1
|
Li B, Liang H, Hu Y, Zhou X, Yang P, Chen X, Liang H, Wu C, Zhou B. Tannic acid coordination assembly enhances the interfacial properties of salted egg white gel particles. Int J Biol Macromol 2024:139181. [PMID: 39732233 DOI: 10.1016/j.ijbiomac.2024.139181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Tannic acid (TA) has attracted the attention of researchers as a promising organic ligand capable of forming metal-organic coordination networks with various metal ions at interfaces to impact surface properties. In this study, we innovatively reported a self-assembly method for surface decoration by depositing TA/Fe3+ coatings on the surface of desalted duck egg white nanoparticles (DEWN), further studying the oil/water interfacial properties of the modified particles. The results showed that the ratio and concentration of TA to Fe3+ could modulate interfacial properties. The modified DEWN has low interfacial tension, with TFe2 having near-neutral wettability (θo/w ~ 90°) and stabilizing emulsions for over 60 days. Moreover, the emulsions stabilized by TFe1 and TFe2 formed stronger gel structures with better thixotropic recovery (98.82 % and 89.26 %). After further increasing the oil phase ratio, the increased layer assembly concentration improved the stability of the oil phase and formed a dense gel mesh structure. The effects of temperature and salt ion concentration on the emulsion were investigated under optimum conditions, both of which showed good stability. Overall, our research not only highlighted straightforward strategies for preparing emulsions with higher stability using green and sustainable raw materials, but also broadened the range of applications for metal-phenol decoration.
Collapse
Affiliation(s)
- Bojia Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyu Liang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of education & Hubei province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yueqi Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peiyu Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of education & Hubei province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Xiaojuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Can Wu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of education & Hubei province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Bin Zhou
- Cooperative Innovation Center of Industrial Fermentation, Ministry of education & Hubei province, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
2
|
Tan J, Qiu W, Wu N, Xu L, Chen S, Yao Y, Xu M, Zhao Y, Tu Y. Mechanism of ultrasonic enhancement of the gelling properties of salted ovalbumin-cooked soybean isolate hybrid gels. Food Chem X 2024; 21:101151. [PMID: 38312487 PMCID: PMC10835599 DOI: 10.1016/j.fochx.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
The influence of ultrasonic processing on the physicochemical characteristics, microstructure, and intermolecular forces of the hybrid gels obtained by heating the mixtures of different ratios of salted ovalbumin (SOVA)-cooked soybean protein isolate (CSPI) was investigated. With the growth of SOVA addition, ζ-potential in absolute value, cohesiveness, water-holding capacity (WHC), surface hydrophobicity, and the content of soluble protein of the hybrid gels decreased (P < 0.05), while the hardness, T2 relaxation time of the hybrid gels increased (P < 0.05). And the compactness of the network structure of the hybrid gel increased with the increase of SOVA addition. After being treated with ultrasound, significant increases (P < 0.05) of ζ-potential in absolute value, cohesiveness, WHC, and surface hydrophobicity of the hybrid gels were observed. In general, ultrasonic processing is one of the effective means to improve the gel properties of SOVA-CSPI hybrid gels.
Collapse
Affiliation(s)
- Ji'en Tan
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Qiu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lilan Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Xin X, Qiu W, Xue H, Zhang G, Hu H, Zhao Y, Tu Y. Improving the gel properties of salted egg white/cooked soybean protein isolate composite gels by ultrasound treatment: Study on the gelling properties and structure. ULTRASONICS SONOCHEMISTRY 2023; 97:106442. [PMID: 37244085 DOI: 10.1016/j.ultsonch.2023.106442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.
Collapse
Affiliation(s)
- Xiaojuan Xin
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Wei Qiu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Hu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China; Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Yao X, Xu J, Xun Y, Du T, Huang M, Guo J. High gelatinous salted duck egg white protein powder gel: Physicochemical, microstructure and techno-functional properties. Front Nutr 2023; 10:1110786. [PMID: 36819671 PMCID: PMC9935615 DOI: 10.3389/fnut.2023.1110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Salted duck egg is one of the most popular products, and China is one of the major countries consuming salted duck egg products. However, due to the high salt content of salted egg white and low physical and chemical properties such as gel, many factories generally only use salted egg yolk and discard salted duck egg white (SDEW) as a waste liquid when processing. This is not only a waste of resources, but also a pollution to the environment. In this paper, protein powder was prepared from salted egg white. Then xanthan gum (XG) was added to make it co-gel with ovalbumin to achieve the purpose of preparing high gelatinous salted egg white protein powder. The results showed that the optimum conditions of SDEW-XG composite gel were as follows: the xanthan gum content was 0.08% (w/w), the reaction pH was 6.5, and the heating temperature was 100°C. Under these conditions, the gel strength reaches the maximum value. Meanwhile, compared with the protein powder without xanthan gum, the addition of xanthan gum significantly affected the secondary structure of the protein powder of SDEW and improved the water holding capacity of the gel. In conclusion, the addition of xanthan gum can significantly improve the gel quality of SDEW protein powder, which provides a theoretical basis for the quality improvement of salted egg white.
