1
|
Qiao XX, Xu YH, Liu XJ, Chen SL, Zhong Z, Li YF, Lü J. Nitrogen-doped titanium dioxide/schwertmannite nanocomposites as heterogeneous photo-Fenton catalysts with enhanced efficiency for the degradation of bisphenol A. J Environ Sci (China) 2024; 143:1-11. [PMID: 38644008 DOI: 10.1016/j.jes.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 04/23/2024]
Abstract
Potential health risks related to environmental endocrine disruptors (EEDs) have aroused research hotspots at the forefront of water treatment technologies. Herein, nitrogen-doped titanium dioxide/schwertmannite nanocomposites (N-TiO2/SCH) have been successfully developed as heterogeneous catalysts for the degradation of typical EEDs via photo-Fenton processes. Due to the sustainable Fe(III)/Fe(II) conversion induced by photoelectrons, as-prepared N-TiO2/SCH nanocomposites exhibit much enhanced efficiency for the degradation of bisphenol A (BPA; ca. 100% within 60 min under visible irradiation) in a wide pH range of 3.0-7.8, which is significantly higher than that of the pristine schwertmannite (ca. 74.5%) or N-TiO2 (ca. 10.8%). In this photo-Fenton system, the efficient degradation of BPA is mainly attributed to the oxidation by hydroxyl radical (•OH) and singlet oxygen (1O2). Moreover, the possible catalytic mechanisms and reaction pathway of BPA degradation are systematically investigated based on analytical and photoelectrochemical analyses. This work not only provides a feasible means for the development of novel heterogeneous photo-Fenton catalysts, but also lays a theoretical foundation for the potential application of mineral-based materials in wastewater treatment.
Collapse
Affiliation(s)
- Xing-Xing Qiao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Hang Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Ji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sai-Le Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Feng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
2
|
Zhao X, Xu H, Chen M, Chen Y, Kong X. Enhancement of norfloxacin degradation by citrate in S-nZVI@Ps system: Chelation and FeS layer. ENVIRONMENTAL RESEARCH 2024; 245:117981. [PMID: 38142729 DOI: 10.1016/j.envres.2023.117981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/02/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The degradation of organic pollution by sulfur-modified nano zero-valent iron(S-nZVI) combined with advanced oxidation systems has been extensively studied. However, the low utilization of nZVI and low reactive oxygen species (ROS) yield in the system have limited its wide application. Herein, a natural organic acid commonly found in citrus fruits, citric acid (CA), was combined with the conventional S-nZVI@Ps system to enhance the degradation of norfloxacin (NOR). The addition of CA increased the NOR removal by about 31% compared with the conventional S-nZVI@Ps system under the same experimental conditions. Among them, the enhanced effect of CA is mainly reflected in its ability to promote the release of Fe2+ and accelerate the cycling of Fe2+ and Fe3+ to further improve the utilization of nZVI and the generation of ROS; it also promotes the dissolution of the active substance (FeS) on the surface of S-nZVI to further improve the degradation rate of NOR. More importantly, the chelate of CA and Fe2+ (CA-Fe2+) had higher reactivity than alone Fe2+. Free radical quenching and electron spin resonance (ESR) experiments indicated that the main ROS for the degradation of NOR in the CA/S-nZVI@Ps system were SO4•- and OH•. CA-bound sulfur-modifying effects on NOR degradation was systematically investigated, and the degradation mechanism of NOR in CA/S-nZVI@Ps system was explored by various techniques. Additionally, the effect of common anions in water matrix on the degradation of NOR in CA/S-nZVI@Ps system and its degradation of various pollutants were also studied. This study provides a new perspective to enhance the degradation of pollutants by S-nZVI combined with advanced oxidation system, which can help to solve the application boundary problem of S-nZVI.
