1
|
Tanzooei AM, Karimi J, Taghvaei H. Exploring non-thermal plasma technology for microalgae removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117127. [PMID: 39383825 DOI: 10.1016/j.ecoenv.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
The global population and economic development surge has substantially increased water demand, resulting in heightened sewage and pollutant generation, posing environmental hazards. Addressing this challenge necessitates the implementation of efficient and cost-effective water reclamation methods. Non-thermal plasma technology (NTP) has emerged as a promising solution, garnering attention for its superior efficiency compared to alternatives. While existing studies have predominantly focused on energy efficiency and pollutant removal, limited research has delved into the biological removal aspect, particularly concerning algae. This study utilized a dielectric barrier plasma diffuser to eliminate Spirulina microalgae (Spirulina platensis) from wastewater solutions, demonstrating higher algae removal and superior mass transfer compared to alternative plasma methods. The effect of sample volume, input voltage and power, flow rate, and initial solution concentration on the algae removal was investigated. Investigation of operational parameters revealed the best condition resulting in a 98 % removal rate and 20 g/kWh energy efficiency. The best conditions for the removal of Spirulina microalgae were considered in a sample volume of 50 mL, a voltage of 7.6 kV, a flow rate of 700 mL/min, and an initial solution concentration of 1280 mg/liter. Scanning Electron Microscope (SEM) images illustrated the impact of active species on cell structure, leading to the destruction of spiral form and loss of reproductive ability. The study underscores the potential of NTP for efficient algae removal and identifies key active species involved in the process. The removal of Spirulina microalgae was attributed to a combination of singlet oxygen (1O2), hydroxyl radicals, and ozone.
Collapse
Affiliation(s)
| | - Javad Karimi
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran.
| | - Hamed Taghvaei
- Department of Chemical Engineering, Shiraz University, Shiraz 71345, Iran.
| |
Collapse
|
2
|
Zhang S, Zhang S, Liu Z, Yan K. Remediation of 3,4,3',4'-tetrachlorobiphenyl (PCB77) contaminated soil via a fluidized bed dielectric barrier discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173208. [PMID: 38750758 DOI: 10.1016/j.scitotenv.2024.173208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
In this study, 3,4,3',4'-tetrachlorobiphenyl (PCB77) contaminated soil was remediated by a fluidization bed dielectric barrier discharge (DBD) reactor and a fixed bed DBD reactor. The fluidized bed reactor could attain superior removal efficiency of PCB77 under same experimental parameters. In-situ discharge mode was more conducive to the degradation of PCB77 than ex-situ discharge mode due to short-lived active species existing in in-situ discharge. The influence of experimental parameters in the fluidized bed DBD reactor on the degradation of PCB77 were discussed such as electric features, gas features, soil features and initial PCB77 concentration. PCB77 removal efficiency in air discharge could reach 88.5 % after 8 min under the alkaline condition. Optical emission spectroscopy (OES) and quench tests showed that reactive oxygen species (ROS) and reactive nitrogen species (RNS) were generated in the discharge system and they both played a vital role in the degradation of PCB77. Scanning electron microscopy (SEM) results demonstrated that discharge had little effect on the morphology of soil particles. Energy dispersive spectrometer (EDS), ion chromatography (IC), and total organic carbon (TOC) results showed that the DBD could effectively mineralize and dechlorinate PCB77. The possible degradation pathway of PCB77 was inferred at the end based on the degradation products determined by gas chromatography-mass spectrometry (GC-MS).
