPHERE 2017; 168:1457-1466. [PMID: 27923503 DOI: 10.1016/j.chemosphere.2016.11.138] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/08/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
Catalytic ozonation is a highly effective method in wastewater treatment, and MnO2 materials are widely recognized as active heterogeneous catalysts in this process. Many works reported the progress in active MnO2 synthesis, but the active phase is rarely systematically studied. In this paper, all six phases of MnO2 (α-, β-, δ-, γ-, λ- and ε-) were synthesized by facile methods. Their catalytic activities in ozonation of 4-nitrophenol (4-NP) were evaluated and correlated with the physicochemical properties obtained from X-ray Diffraction (XRD), transmission electron microscopy (TEM), physical adsorption and cyclic voltammetry (CV) analysis. α- MnO2 was found to be the most active catalyst in 4-NP degradation at neutral pH. MnO2 with low average oxidation state (AOS) showed stronger oxidation/reduction peaks in CV characterization, which benefited catalytic decomposition of ozone to generate active species. Superoxide radical was confirmed as the main oxidizing species, along with singlet oxygen and ozone molecule oxidation in bulk solution and little contribution of oxidation on the MnO2 surface. Mn2+ leaching happened during catalytic ozonation, but its catalytic role is negligible. This result may give rise to the preparation of new active MnO2 catalysts.
Collapse
Affiliation(s)
- Faheem Nawaz
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiadong Xiao
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Chen
- Beijing Engineering Research Center of Process Pollution Control, Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zahid Ali Ghazi
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang T, Ren J, Qu G, Liang D, Hu S. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:539-546. [PMID: 27597154 DOI: 10.1016/j.jhazmat.2016.08.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh-1, and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO43- and NO3-. The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO43- and NO3-, CO2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation.
Collapse
Affiliation(s)
- Tiecheng Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Shaanxi Province, 712100, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Jingyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Shibin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
18
|
Jaisi DP, Li H, Wallace AF, Paudel P, Sun M, Balakrishna A, Lerch RN. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8474-8482. [PMID: 27775891 DOI: 10.1021/acs.jafc.6b02608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH- or •OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.
Collapse
Affiliation(s)
- Deb P Jaisi
- Department of Plant and Soil Sciences , University of Delaware, Newark, Delaware 19716, United States
| | - Hui Li
- Department of Plant and Soil Sciences , University of Delaware, Newark, Delaware 19716, United States
| | - Adam F Wallace
- Department of Geological Sciences , University of Delaware, Newark, Delaware 19716, United States
| | - Prajwal Paudel
- Department of Plant and Soil Sciences , University of Delaware, Newark, Delaware 19716, United States
| | - Mingjing Sun
- Department of Plant and Soil Sciences , University of Delaware, Newark, Delaware 19716, United States
| | - Avula Balakrishna
- Department of Plant and Soil Sciences , University of Delaware, Newark, Delaware 19716, United States
| | - Robert N Lerch
- USDA-ARS , Cropping Systems and Water Quality Research Unit, Columbia, Missouri 65211, United States
| |
Collapse
|
19
|
Lan H, He W, Wang A, Liu R, Liu H, Qu J, Huang CP. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability. WATER RESEARCH 2016; 105:575-582. [PMID: 27693969 DOI: 10.1016/j.watres.2016.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
An activated carbon fiber (ACF) cathode was fabricated and used to treat glyphosate containing wastewater by the Electro-Fenton (EF) process. The results showed that glyphosate was rapidly and efficiently degraded and the BOD5/COD ratio was increased to >0.3 implying the feasibility of subsequent treatment of the treated wastewater by biological methods. The results of ion chromatography and HPLC measurements indicated that glyphosate was completely decomposed. Effective OH generation and rapid recycling/recovery of the Fe2+ ions at the cathode were responsible primarily for the high performance of the ACF-EF process. Factors such as inlet oxygen gas flow rate, Fe2+ dosage, initial glyphosate concentration, applied current intensity, and solution pH that may affect the efficiency of the ACF-EF process were further studied and the optimum operation condition was established. Results of SEM/EDX, BET and XPS analysis showed the deposition of highly dispersed fine Fe2O3 particles on the ACF surface during the EF reaction. The possibility of using the Fe2O3-ACF as iron source in the EF process was assessed. Results showed that the Fe2O3-ACF electrode was effective in degrading glyphosate in the EF process. The deposition of Fe2O3 particles on the ACF electrode had no adverse effect on the reusability of the ACF cathode.
Collapse
Affiliation(s)
- Huachun Lan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Wenjing He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Aimin Wang
- Department of Municipal & Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huijuan Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, 352 Du Pont Hall, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Pensel A, Peulon S, Chaussé A. Efficient electrochemical treatment based on electrodeposited thin films of birnessite for mineralisation of AMPA (aminomethylphosphonic acid) in very soft conditions. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|