Collapse
Affiliation(s)
- Xuefang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Hui Xu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Minzhang Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yong Chen
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuqing Kong
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
3
|
Hong J, Liu L, Zhang Z, Xia X, Yang L, Ning Z, Liu C, Qiu G. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128716. [PMID: 35358816 DOI: 10.1016/j.jhazmat.2022.128716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The weathering of arsenopyrite is closely related to the generation of acid mine drainage (AMD) and arsenic (As) pollution. Solar radiation can accelerate arsenopyrite oxidation, but little is known about the further effect of SO42- on the photochemical process. Here, the photooxidation of arsenopyrite was investigated in the presence of SO42- in simulated AMD environments, and the effects of SO42- concentration, pH and dissolved oxygen on arsenopyrite oxidation were studied as well. SO42- could accelerate the photooxidation of arsenopyrite and As(III) through complexation between nascent schwertmannite and As(III). Fe(II) released from arsenopyrite was oxidized to form schwertmannite in the presence of SO42-, and the photooxidation of arsenopyrite occurred through the ligand-to-metal charge-transfer process in schwertmannite-As(III) complex along with the formation of reactive oxygen species in the presence of O2. The photooxidation rate of arsenopyrite first rose and then fell with increasing SO42- concentration. In the pH range of 2.0-4.0, the photooxidation rate of arsenopyrite progressively increased in the presence of SO42-. This study reveals how SO42- promotes the photooxidation of arsenopyrite and As release in the AMD environment, and improves the understanding of the transformation and migration of As in mining areas.
Collapse
Affiliation(s)
- Jun Hong
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430070, Hubei Province, China; College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Lihu Liu
- College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Ziwei Zhang
- College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiange Xia
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430070, Hubei Province, China.
| | - Li Yang
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan 430070, Hubei Province, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Guohong Qiu
- College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
4
|
Enhanced catalytic activation of H2O2 by CNTs/SCH through rapid Fe(III)/Fe(II) redox couple circulation: Insights into the role of functionalized multiwalled CNTs. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Role of schwertmannite or jarosite in photocatalytic degradation of sulfamethoxazole in ultraviolet/peroxydisulfate system. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Fazal H, Iqbal A, Cao Y, Zai J, Ali N, Zhang Y, Wu X, Zhang X, Qian X. Porous urchin-like 3D Co(ii)Co(iii) layered double hydroxides for high performance heterogeneous Fenton degradation. CrystEngComm 2021. [DOI: 10.1039/d0ce01555e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous Fenton processes can overcome the generation of iron sludge and the production of more solid wastes.
Collapse
Affiliation(s)
- Hira Fazal
- School of Chemistry and Chemical Engineering
- and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P.R. China
| | - Asma Iqbal
- School of Chemistry and Chemical Engineering
- and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P.R. China
| | - Yucai Cao
- State Key Laboratory of Polyolefins and Catalysis
- Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai)
- P.R. China
| | - Jiantao Zai
- School of Chemistry and Chemical Engineering
- and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P.R. China
| | - Nazakat Ali
- School of Chemistry and Chemical Engineering
- and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P.R. China
| | - Yuchi Zhang
- School of Chemistry and Chemical Engineering
- and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P.R. China
| | - Xiangyang Wu
- State Key Laboratory of Polyolefins and Catalysis
- Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai)
- P.R. China
| | - Xiwang Zhang
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - Xuefeng Qian
- School of Chemistry and Chemical Engineering
- and State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P.R. China
| |
Collapse
|
7
|