Collapse
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China,*Correspondence: Jicheng Xu, ✉
| | - Yu Xun
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Mengqi Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biology and Food Science, Suzhou University, Suzhou, China,Jun Guo, ✉
| |
Collapse
|
5
|
Extraction and Characterization of Lysozyme from Salted Duck Egg White. Foods 2022; 11:foods11223567. [PMID: 36429159 PMCID: PMC9689153 DOI: 10.3390/foods11223567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Salted duck egg white (SDEW), as the main by-product in the production process of salted egg yolk, has not been effectively used as a food resource because of its high salt concentration. This study creatively used isoelectric point precipitation, ultrafiltration, and cation exchange to separate and purify lysozyme from SDEW and preliminarily explored the enzymatic properties of lysozyme. The results showed that the relative molecular weight of lysozyme was about 14 KDa, and the specific activity of lysozyme reached 18,300 U/mg. Lysozyme had good stability in the temperature range of 30 °C to 60 °C and pH of 4 to 7. Metal ions, Fe2+, Cu2+, and Zn2+, strongly inhibited lysozyme activity. Different surfactants showed certain inhibition effects on lysozyme from SDEW, among which glycerin had the strongest inhibitory effect. This study aimed to provide a theoretical reference for industrial purification and production of lysozyme from SDEW.
Collapse
|
6
|
Du T, Xu J, Zhu S, Yao X, Guo J, Lv W. Effects of spray drying, freeze drying, and vacuum drying on physicochemical and nutritional properties of protein peptide powder from salted duck egg white. Front Nutr 2022; 9:1026903. [PMID: 36337632 PMCID: PMC9626763 DOI: 10.3389/fnut.2022.1026903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2023] Open
Abstract
Salted duck egg white contains many kinds of high quality protein, but it is often discarded as food factory waste because of high salinity and other reasons. The discarded salted duck egg white not only causes a waste of resources, but also causes environmental pollution. Using salted duck egg white as raw material, this study was completed to investigate the effects of three drying methods including freeze drying, vacuum drying, and spray drying on physicochemical and nutritional properties of protein powder from salted duck egg white. The results showed that the solubility, foaming and foaming stability, emulsification and emulsification stability of the protein peptide of salted duck egg white decreased to different degrees after drying. The scavenging rates of freeze-dried samples for superoxide anion, hydroxyl radical, and 1,1-Diphenyl-2-picrylhydrazyl (DPPH·) reached 48.76, 85.03, and 80.17%, respectively. Freeze drying had higher scavenging rates than vacuum drying and spray drying. The results of electron microscopy showed that freeze-drying had the least effect on the structure of protein peptide powder of salted duck egg white. The purpose of this experiment was to provide theoretical guidance and technical support for industrial drying of salted duck egg white protein solution.
