1
|
An X, Li N, Zhang L, Xu Z, Zhang S, Zhang Q. New insights into the typical nitrogen-containing heterocyclic compound-quinoline degradation and detoxification by microbial consortium: Integrated pathways, meta-transcriptomic analysis and toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133158. [PMID: 38061124 DOI: 10.1016/j.jhazmat.2023.133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
As the primary source of COD in industrial wastewater, quinoline has aroused increasing attention because of its potential teratogenic, carcinogenic, and mutagenic effects in the environment. The activated sludge isolate quinoline-degrading microbial consortium (QDMC) efficiently metabolizes quinoline. However, the molecular underpinnings of the degradation mechanism of quinoline by QDMC have not been elucidated. High-throughput sequencing revealed that the dominant genera included Diaphorobacter, Bacteroidia, Moheibacter and Comamonas. Furthermore, a positive strong correlation was observed between the key bacterial communities (Diaphorobact and Bacteroidia) and quinoline degradation. According to metatranscriptomics, genes associated with quorum sensing, ABC transporters, component systems, carbohydrate, aromatic compound degradation, energy metabolism and amino metabolism showed high expression, thus improving adaptability of microbial community to quinoline stress. In addition, the mechanism of QDMC in adapting and resisting to extreme environmental conditions in line with the corresponding internal functional properties and promoting biogegradation efficiency was illustrated. Based on the identified products, QDMC effectively mineralized quinoline into low-toxicity metabolites through three major metabolic pathways, including hydroxyquinoline, 1,2,3,4-H-quinoline, 5,6,7,8-tetrahydroquinoline and 1-oxoquinoline pathways. Finally, toxicological, genotoxicity and phytotoxicity studies supported the detoxification of quinoline by the QDMC. This study provided a promising approach for the stable, environmental-friendly and efficient bioremediation applications for quinoline-containing wastewater.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ningjian Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lizhen Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Yang Z, Liu Y, Liu P, Yang L, Zhang A, Liu Z, Li X, Li Z. Study on material structure design, selective adsorption mechanism, and application for adsorption recovery of oil substances in coal chemical wastewater. CHEMOSPHERE 2024; 349:140943. [PMID: 38096992 DOI: 10.1016/j.chemosphere.2023.140943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
In response to the problem of high emulsified and dissolved oils being difficult to recovery from coal chemical wastewater (CCW), this study specifically constructed a non-polar, macropore, and hydrophobic adsorption material (pSt-X) based on the main components of these two oils (aromatics and phenols) for selective recovery. The results revealed that pSt-X had an adsorption capacity of 215.52 mg/g, which had remained stable for multiple recycling sessions, with an adsorption capacity constantly above 95 %. The pSt-X has significantly larger particle size (0.7 mm-1.2 mm), which simplifies the process of adsorption regeneration and effectively prevents the loss of the adsorbent powder problem. The pSt-X adsorbent demonstrated remarkable selectivity towards dissolved and emulsified oils, exhibiting removal rates of 90.2 % and 81.7 %, respectively. Moreover, pSt-X proved remarkable selectivity in removing aromatic hydrocarbons (AHs) and phenols, with impressive removal rates of 77.8 % and 85.9 %, respectively. The selective separation mechanism of pSt-X for oil substances was further analyzed, indicating that its selective adsorption of oils was primarily driven by hydrophobic, π-π, and hydrogen bonding interactions owing to its non-polar and macropore structure and hydrophobic properties. The results of this study provide solid theoretical support for green and low-carbon recovery of oil substances in CCW and are of positive practical importance for clean production in the coal chemical industry.
