1
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
2
|
Yan X, Li W, Zhang X, Liu S, Qu H. Development of an on-line Raman spectral analytical method for monitoring and endpoint determination of the Cornu Caprae Hircus hydrolysis process. J Pharm Pharmacol 2019; 72:132-148. [PMID: 31713245 DOI: 10.1111/jphp.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Cornu Caprae Hircus (goat horn, GH), a medicinal animal horn, is frequently used in traditional Chinese medicine, and hydrolysis is one of the most important processes for GH pretreatment in pharmaceutical manufacturing. In this study, on-line Raman spectroscopy was applied to monitor the GH hydrolysis process by the development of partial least squares (PLS) calibration models for different groups of amino acids. METHODS Three steps were considered in model development. In the first step, design of experiments (DOE)-based preprocessing method selection was conducted. In the second step, the optimal spectral co-addition number was determined. In the third step, sample selection or reconstruction methods based on hierarchical clustering analysis (HCA) were used to extract or reconstruct representative calibration sets from the pool of hydrolysis process samples and investigated for their ability to improve model performance. KEY FINDINGS This study has shown the feasibility of using on-line Raman spectral analysis for monitoring the GH hydrolysis process based on the designed measurement system and appropriate model development steps. CONCLUSIONS The proposed Raman-based calibration models are expected to be used in GH hydrolysis process monitoring, leading to more rapid material information acquisition, deeper process understanding, more accurate endpoint determination and thus better product quality consistency.
Collapse
Affiliation(s)
- Xu Yan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenlong Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Zhang
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Shaoyong Liu
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhai CH, Xuan JB, Fan HL, Zhao TF, Jiang JL. The application of SVR model in the improvement of QbD: a case study of the extraction of podophyllotoxin. Drug Dev Ind Pharm 2018; 44:1506-1511. [PMID: 29676171 DOI: 10.1080/03639045.2018.1467924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Chun-Hui Zhai
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Jian-Bang Xuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Hai-Liu Fan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Teng-Fei Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Jian-Lan Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| |
Collapse
|
5
|
Chen T, Gong X, Chen H, Qu H. Process development for the decoloration ofPanax notoginsengextracts: A design space approach. J Sep Sci 2014; 38:346-55. [DOI: 10.1002/jssc.201400808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Teng Chen
- Pharmaceutical Informatics Institute; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou China
| | - Huali Chen
- Pharmaceutical Informatics Institute; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou China
| | - Haibin Qu
- Pharmaceutical Informatics Institute; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou China
| |
Collapse
|
6
|
Jiang C, Qu H. A comparative study of using in-line near-infrared spectra, ultraviolet spectra and fused spectra to monitor Panax notoginseng adsorption process. J Pharm Biomed Anal 2014; 102:78-84. [PMID: 25255448 DOI: 10.1016/j.jpba.2014.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
The step of enriching and purifying saponins by macroporous resin column chromatography is closely related to the safety and efficacy of Panax notoginseng products during their manufacturing processes. Adsorption process is one of the most critical unit operations within each chromatographic cycle. In order to understand the adsorption process directly, it is necessary to develop a rapid and precise method to monitor the adsorption process in real time. In this study, comparative evaluation of using near-infrared (NIR) spectra, ultraviolet (UV) spectra and fused spectra to monitor the adsorption process of P. notoginseng was conducted. The uninformative variable elimination by partial least squares (UVE-PLS) regression models were established for quantification of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1 and ginsenoside Rd in effluents based on different spectra. There was a significant improvement provided by the models based on fused spectra. The results in this work were conducive to solving the problems about real-time quantitative analysis of saponins during P. notoginseng adsorption. The fusion method of NIR and UV spectra combined with UVE-PLS regression could be a promising strategy to real-time analyze the components, which are difficult to be quantified by individual spectroscopic technique.
Collapse
Affiliation(s)
- Cheng Jiang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhu J, Fan X, Cheng Y, Agarwal R, Moore CMV, Chen ST, Tong W. Chemometric analysis for identification of botanical raw materials for pharmaceutical use: a case study using Panax notoginseng. PLoS One 2014; 9:e87462. [PMID: 24498109 PMCID: PMC3909187 DOI: 10.1371/journal.pone.0087462] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/28/2013] [Indexed: 11/18/2022] Open
Abstract
The overall control of the quality of botanical drugs starts from the botanical raw material, continues through preparation of the botanical drug substance and culminates with the botanical drug product. Chromatographic and spectroscopic fingerprinting has been widely used as a tool for the quality control of herbal/botanical medicines. However, discussions are still on-going on whether a single technique provides adequate information to control the quality of botanical drugs. In this study, high performance liquid chromatography (HPLC), ultra performance liquid chromatography (UPLC), capillary electrophoresis (CE) and near infrared spectroscopy (NIR) were used to generate fingerprints of different plant parts of Panax notoginseng. The power of these chromatographic and spectroscopic techniques to evaluate the identity of botanical raw materials were further compared and investigated in light of the capability to distinguishing different parts of Panax notoginseng. Principal component analysis (PCA) and clustering results showed that samples were classified better when UPLC- and HPLC-based fingerprints were employed, which suggested that UPLC- and HPLC-based fingerprinting are superior to CE- and NIR-based fingerprinting. The UPLC- and HPLC- based fingerprinting with PCA were able to correctly distinguish between samples sourced from rhizomes and main root. Using chemometrics and its ability to distinguish between different plant parts could be a powerful tool to help assure the identity and quality of the botanical raw materials and to support the safety and efficacy of the botanical drug products.
Collapse
Affiliation(s)
- Jieqiang Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (XF); (RA); (WT)
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rajiv Agarwal
- Office of New Drug Quality Assessment, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (XF); (RA); (WT)
| | - Christine M. V. Moore
- Office of New Drug Quality Assessment, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Shaw T. Chen
- Office of New Drugs, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Weida Tong
- National Center for Toxicological Research (NCTR), US Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (XF); (RA); (WT)
| |
Collapse
|