Collapse
Affiliation(s)
- Tianyin Du
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jicheng Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shengnan Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Xinjun Yao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Jun Guo
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Yao X, Xu J, Adhikari B, Lv W, Chen H. Mooncake production waste: Nutritional value and comprehensive utilization of salted duck egg white. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinjun Yao
- College of Biological and Food Engineering Anhui Polytechnic University 241000 Wuhu Anhui China
| | - Jicheng Xu
- College of Biological and Food Engineering Anhui Polytechnic University 241000 Wuhu Anhui China
| | - Benu Adhikari
- School of Science RMIT University Melbourne VIC 3083 Australia
| | - Weiqiao Lv
- College of Engineering China Agricultural University 100083 Beijing China
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
| |
Collapse
|
8
|
Dai Y, Zhao J, Liang H, Deng Q, Wan C, Li B, Zhou B. Desalination of salted duck egg white assisted by gelatin: Foaming and interface properties of the mixed system. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Chen Z, Cui B, Guo X, Zhou B, Wang S, Pei Y, Li B, Liang H. Fabrication and characterization of Pickering emulsions stabilized by desalted duck egg white nanogels and sodium alginate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:949-956. [PMID: 34302360 DOI: 10.1002/jsfa.11427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The waste of salted egg white resources has always been a serious problem in the food industry. In this current study, we report on a kind of Pickering emulsion system, which was stabilized by duck egg white nanogels (DEWNs) and sodium alginate (SA), followed by which this system was crosslinked by calcium carbonate (CaCO3 ) via controlling the gluconolactone (GDL) concentrations, aiming to open up a promising route for making full use of these protein resources. RESULTS The droplet size of the emulsion exhibited a reduction with an increase in SA concentrations, indicating that higher negative charges and steric hindrance was useful for a stable emulsion system. Meanwhile, the result of rheology measurement showed that storage modulus (G') values were higher than loss modulus (G″) values of the samples at higher GDL concentration, revealing the formation of elastic gel-like networks in the system, which was fabricated by SA and Ca2+ released by the CaCO3 particles. The gel-like network structure in the continuous phase improved both the freeze-thaw and thermal stability of the obtained Pickering emulsion system. Encouragingly, the Pickering high internal phase emulsions (HIPEs, φ = 0.75) stabilized by DEWN/SA3 -GDL3 were prepared, which could be stored at 4 °C for at least 30 days without oiling-off and creaming. CONCLUSION These findings not only develop a green ultra-stable Pickering emulsion system but also extend the potential commercial applications of duck egg white proteins in the food, cosmetics, and pharmaceutical industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ze Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bing Cui
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaohan Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan, China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Functional Food Engineering & Technology Research Center of Hubei Province, Huazhong Agriculture University, Wuhan, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Shi Q, Wei M, Chen H, Gao J, Tong P. Desalination of duck egg white by biocoagulation to obtain peptide-ferrous chelate as iron delivery system: Preparation, characterization, and Fe2+ release evaluation in vitro. J Food Sci 2021; 86:4678-4690. [PMID: 34519371 DOI: 10.1111/1750-3841.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
The annual output of salted duck egg white (SDEW) is estimated to be over 1.5 million tons in China, most of which is discarded due to high salt content. This has led to serious waste and environmental impact. Therefore, we developed an eco-friendly biocoagulation separation technology by combining chitosan and sodium alginate in order to produce a novel iron-binding peptide (DPs-Fe2+) from SDEW. The structure of DPs-Fe2+ was characterized by ultraviolet-visible spectroscopy, fluorescence spectroscopy, and Fourier transform infrared spectroscopy, followed by measuring DPs-Fe2+ response in a simulated digestion/Caco-2 cell model. Results showed that chitosan and sodium alginate complex could remove 91.21% of salt from SDEW, and the protein recovery rate reached 95.50%. Characterization results indicated that DPs bonded with Fe2+ to form a soluble chelate. Moreover, Caco-2 cell monolayer model indicated that the transport rate of Fe2+ was as high as 10.02% at 0.1 mg/ml concentration of digested chelates. The results demonstrate the potential application of DPs as a novel carrier for enhancing iron absorption. This research contributes to the development of an effective industrial desalination method and highlights an opportunity for recycling an otherwise discarded processing byproduct. PRACTICAL APPLICATION: Salted duck egg whites (SDEW) are the primary byproduct of salted egg yolk production, most of which is discarded due to high salt content. Hence, efficient utilization of the high-value proteins in SDEW is an urgent problem that must be resolved. Herein, we developed an effective industrial desalination method by combining chitosan and sodium alginate, which achieved excellent SDEW desalination and protein recovery. Furthermore, we produced a novel iron-binding peptide (DPs-Fe2+), which enhanced the transportation and absorption of Fe2+ in Caco-2 cell model, suggesting its potential as an iron supplement.