Li T, Liang J, Zhou L. Fabricating Fe 3O 4-schwertmannite as a Z-scheme photocatalyst with excellent photocatalysis-Fenton reaction and recyclability. J Environ Sci (China) 2020; 98:186-195. [PMID: 33097151 DOI: 10.1016/j.jes.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Here we reported an effective method to solve the rate-limiting steps, such as the reduction of Fe3+ to Fe2+ and an invalid decomposition of H2O2 in a conventional Fenton-like reaction. A magnetic heterogeneous photocatalyst, Fe3O4-schwertmannite (Fe3O4-sch) was successfully developed by adding Fe3O4 in the formation process of schwertmannite. Fe3O4-sch shows excellent electrons transfer ability and high utilization efficiency of H2O2 (98.5%). The catalytic activity of Fe3O4-sch was studied through the degradation of phenol in the heterogeneous photo-Fenton process. Phenol degradation at a wide pH (3 - 9) was up to 98% within 6 min under visible light illumination with the Fe3O4-sch as heterogeneous Fenton catalyst, which was higher than that using pure schwertmannite or Fe3O4. The excellent photocatalytic performance of Fe3O4-sch is ascribed to the effective recycling between Fe3+ and Fe2+ by the photo-generated electron, and also profit from the formation of the "Z-Scheme" system. According to the relevant data, photocatalytic mechanism of Fe3O4-sch for degrading phenol was proposed. This study not only provides an efficient way of enhancing heterogeneous Fenton reaction, but also gives potential application for iron oxyhydroxysulfate mineral.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Yu W, Yang S, Du B, Zhang Z, Xie M, Chen Y, Zhao C, Chen X, Li Q. Feasibility and mechanism of enhanced 17β-estradiol degradation by the nano Zero Valent Iron-citrate system. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122657. [PMID: 32361622 DOI: 10.1016/j.jhazmat.2020.122657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
17β-Estradiol (17β-E2) as a non-conventional pollutant with high damage, the effective removal of 17β-E2 had been studied wildly. In recent years, nano materials application enabled the rapid removal of 17β-E2. Nano zero valent iron (nZVI) as one of the most widely used nano materials could also be used to degrade 17β-E2. But, the degradation performance of nZVI was limited by oxidation and aggregation. Therefore, this study explored the degradation mechanisms of 17β-E2 by nZVI and the enhancement mechanisms of nZVI by citrate. Firstly, 17β-E2 could be effectively degraded under acidic conditions without the addition of citrate. Citrate had protective effect on nZVI, so the degradation efficiency in neutral condition and degradation rate at all pH values of 17β-E2 were enhanced greatly in nZVI-citrate system. 17β-E2 degradation was mainly about group change and cleavage of ring A, as well as dominated by O2-▪ and OH∙ in the absence and presence of citrate. The formation of dimers and trimers proved the existence of laccase-like reaction during the 17β-E2 degradation process by nZVI. In nZVI-citrate system, the laccase-like reaction was replaced by specific cross-coupling of 17β-E2, E1, and citrate. Overall, the study proved that citrate could enhance the degradation of 17β-E2 by nZVI.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingyuan Xie
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Chenju Zhao
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiangyu Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qi Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
9
|
Anion-Dominated Copper Salicyaldimine Complexes-Structures, Coordination Mode of Nitrate and Decolorization Properties toward Acid Orange 7 Dye. Polymers (Basel) 2020; 12:polym12091910. [PMID: 32847151 PMCID: PMC7563566 DOI: 10.3390/polym12091910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/02/2022] Open
Abstract
A salicyaldimine ligand, 3-tert-butyl-4-hydroxy-5-(((pyridin-2-ylmethyl)imino)methyl)benzoic acid (H2Lsalpyca) and two Cu(II)−salicylaldimine complexes, [Cu(HLsalpyca)Cl] (1) and [Cu(HLsalpyca)(NO3)]n (2), have been synthesized. Complex 1 has a discrete mononuclear structure, in which the Cu(II) center is in a distorted square-planar geometry made up of one HLsalpyca− monoanion in an NNO tris-chelating mode and one Cl− anion. Complex 2 adopts a neutral one-dimensional zigzag chain structure propagating along the crystallographic [010] direction, where the Cu(II) center suits a distorted square pyramidal geometry with a τ value of 0.134, consisted of one HLsalpyca− monoanion as an NNO tris-chelator and two NO3− anions. When the Cu∙∙∙O semi coordination is taken into consideration, the nitrato ligand bridges two Cu(II) centers in an unsymmetrical bridging-tridentate with a μ, κ4O,O′:O′,O″ coordination. Clearly, anion herein plays a critical role in dominating the formation of discrete and polymeric structures of copper salicyaldimine complexes. Noteworthy, complex 2 is insoluble but highly stable in H2O and various organic solvents (CH3OH, CH3CN, acetone, CH2Cl2 and THF). Moreover, complex 2 shows good photocatalytic degradation activity and recyclability to accelerate the decolorization rate and enhance the decolorization performance of acid orange 7 (AO7) dye by hydrogen peroxide (H2O2) under daylight.