Collapse
Affiliation(s)
- Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaowei Li
- Yishuiyuan Biotechnology (Xi'an) Co., Ltd., Xi'an, 710018, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
3
|
Javaid A, Farrukh MA. Comparison of photocatalytic and antibacterial activities of allotropes of graphene doped
Sm
2
O
3
nanocomposites: Optical, thermal, and structural studies. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Arooj Javaid
- Department of Chemistry Forman Christian College (A Chartered University) Lahore Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Basic and Applied Chemistry, Faculty of Science and Technology University of Central Punjab Lahore Pakistan
| |
Collapse
|
4
|
Du Z, Gong Z, Qi W, Li E, Shen J, Li J, Zhao H. Coagulation performance and floc characteristics of poly-ferric-titanium-silicate-chloride in coking wastewater treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Duan C, Tanaka M, Kishida M, Watanabe T. Treatment of pyridine in industrial liquid waste by atmospheric DC water plasma. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128381. [PMID: 35149488 DOI: 10.1016/j.jhazmat.2022.128381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Pyridine is a basic heterocyclic compound with high toxicity, widely found in liquid waste from industrial processes. The treatment of highly-concentrated pyridine was demonstrated using a novel mist-type water thermal plasma torch. Decomposition rate and TOC removal rate were more than 94% in all conditions, while the max energy efficiency reached about 23 g/kWh. With a high temperature of 5500-7500 K, more than 95% of carbon content in pyridine was converted into valuable gas products, while a little amount of formic acid and acetic acid were observed as liquid by-products. The production of hydrogen cyanide (HCN) during the thermal decomposition of pyridine was observed, which can be inhibited by increasing the input power. Based on the experimental results, detailed decomposition mechanisms in the high-temperature and the downstream region were discussed respectively. Water plasma shows significant potential in the treatment of non-biodegradable industrial liquid waste.
Collapse
Affiliation(s)
- Chengyuan Duan
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Manabu Tanaka
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masahiro Kishida
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takayuki Watanabe
- Department of Chemical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Study on the mechanism of anaerobic fluidized bed microbial fuel cell for coal chemical wastewater treatment. Bioprocess Biosyst Eng 2022; 45:481-492. [PMID: 35031865 DOI: 10.1007/s00449-021-02672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 11/02/2022]
Abstract
The coal chemical wastewater (CCW) was treated by anaerobic fluidized bed microbial fuel cell (AFB-MFC) with macroporous adsorptive resin (MAR) as fluidized particle. Isosteric heat calculation and molecular dynamics simulation (MDS) have been performed to study the interaction between organics of CCW and MAR. The isosteric heat of MAR to m-cresol was the largest at 65.4961 kJ/mol, followed by phenol. Similarly, the diffusion coefficient of m-cresol on MAR was the largest, which was 0.04350 Å2/ps, and the results were verified by the kinetic adsorption experiments. Microbial community analysis showed that the dominant bacteria in activated sludge of MFC fed with CCW were acinetobacter, aeromonas, pseudomonas and sulfurospirillum. The synergistic cooperation of bacteria contributed to improving CCW degradation and the power generation of MFC. Headspace-gas chromatography-mass spectrometry (HS-GC-MS) was used to detect intermediate of organics in CCW. It was proved that the intermediate of m-cresol degradation was 4-methyl-2-pentanone and acetic acid, and the intermediate of phenol degradation included cyclohexanone, hydroxyhexanedither and hydroxyacetic acid. Combined with the highest occupied molecular orbital (HOMO) analysis results of organic matter obtained by molecular simulation, the degradation pathway of organic matter in CCW was predicted. The energy of organics degradation pathway was analyzed by Materials Studio (MS) software, and the control step of organics degradation was determined.
Collapse
|
7
|
Tamang M, Paul KK. Advances in treatment of coking wastewater - a state of art review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:449-473. [PMID: 35050895 DOI: 10.2166/wst.2021.497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coking wastewater poses a serious threat to the environment due to the presence of a wide spectrum of refractory substances such as phenolic compounds, polycyclic aromatic hydrocarbons and heterocyclic nitrogenous compounds. These toxic substances are difficult to treat using conventional treatment methods alone. In recent years much attention has been given to the effective treatment of coking wastewater. Thus, this review seeks to provide a brief overview of recent developments that have taken place in the treatment of coking wastewater. In addition, this article addresses the complexity and the problems associated with treatment followed by a discussion on biological methods with special focus on bioaugmentation. As coking wastewater is refractory in nature, some of the studies have been related to improving the biodegradability of wastewater. The final section focuses on the integrated treatment methods that have emerged as the best solution for tackling the highly unmanageable coking wastewater. Attention has also been given to emerging microwave technology which has tremendous potential for treatment of coking wastewater.