Collapse
Affiliation(s)
- Qiang Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Meijuan Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China.,School of Food Science & Technology, Nanchang University, Nanchang, People's Republic of China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China.,Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, People's Republic of China
| | - Jinyan Gao
- School of Food Science & Technology, Nanchang University, Nanchang, People's Republic of China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
11
|
Xiao N, Huang X, He W, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Res Int 2021; 147:110563. [PMID: 34399539 DOI: 10.1016/j.foodres.2021.110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
The rapid development of egg industries produced vast byproducts that have not been effectively used. In this paper, the comprehensive utilization of egg byproducts was reviewed. Protein extraction and enzymatic hydrolysis were the main used ways for recycle of egg byproducts. The fact that eggshell membrane could accelerate would healing and improve facial skin of healthy people for 12 weeks was found. However, salted egg white had poor functional properties owing to high salt and ultrafiltration was an effective technology to remove 92.93% of salt. Moreover, Defatted yolk protein had the great potential to be used as food additives and functional foods. Other egg byproducts such as egg inhibitor and eggshells also were discussed. The novel applications of egg byproducts in the food field included food additives, feeds, food packaging materials and nutraceuticals based on current knowledge, but the proportion needed to be improved. This paper would provide a new insight for comprehensive utilization of egg byproducts.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi Huang
- National Research and Development Center for Egg Processing, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
|
13
|
Tang H, Tan L, Chen Y, Zhang J, Li H, Chen L. Effect of κ-carrageenan addition on protein structure and gel properties of salted duck egg white. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1389-1395. [PMID: 32835415 DOI: 10.1002/jsfa.10751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Salted duck egg white (SDEW) is a major by-product during salted egg yolk manufacturing. Due to the high salt concentration, SDEW has not been efficiently utilized. Moreover, functional properties of SDEW are altered by salt during pickling. To improve the functional properties, the effect of κ-carrageenan (κ-CAR) addition on the protein structure and gel properties of SDEW was investigated in this study. RESULTS The surface hydrophobicity and free sulfhydryl content of SDEW protein increased, while total sulfhydryl content decreased significantly with the addition of κ-CAR (0.02-0.10%). Fourier-transform infrared spectroscopy analysis revealed that the relative content of α-helix and β-turn decreased, β-sheet and random coil increased, indicating the variation tendency of protein structure from order to disorder. As κ-CAR addition increased, the texture profiles including hardness, gumminess, chewiness, springiness, cohesiveness and resilience of SDEW gel were all improved. Water holding capacity increased significantly by 32.33% in the presence of 0.10% κ-CAR addition. The scanning electron microscopy indicated that the microstructure of SDEW/κ-CAR mixed gel was more smooth and compact. CONCLUSION The results suggested that adding κ-CAR can be an effective method to improve gel quality of SDEW. This study is expected to provide theoretical basis for modification of SDEW protein, as well as preparation of food ingredients with better gel properties from SDEW. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Lulan Tan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yifan Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| |
Collapse
|
14
|
Santos MG, de Carvalho DT, Caminitti LB, de Lima BBA, Cavalcanti MHDS, Dos Santos DFR, Virtuoso LS, Hirata DB, Figueiredo EC. Use of magnetic Fe 3O 4 nanoparticles coated with bovine serum albumin for the separation of lysozyme from chicken egg white. Food Chem 2021; 353:129442. [PMID: 33714116 DOI: 10.1016/j.foodchem.2021.129442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
Fe3O4 magnetic nanoparticles modified with tetraethyl orthosilicate and bovine serum albumin (Fe3O4@TEOS@BSA) were synthesized and efficiently used to separate lysozyme from egg white. Glutaraldehyde was used to crosslink the bovine serum albumine molecules around the nanoparticles. The surface modifications were attested by transmission electron microscopy, infrared spectroscopy, thermogravimetry analysis, and zeta potential. The material was thermally stable, and its surface charge was pH-dependent. The best lysozyme adsorption and desorption were obtained at pHs 10.0 and 5.0, respectively. The pseudo-second-order model fitted well into the lysozyme adsorption kinetic data and the time for the equilibrium was 15 min. The adsorption equilibrium results were best described by the Freundlich model. Fe3O4@TEOS@BSA particles were very efficient to extract lysozyme from chicken egg, according to the SDS-PAGE analyses. The extracted molecules maintained their enzymatic activity in about 90%. Fe3O4@TEOS@BSA particles were easily recycled, with their reuse being possible 5 times with the same performance.