Collapse
Affiliation(s)
- Shihao Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuo Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhen Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Keping Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Cyganowski P, Terefinko D, Motyka-Pomagruk A, Babinska-Wensierska W, Khan MA, Klis T, Sledz W, Lojkowska E, Jamroz P, Pohl P, Caban M, Magureanu M, Dzimitrowicz A. The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules 2024; 29:2910. [PMID: 38930977 PMCID: PMC11206621 DOI: 10.3390/molecules29122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Specialized chemicals are used for intensifying food production, including boosting meat and crop yields. Among the applied formulations, antibiotics and pesticides pose a severe threat to the natural balance of the ecosystem, as they either contribute to the development of multidrug resistance among pathogens or exhibit ecotoxic and mutagenic actions of a persistent character. Recently, cold atmospheric pressure plasmas (CAPPs) have emerged as promising technologies for degradation of these organic pollutants. CAPP-based technologies show eco-friendliness and potency for the removal of organic pollutants of diverse chemical formulas and different modes of action. For this reason, various types of CAPP-based systems are presented in this review and assessed in terms of their constructions, types of discharges, operating parameters, and efficiencies in the degradation of antibiotics and persistent organic pollutants. Additionally, the key role of reactive oxygen and nitrogen species (RONS) is highlighted. Moreover, optimization of the CAPP operating parameters seems crucial to effectively remove contaminants. Finally, the CAPP-related paths and technologies are further considered in terms of biological and environmental effects associated with the treatments, including changes in antibacterial properties and toxicity of the exposed solutions, as well as the potential of the CAPP-based strategies for limiting the spread of multidrug resistance.
Collapse
Affiliation(s)
- Piotr Cyganowski
- Department of Polymer and Carbonaceous Materials, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Weronika Babinska-Wensierska
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
- Laboratory of Physical Biochemistry, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland
| | - Mujahid Ameen Khan
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Tymoteusz Klis
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (A.M.-P.); (W.S.); (E.L.)
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824 Gdansk, Poland;
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza, 80-308 Gdansk, Poland;
| | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Department of Plasma Physics and, Nuclear Fusion, 409 Atomistilor Str., 077125 Magurele, Romania;
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (D.T.); (M.A.K.); (T.K.); (P.J.); (P.P.)
| |
Collapse
|
4
|
Wang X, Li Y, Gong Y, Cheng J, Gong C, Jiang D, Shi J, Lei L. Deep purification of industrial waste salt containing organic pollutants by a dry method with Non-thermal plasma. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Abbas Y, Ajmal M, Mustafa MF, Stegmann R, Shao Y, Lu W. Advanced remediation of pyrene contaminated soil by double dielectric barrier discharge (DDBD) plasma and subsequent composting process. CHEMOSPHERE 2022; 303:135255. [PMID: 35688191 DOI: 10.1016/j.chemosphere.2022.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Due to increasing industrialization, soils are increasingly contaminated by polycyclic aromatics such as pyrene and need gentle treatment to keep the soil functioning. This study applied a double dielectric barrier discharge (DDBD) plasma reactor and composting reactor to remediate pyrene-contaminated soil. The effect of peak-to-peak applied voltages on the remediation efficiency of pyrene was investigated. The experimental results illustrate that pyrene remediation efficiency increased from 43% to 85% when the peak-to-peak applied voltage was increased from 28.0 to 35.8 kV. When using the combined method of DDBD and composting, 90-99% of pyrene could be removed, while a reduction of 76.5% was achieved using only composting, indicating the superiority of the combined system. Moreover, the authors could demonstrate that DDBD plasma treatment improves humification in the post-composting process as humic acid (HA) concentrations increased to 7.7 mg/g with an applied voltage of 35.8 kV; when composting was used as the sole treatment method, only 3.4 mg/g HA were produced. The microbial activity in the DDBD plasma-treated soil peaked on the 5th day and had a 2nd rise afterwards. The authors demonstrate that the combined technology of DDBD plasma and composting is a promising method for soil remediation with persistent organic pollutants. This treatment approach improves pollutant degradation efficiency and facilitates further humification, potentially restoring the function of contaminated soil. This approach could be considered a cost-effective and green strategy for soil remediation with persistent organic pollutants.