Collapse
Affiliation(s)
- Markus Tamang
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| | - Kakoli Karar Paul
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| |
Collapse
|
8
|
Yang Z, Qian J, Shan C, Li H, Yin Y, Pan B. Toward Selective Oxidation of Contaminants in Aqueous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14494-14514. [PMID: 34669394 DOI: 10.1021/acs.est.1c05862] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The presence of diverse pollutants in water has been threating human health and aquatic ecosystems on a global scale. For more than a century, chemical oxidation using strongly oxidizing species was one of the most effective technologies to destruct pollutants and to ensure a safe and clean water supply. However, the removal of increasing amount of pollutants with higher structural complexity, especially the emerging micropollutants with trace concentrations in the complicated water matrix, requires excessive dosage of oxidant and/or energy input, resulting in a low cost-effectiveness and possible secondary pollution. Consequently, it is of practical significance but scientifically challenging to achieve selective oxidation of pollutants of interest for water decontamination. Currently, there are a variety of examples concerning selective oxidation of pollutants in aqueous systems. However, a systematic understanding of the relationship between the origin of selectivity and its applicable water treatment scenarios, as well as the rational design of catalyst for selective catalytic oxidation, is still lacking. In this critical review, we summarize the state-of-the-art selective oxidation strategies in water decontamination and probe the origins of selectivity, that is, the selectivity resulting from the reactivity of either oxidants or target pollutants, the selectivity arising from the accessibility of pollutants to oxidants via adsorption and size exclusion, as well as the selectivity due to the interfacial electron transfer process and enzymatic oxidation. Finally, the challenges and perspectives are briefly outlined to stimulate future discussion and interest on selective oxidation for water decontamination, particularly toward application in real scenarios.
Collapse
Affiliation(s)
- Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Shan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyang Yin
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
|
10
|
Ofman P, Skoczko I, Włodarczyk-Makuła M. Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126332. [PMID: 34118540 DOI: 10.1016/j.jhazmat.2021.126332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons belong to the main priority substances for the aquatic environment. One of the emission sources of these compounds to environment is wastewater discharged from conventional wastewater treatment systems, which are not designed to cope with this type of pollution. Thus, due to the widely discussed properties of aerobic granular activated sludge in the literature - a conducted study has proven its ability to remove LMW PAHs (naphthalene (Nap), acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe) and anthracene (Ant)) from wastewater by biosorption process at varying loadings of organic compounds expressed as BOD (kg/kg·d) on the activated sludge mass. The maximum biosorption of Nap was 605 µg/kgd.m., Acy equals to 134 µg/kgd.m., Ace equals to 355 µg/kgd.m. Flu equals to 104 µg/kgd.m. Phe equal to 204 µg/kgd.m. and Ant equal to 173 µg/kgd.m. The study showed that the BOD loading rate is one of the factors affecting the biosorption process of LMW PAHs. However, as the amount of adsorbed LMW PAHs increased, the condition of aerobic granular activated sludge deteriorated, which was evidenced by gradual increase in the values of technological parameters of activated sludge (SVI, HRT, SRT) and a smaller increase in activated sludge dry mass.
Collapse
Affiliation(s)
- Piotr Ofman
- Bialystok University of Technology, 45 Wiejska Str., 15-351 Bialystok, Poland.
| | - Iwona Skoczko
- Bialystok University of Technology, 45 Wiejska Str., 15-351 Bialystok, Poland.