Collapse
|
10
|
Wang N, Fang D, Zheng G, Liang J, Zhou L. A novel approach coupling ferrous iron bio-oxidation and ferric iron chemo-reduction to promote biomineralization in simulated acidic mine drainage. RSC Adv 2019; 9:5083-5090. [PMID: 35514646 PMCID: PMC9060654 DOI: 10.1039/c8ra09887e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/24/2019] [Indexed: 12/03/2022] Open
Abstract
A novel Acidithiobacillus ferrooxidans-mediated approach coupling biological oxidation and chemical reduction for treating acid mine drainage (AMD) was investigated. The results showed that controlled addition of zero valent iron (ZVI) into the coupling system did not exhibit a significant adverse influence on the bacterial activity of Acidithiobacillus ferrooxidans but markedly increased the formation of secondary Fe-minerals. Nutrition did not affect the efficiency of coupling process, except for the bacteria density of A. ferrooxidans. 2 days cyclic treatment performed better than that of 4 and 8 days. After 14 cycles of the coupling process, 89.4% of total iron (2.23 g L-1) was transferred into Fe-minerals finally. In addition, the combined system was highly effective in removing sulfate (63%) from a simulated AMD that contained soluble Cu, Zn, Al, and Mn. Valuable iron-sulfate material e.g. schwertmannite was formed with little co-precipitation of other metals. Therefore, the integration of A. ferrooxidans into the reduction by ZVI may have considerable potential in the enhancement of biomineralization efficiency, which may further decrease soluble TFe and sulfate loads in AMD before lime neutralization.
Collapse
Affiliation(s)
- Ning Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Guanyu Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
11
|
Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Yang Z, Wu Z, Liao Y, Liao Q, Yang W, Chai L. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil. CHEMOSPHERE 2017; 181:1-8. [PMID: 28414954 DOI: 10.1016/j.chemosphere.2017.04.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 05/27/2023]
Abstract
Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO3-extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO3-extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Zijian Wu
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Yingping Liao
- Administration of Quality and Technology Supervision of Hunan Province, Changsha, Hunan, 410083, PR China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| | - Liyuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| |
Collapse
|
13
|
Magnetic Activated-ATP@Fe 3O 4 Nanocomposite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of Ethidium Bromide. Sci Rep 2017; 7:6070. [PMID: 28729718 PMCID: PMC5519544 DOI: 10.1038/s41598-017-06398-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/09/2017] [Indexed: 11/22/2022] Open
Abstract
Magnetic attapulgite-Fe3O4 nanocomposites (ATP-Fe3O4) were prepared by coprecipitation of Fe3O4 on ATP. The composites were characterized by scanning electron microscopey, X-ray diffractometry, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, energy dispersive spectrometer and transmission electron microscopy. Surface characterization showed that Fe3O4 particles with an average size of approximately 15 nm were successfully embedded in matrix of ATP. The capacity of the Fe3O4-activated ATP (A-ATP@Fe3O4) composites for catalytic degradation of ethidium bromide (EtBr, 80 mg/L) at different pH values, hydrogen peroxide (H2O2) concentrations, temperatures, and catalyst dosages was investigated. EtBr degradation kinetics studies indicated that the pseudo-first-order kinetic constant was 2.445 min−1 at T = 323 K and pH 2.0 with 30 mM H2O2, and 1.5 g/L of A-ATP@Fe3O4. Moreover, a regeneration study suggested that A-ATP@Fe3O4 maintained over 80% of its maximal EtBr degradation ability after five successive cycles. The effects of the iron concentrations and free radical scavengers on EtBr degradation were studied to reveal possible catalytic mechanisms of the A-ATP@Fe3O4 nanocomposites. Electron Paramagnetic Resonance revealed both hydroxyl (∙OH) and superoxide anion (∙O2−) radicals were involved in EtBr degradation. Radical scavenging experiment suggested EtBr degradation was mainly ascribed to ∙OH radicals, which was generated by reaction between Fe2+ and H2O2 on the surface of A-ATP@Fe3O4.