Collapse
Affiliation(s)
- Yawar Abbas
- School of Environment, Tsinghua University, Beijing, 100084, China; Department of Environmental Science, Karakoram International University, Gilgit, Pakistan
| | - Muhammad Ajmal
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Muhammad Farooq Mustafa
- Department of Environmental Design, Health & Nutritional Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Rainer Stegmann
- Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Hamburg, Germany
| | - Yuchao Shao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Zhang T, Liu Y, Zhong S, Zhang L. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: Efficiency, influencing factors and environmental impacts. CHEMOSPHERE 2020; 246:125726. [PMID: 31901666 DOI: 10.1016/j.chemosphere.2019.125726] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Petroleum hydrocarbons are a class of anthropogenic compounds including alkanes, aromatic hydrocarbons, resins, asphaltenes and other organic matters, and soil pollution caused by petroleum hydrocarbons has drawn increasing interest in recent years. Multiple advanced oxidation processes (AOPs) are emerging to remediate petroleum hydrocarbons-contaminated soils, while very few studies have focused on the features of AOPs applied in soils. This review aims to provide an updated overview of the state of the science about the efficiency, influencing factors and environmental implications of AOPs. The key findings from this review include: 1) cyclodextrin and its derivatives can be used to synthesize targeting reagents; 2) soil organic matter (SOM), glucose and cement can activate persulfate; 3) SOM affects redox circumstance in soil and could be further developed for enhancing the catalysis effect of transition metals; 4) non-thermal plasma and wet oxidation are promising methods of AOPs to remove petroleum hydrocarbons from soil; 5) the occurrence, fate, and transformation of intermediates during the degradation of petroleum hydrocarbons in soil should be considered more. Overall, this review reveals an urgent need to develop the cost-effective remedial strategies for petroleum hydrocarbons contaminated soils, and to advance our knowledge on the generation, transport and propagation of radicals in soils.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuanyuan Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Shan Zhong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lishan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
7
|
Abbas Y, Lu W, Wang Q, Dai H, Liu Y, Fu X, Pan C, Ghaedi H, Cheng F, Wang H. Remediation of pyrene contaminated soil by double dielectric barrier discharge plasma technology: Performance optimization and evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113944. [PMID: 32014741 DOI: 10.1016/j.envpol.2020.113944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil are not only detrimental to environment but also to human health. Double dielectric barrier discharge (DDBD) plasma reactor used for the remediation of pyrene contaminated soil was studied. The performance of DDBD reactor was optimized with influential parameters including applied voltage, type of carrier gas, air feeding rate as well as pyrene initial concentration. The analysis of variance (ANOVA) results showed that input energy had a great effect on pyrene remediation efficiency followed by pyrene initial concentration, while, the effect of air feeding rate was insignificant. More specifically, the remediation efficiency of pyrene under air, nitrogen and argon as carrier gas were approximately 79.7, 40.7 and 38.2% respectively. Pyrene remediation efficiency is favored at high level of applied voltages and low level of pyrene initial concentration (10 mgkg-1) and air feeding rate (0.85 L/min). Moreover, computation of the energy efficiency of the DDBD system disclosed that an optimal applied voltage (35.8 kV) and higher initial pyrene concentration (200 mgkg-1) favored the high energy efficiency. A regression model predicting pyrene remediation under DDBD plasma condition was developed using the data from a face-centered central composite design (FCCD) experiment. Finally, the residual toxicity analysis depicted that the respiratory activity increased more than 21 times (from 0.04 to 0.849 mg O2 g-1) with a pyrene remediation efficiency of 81.1%. The study demonstrated the DDBD plasma technology is a promising method not only for high efficiency of pyrene remediation, but also recovering biological function without changing the physical-chemical properties of soil.