| | | |
Collapse
|
11
|
Wang S, Li E, Li J, Du Z, Cheng F. Preparation and coagulation-flocculation performance of covalently bound organic hybrid coagulant with excellent stability. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Liu X, Ma XY, Dong K, Zheng K, Wang X. Investigating the origins of acute and long-term toxicity posed by municipal wastewater using fractionation. ENVIRONMENTAL TECHNOLOGY 2020; 41:2350-2359. [PMID: 30623729 DOI: 10.1080/09593330.2019.1567602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
It has been proven that the raw wastewater, secondary effluent and even reclaimed water may have toxic effects on aquatic organisms. In the present study, fractionation procedures combined with bioassays using luminescent bacteria were conducted to identify the fractions that contributed to the acute and long-term toxicity of municipal wastewater. Solid phase extraction was used to divide dissolved organic matter from the wastewater into three fractions, including non-polar, medium-polar and polar fraction. Among these fractions, although the acute toxicity of municipal wastewater was mainly caused by polar and medium-polar chemicals, the acute toxicity induced by the unit mass of the medium-polar fraction was the greatest. Using three kinds of resins, the organic substances in municipal wastewater were classified into six fractions, and the long-term toxicity of these fractions was further identified. The long-term toxicity of the hydrophobic neutrals, which were the primary toxic substances in raw wastewater, decreased after the conventional secondary biological treatment. Hydrophilic neutrals, which accounted for the majority of organic substances in the secondary effluent, were the main substances with long-term toxicity in the secondary effluent. The identification of fractions with acute and long-term toxicity in municipal wastewater is beneficial for further treatment to attenuate the ecotoxicity of wastewater before discharge into the aquatic environment.
Collapse
Affiliation(s)
- Xiaokun Liu
- Xi'an Municipal Engineering Design & Research Institute Co., Ltd., Xi'an, People's Republic of China
| | - Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| | - Ke Dong
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| | - Kai Zheng
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| | - Xiaochang Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| |
Collapse
|
13
|
Wu ZY, Liu Y, Wang SY, Peng P, Li XY, Xu J, Li WH. A novel integrated system of three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) for coking wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 284:222-230. [PMID: 30939384 DOI: 10.1016/j.biortech.2019.03.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Treatment of coking wastewater is a great challenge due to their instinct characteristics of high concentration, complex composition and biological toxicity. In this work, a novel integrated system comprising three-dimensional electrochemical reactors (3DERs) and three-dimensional biofilm electrode reactors (3DBERs) in series is developed for coking wastewater treatment. Results indicate that 79.63% of COD as well as 76.30% of total nitrogen could be removed at the low energy consumption of 15.6 kWh/m3. 3DERs mainly contribute to COD and nitrogen removal through electrochemical oxidation/reduction, while 3DBERs are responsible for nitrification process by enriched functional microbes. After treating by the integrated system, only long-chain alkanes are left in the wastewater and the toxicity of effluent is significantly reduced. This integrated 3DERs-3DBERs system exhibits capability of simultaneously eliminating carbonaceous and nitrogenous contaminants in coking wastewater, and greatly saves the energy with synergy of electricity and biofilm.
Collapse
Affiliation(s)
- Zhen-Yu Wu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yang Liu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| | - Si-Yuan Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Pin Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiu-Yan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Institute of Eco-Chongming, East China Normal University, Shanghai, China.
| | - Wei-Hua Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
14
|
Xiao M, Ma H, Sun M, Yin X, Feng Q, Song H, Gai H. Characterization of cometabolic degradation of p-cresol with phenol as growth substrate by Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2019; 281:296-302. [PMID: 30826515 DOI: 10.1016/j.biortech.2019.02.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
To investigate the potential application of Chlorella vulgaris in the treatment of coal gasification wastewater, the characteristics of phenol and p-cresol cometabolism by Chlorella vulgaris were studied, including phenol degradation, ammonia nitrogen removal, antioxidant enzyme activities, and phenol hydroxylase activity. The results showed that the highest tolerable concentrations of phenol and p-cresol for Chlorella vulgaris were 800 and 400 mg/L, respectively. During cometabolism, phenol at low concentrations (100 mg/L) significantly promoted the degradation of p-cresol. Meanwhile, the removal efficiency of ammonia nitrogen was approximately 60% and was not affected by variations in phenol concentration. Furthermore, the cometabolism of phenol and p-cresol was enhanced by improvement of phenol hydroxylase activity of Chlorella vulgaris after the addition of NaHCO3 as an exogenous nutrient. Therefore, Chlorella vulgaris has a great potential for the biochemical treatment of coal gasification wastewater.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Honglei Ma