Collapse
|
14
|
Zhang C, Zhang Z, Chen M, Fu D. The influence of fractal nature on schwertmannite adsorption properties. RSC Adv 2017. [DOI: 10.1039/c7ra04114d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schwertmannite (SCH), a ferric oxyhydroxy sulfate mineral, had attracted extensive interests due to its excellent adsorption performance in decontamination processes.
Collapse
Affiliation(s)
- Chunyong Zhang
- Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Zhefeng Zhang
- Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Mengna Chen
- Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Degang Fu
- State Key Laboratory of Bioelectronics
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
15
|
Zeghioud H, Khellaf N, Djelal H, Amrane A, Bouhelassa M. Photocatalytic Reactors Dedicated to the Degradation of Hazardous Organic Pollutants: Kinetics, Mechanistic Aspects, and Design – A Review. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2016.1202243] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hichem Zeghioud
- Department of Process Engineering, Faculty of Engineering, Badji Mokhtar University, Annaba, Algeria
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, Annaba, Algeria
| | - Nabila Khellaf
- Department of Process Engineering, Faculty of Engineering, Badji Mokhtar University, Annaba, Algeria
- Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Badji Mokhtar University, Annaba, Algeria
| | - Hayet Djelal
- Ecole des Métiers de l'Environnement, Campus de Ker Lann, Bruz, France
- Université Européenne de Bretagne, 5 Boulevard Laennec, Rennes, France
| | - Abdeltif Amrane
- Université Européenne de Bretagne, 5 Boulevard Laennec, Rennes, France
- Université de Rennes 1, ENSCR, CNRS, UMR, Allée de Beaulieu, Rennes Cedex, France
| | - Mohammed Bouhelassa
- LIPE, Faculty of Pharmaceutical Process Engineering, Constantine 3 University, Algeria
| |
Collapse
|
16
|
Gong J, Lee CS, Kim EJ, Chang YY, Chang YS. Enhancing the reactivity of bimetallic Bi/Fe(0) by citric acid for remediation of polluted water. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:135-142. [PMID: 26905611 DOI: 10.1016/j.jhazmat.2016.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
In this study, the environmentally benign citric acid (CA) was utilized to improve the aerobic degradation of 4-chlorophenol (4-CP) over bismuth modified nanoscale zero-valent iron (Bi/Fe(0)). The characterization results revealed the existence of bismuth covering on the Fe(0) surface under zero-valent state. And, the Bi/Fe(0)-CA+O2 system performed excellent reactivity in degradation of 4-CP due to the generation of reactive oxygen species (ROS), which was confirmed by electron spin resonance (ESR) spectroscopy. After 30min of reaction, 80% of 4-CP was removed using Bi/Fe(0)-CA+O2 accompanying with high dechlorination rate. The oxidative degradation intermediates were analyzed by HPLC and LC-MS. We found that CA could promote the bismuth-iron system to produce much reactive oxygen species ROS under both aerobic and anaerobic conditions due to its ligand function, which could react with Fe(3+) to form a ligand complex (Fe(III)Cit), accompanying with a considerable production of Fe(2+) and H2O2. This study provides a new strategy for generating ROS on nZVI and suggests its application for the mineralization of many recalcitrant pollutants.
Collapse
Affiliation(s)
- Jianyu Gong
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Chung-Seop Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Eun-Ju Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Yoon-Seok Chang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| |
Collapse
|
17
|
Cai C, Liu J, Zhang Z, Zheng Y, Zhang H. Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Guo J, Zhang J, Chen C, Lan Y. Rapid photodegradation of methyl orange by oxalic acid assisted with cathode material of lithium ion batteries LiFePO4. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|