Collapse
Affiliation(s)
- Mariane Gonçalves Santos
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil.
| | - Diailison Teixeira de Carvalho
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Lucas Belga Caminitti
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Bruna Bueno Alves de Lima
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Marcello Henrique da Silva Cavalcanti
- Colloid Chemistry Group, Chemistry Institute, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Daniel Felipe Rocha Dos Santos
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Luciano Sindra Virtuoso
- Colloid Chemistry Group, Chemistry Institute, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Daniela Battaglia Hirata
- Bioprocess Laboratory - BIOPRO, Chemistry Institute, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| | - Eduardo Costa Figueiredo
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva street, 37130-000 Alfenas, MG, Brazil
| |
Collapse
|
15
|
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH
‐sensitive polymers: Classification and some fine potential applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5230] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| |
Collapse
|
16
|
|
17
|
Smart materials for point-of-care testing: From sample extraction to analyte sensing and readout signal generator. Biosens Bioelectron 2020; 170:112682. [PMID: 33035898 DOI: 10.1016/j.bios.2020.112682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
The last decade has seen a surge of technical developments in the field on point-of-care testing (POCT). While these developments are extremely diverse, the common aim is to implement improved methods for quick, reliable and inexpensive diagnosis of patients within the clinical setting. While examples of successful introduction and use of POCT techniques are growing, further developments are still necessary to create POCT devices with better portability, usability and performance. Advances in smart materials emerge as potentially valuable know-hows to provide a competitive edge to the development of next generation POCT devices. This review describes the key advantages of adopting smart material-based technologies at different analytical stages of a POCT platform. Under these analytical stages which involves sample pre-treatment, analyte sensing and readout signal generator, several concepts and approaches from contemporary research work in using smart material-based technologies will be the major focus in this review. Lastly, challenges and potential outlook in implementing materials technologies from the application point of view for POCT will be discussed.
Collapse
|
18
|
Preparation of a recyclable novel thermoresponsive affinity copolymer and its application towards ε-polylysine purification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Li X, Dai Y, Row KH. Preparation of two-dimensional magnetic molecularly imprinted polymers based on boron nitride and a deep eutectic solvent for the selective recognition of flavonoids. Analyst 2019; 144:1777-1788. [DOI: 10.1039/c8an02258e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two-dimensional (2D) boron nitride (BN) were developed as a 2D scaffold material in preparation of magnetic molecularly imprinted polymers (MMIPs).
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Yunliang Dai
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| |
Collapse
|
20
|
Wulandari Z, Fardiaz D, Thenawijaya M, Dewi Yuliana N, Budiman C. ISOLASI LISOZIM ALBUMIN TELUR AYAM RAS DENGAN METODE KROMATOGRAFI PENUKAR ION. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2018. [DOI: 10.6066/jtip.2018.29.2.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Tan S, Saito K, Hearn MTW. Stimuli-responsive polymeric materials for separation of biomolecules. Curr Opin Biotechnol 2018; 53:209-223. [DOI: 10.1016/j.copbio.2018.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
|
22
|
Application of nickel (II) thermo-responsive affinity polymer to porcine circovirus type 2 (PCV2) cap protein purification and interaction analysis by X-ray photoelectron spectroscopy (XPS). Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Li S, Chen J, Zhang X, Ding Z, Cao X. Preparation and Characterization of a pH-responsive Polymer that Interacts with Microbial Transglutaminase during Affinity Precipitation. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0366-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Li S, Ding Z, Cao X. Separation of transglutaminase by thermo-responsive affinity precipitation using l-thyroxin as ligand. SPRINGERPLUS 2016; 5:37. [PMID: 26835219 PMCID: PMC4713401 DOI: 10.1186/s40064-016-1680-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/06/2016] [Indexed: 01/10/2023]
Abstract
Transglutaminase (TGase) is widely used in the food industry. In this study, TGase was purified by affinity precipitation using l-thyroxin, coupled to a thermo-responsive polymer (PNBN), as an affinity ligand. The lower critical solution temperature and recovery of the affinity polymer were 31.0 °C and 99.6 %, respectively. The optimal adsorption condition was 0.02 mol/L phosphate buffer (pH 5.0). The recoveries 99.01 % (protein) and 98.85 % (activity) were obtained by 0.2 mol/L Gly-NaOH buffer (pH 10.0) as the elution agent. Circular dichroism spectroscopy and FortéBio Octet system were used to explore the interactions between l-thyroxin and TGase. The results show that l-thyroxin is suitable for affinity precipitation of TGase. The purity of the final product was verified using sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Sipeng Li
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Zhaoyang Ding
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
25
|
Bayramoglu G, Tekinay T, Ozalp VC, Arica MY. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 990:84-95. [DOI: 10.1016/j.jchromb.2015.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/23/2015] [Accepted: 03/27/2015] [Indexed: 11/15/2022]
|