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Meng Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangyang Yin
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qingmin Feng
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongbing Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hengjun Gai
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
15
|
Maiti D, Ansari I, Rather MA, Deepa A. Comprehensive review on wastewater discharged from the coal-related industries - characteristics and treatment strategies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2023-2035. [PMID: 31318340 DOI: 10.2166/wst.2019.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wastewaters discharged from various coal-related activities deteriorate fresh water quality and inflict possibilities of groundwater contamination. Their characteristics mostly depend on the parent coal properties, though some of the pollutants are cyanide, thiocyanate, ammonia, phenol, heavy metals and suspended solids. This paper has reviewed the treatment techniques along with the characteristics of all such kinds of wastewater and also identified the challenges and future perspectives. Primarily, demineralization of coal can attenuate and control release of pollutants in wastewaters if implemented successfully. Mine water from non-lignite mines can be purified using simple techniques, for its reutilization. Acidic mine water and leachates can be treated using passive bioreactors with microbial activity, different organic substrates and limestone drains. Additionally bio-electrochemical systems, membranes, macrocapsules, zeolite filters, ores, physical barriers, and aquatic plants can also be used at various stages. Coal washery wastewater can be treated using natural coagulants obtained from plant extracts along with conventional coagulants. Nitrification and denitrification bacteria fixed in reactors along with activated carbon and zero-valent iron can treat coke oven wastewater. Some other sophisticated techniques are vacuum distillation, super critical oxidation, nanofiltration and reverse osmosis. Practical use of these methods, wisely in an integrated way, can reduce freshwater consumption.
Collapse
Affiliation(s)
- Deblina Maiti
- Academy of Scientific and Innovative Research, CSIR-Central Institute of Mining and Fuel Research, Dhanbad, Jharkhand 826015, India E-mail:
| | - Iqbal Ansari
- Academy of Scientific and Innovative Research, CSIR-Central Institute of Mining and Fuel Research, Dhanbad, Jharkhand 826015, India E-mail:
| | - Mohd Ashraf Rather
- Department of Fisheries Biology, College of Fisheries, Ratnagiri, Maharashtra 415629, India
| | - Arukula Deepa
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826001, India
| |
Collapse
|
16
|
Ren J, Li J, Li J, Chen Z, Cheng F. Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments. CHEMOSPHERE 2019; 222:431-439. [PMID: 30716545 DOI: 10.1016/j.chemosphere.2019.01.179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Aromatic compounds are widely contained in coking wastewater (CWW), drawing great attention due to their potential risks to environment and human health. Integrated systems combining biological processes with advanced treatments are the current trend of CWW reclamation. However, the variations of aromatic composition throughout these processes are poorly understood. This study investigated the occurrence, fate and removal of aromatic compounds in a full scale CWW reclamation plant with eight treatment stages by gas chromatography-mass spectrometry and optical spectrum. The results showed that polycyclic aromatic hydrocarbons (PAHs), phenols and heterocyclic compounds accounted for 38.9%, 33.5% and 22.6% of the total organics in CWW, respectively. Among them, PAHs were more sensitive to anaerobic digestion, while phenols and heterocyclics had higher bioavailability in aerobic process. Although more than 90% DOC could be removed in biological processes, the bio-effluent was still brown in color, implying the residues of aromatics to the advanced treatments. The interaction between the bio-refractory organics and the advanced treatments suggested that multiple aromatic compounds were selectively removed along the treatment train. Specifically, coagulation, sand filtration, ultrafiltration, adsorption, nanofiltration and reverse osmosis were found to be highly related to the elimination of residual isoquinoline, phenol, cresol, fluoranthene, benzene and humic-like organics, correspondingly. Findings in this study indicated that adsorption was a key step for removing chromophoric PAHs with more aromatic rings, while fouling control in the end-point membrane systems should be focused on the elimination of BTEXs and humic-like substances.