Collapse
Affiliation(s)
- Yawar Abbas
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qian Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huixing Dai
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanting Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xindi Fu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chao Pan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hosein Ghaedi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Feng Cheng
- Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Gimžauskaitė D, Tamošiūnas A, Tučkutė S, Snapkauskienė V, Aikas M, Uscila R. Treatment of diesel-contaminated soil using thermal water vapor arc plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43-54. [PMID: 31728949 DOI: 10.1007/s11356-019-06697-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Soil pollution with petroleum-based fuels is a serious issue causing environmental problems. Recently, the use of plasma technologies for soil remediation has shown an interest and great potential. The remediation process can be performed in a fast timeframe without adding supplementary chemical reagents or without additional pre-treatment of the polluted soil. As a result, the use of plasma enables to obtain highly effective degradation of pollutants. Thus, in the present experimental research, diesel fuel removal from contaminated soil by utilizing thermal water vapor arc plasma was investigated. It was found that increased concentration of diesel fuel in the soil raised carbon and hydrogen concentrations in the soil. Moreover, soil surface morphology was modified by causing the formation of bigger agglomerates. It was also determined that after the plasma treatment process, soil grains became akin in size and structure to clean soil grains. A complete desorption of carbon, which came from diesel fuel to the soil, and a slight decomposition of organic carbon present in the soil were observed during the soil remediation process. Thermogravimetric analysis showed that regardless of the diesel fuel concentration in the soil, four stages of mass loss were observed: moisture loss, vaporization, and combustion of diesel fuel as well as reduction of volatiles and char in the soil. Producer gas analysis indicated that during soil remediation diesel fuel was mainly converted to synthesis gas, i.e., a mixture of H2, CO, and CO2. Moreover, the decomposition of diesel fuel and the formation of synthesis gas depended on the amount of pollutant in the soil. According to the obtained results, thermal water vapor arc plasma was able to completely remove diesel fuel from polluted soil in the form of synthesis gas with no significant influence on soil's properties.
Collapse
Affiliation(s)
- Dovilė Gimžauskaitė
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania.
| | - Andrius Tamošiūnas
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Simona Tučkutė
- Center for Hydrogen Energy Technologies, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Vilma Snapkauskienė
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Mindaugas Aikas
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| | - Rolandas Uscila
- Plasma Processing Laboratory, Lithuanian Energy Institute, Breslaujos st. 3, LT-44403, Kaunas, Lithuania
| |
Collapse
|
9
|
Hydrogen peroxide generation during regeneration of granular activated carbon by bipolar pulse dielectric barrier discharge plasma. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wang T, Qu G, Pei S, Liang D, Hu S. Research on dye wastewater decoloration by pulse discharge plasma combined with charcoal derived from spent tea leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13448-13457. [PMID: 27026548 DOI: 10.1007/s11356-016-6520-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Pulsed discharge plasma (PDP) combined with charcoal (PDP-charcoal) was employed to treat dye wastewater, with methyl orange (MO) as the model pollutant. The charcoal was prepared using spent tea leaves and was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and Boehm titration to investigate the adsorption and catalytic characteristics before and after adsorption and PDP treatment. The prepared charcoal exhibited a high MO adsorption capacity, and the adsorption process followed the pseudo-second-order kinetic model and the Freundlich model. The MO decoloration efficiency reached 69.8 % within 7.5 min of treatment in the PDP-charcoal system, whereas values of 29.2 and 25.9 % were achieved in individual PDP and charcoal systems, respectively. The addition of n-butanol and H2PO4 (-) presented inhibitive effects on MO decoloration in the PDP system. However, these effects were much weaker in the PDP-charcoal system. In addition, the effects of charcoal on O3 and H2O2 formation were evaluated, and the results showed that both the O3 and H2O2 concentrations decreased in the presence of charcoal. The MO decomposition intermediates were analyzed using UV-Vis spectrometry and GC-MS. 1,4-Benzoquinone, 4-nitrophenol, 4-hydroxyaniline, and N,N'-dimethylaniline were detected. A possible pathway for MO decomposition in this system was proposed.
Collapse
Affiliation(s)
- Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China.
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shuzhao Pei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shibin Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|