Collapse
Affiliation(s)
- Jing Ren
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China
| | - Jianfeng Li
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Jianguo Li
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China
| | - Zuliang Chen
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: Electrostatic adsorption vs. chemical bonding. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.079] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Zhang Y, Zhang Y, Xiong J, Zhao Z, Chai T. The enhancement of pyridine degradation byRhodococcusKDPy1 in coking wastewater. FEMS Microbiol Lett 2018; 366:5184456. [DOI: 10.1093/femsle/fny271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuxiu Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Yiming Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Jie Xiong
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Zhehui Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Beijing 100083, China
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, A19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
19
|
Zhu P, Zhu K, Puzey R, Ren X. Degradation analysis of A 2 /O combined with AgNO 3 + K 2 FeO 4 on coking wastewater. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Liu C, Chen XX, Zhang J, Zhou HZ, Zhang L, Guo YK. Advanced treatment of bio-treated coal chemical wastewater by a novel combination of microbubble catalytic ozonation and biological process. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Liu M, Preis S, Kornev I, Hu Y, Wei CH. Pulsed corona discharge for improving treatability of coking wastewater. J Environ Sci (China) 2018; 64:306-316. [PMID: 29478652 DOI: 10.1016/j.jes.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
Coking wastewater (CW) contains toxic and macromolecular substances that inhibit biological treatment. The refractory compounds remaining in biologically treated coking wastewater (BTCW) provide chemical oxygen demand (COD) and color levels that make it unacceptable for reuse or disposal. Gas-phase pulsed corona discharge (PCD) utilizing mostly hydroxyl radicals and ozone as oxidants was applied to both raw coking wastewater (RCW) and BTCW wastewater as a supplemental treatment. The energy efficiency of COD, phenol, thiocyanate and cyanide degradation by PCD was the subject of the research. The cost-effective removal of intermediate oxidation products with addition of lime was also studied. The energy efficiency of oxidation was inversely proportional to the pulse repetition frequency: lower frequency allows more effective utilization of ozone at longer treatment times. Oxidative treatment of RCW showed the removal of phenol and thiocyanate at 800 pulses per second from 611 to 227mg/L and from 348 to 86mg/L, respectively, at 42kWh/m3 delivered energy, with substantial improvement in the BOD5/COD ratio (from 0.14 to 0.43). The COD and color of BTCW were removed by 30% and 93%, respectively, at 20kWh/m3, showing energy efficiency for the PCD treatment exceeding that of conventional ozonation by a factor of 3-4. Application of lime appeared to be an effective supplement to the PCD treatment of RCW, degrading COD by about 28% at an energy input of 28kWh/m3 and the lime dose of 3.0kg/m3. The improvement of RCW treatability is attributed to the degradation of toxic substances and fragmentation of macromolecular compounds.
Collapse
Affiliation(s)
- Ming Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
| | - Sergei Preis
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Iakov Kornev
- Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russian Federation
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China
| | - Chao-Hai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China
| |
Collapse
|
22
|
Li S, Sun S, Wu H, Wei C, Hu Y. Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02622f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulating the synthesis of photocatalytic materials at the molecular level could affect the absorption of light and guide the synthesis of highly efficient photocatalysts for the photocatalytic degradation organic pollutants.
Collapse
Affiliation(s)
- Shixiong Li
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- P. R. China
| | - Shengli Sun
- School of Biology and Biological Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Haizhen Wu
- School of Biology and Biological Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Chaohai Wei
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- P. R. China
| | - Yun Hu
- School of Environment and Energy
- South China University of Technology
- Guangzhou
- P. R. China
| |
Collapse
|
23
|
Ma X, Wang X, Liu Y, Gao J, Wang Y. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:163-169. [PMID: 28049073 DOI: 10.1016/j.ecoenv.2016.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China.
| | - Xiaochang Wang
- Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China.
| | - Yongjun Liu
- Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China
| | - Jian Gao
- Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China
| | - Yongkun Wang
- Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Environmental Engineering, Shaanxi Province, China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, China
| |
Collapse
|
24
|
Zhou X, Zhang Z, Li Y. Four-stage biofilm anaerobic–anoxic–oxic–oxic system for strengthening the biological treatment of coking wastewater: COD removal behaviors and biokinetic modeling. RSC Adv 2017. [DOI: 10.1039/c7ra00277g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biokinetic models of high-strength coking wastewater with a high chemical oxygen demand (COD) was efficiently treated by a novel pilot-scale four-stage biofilm anaerobic–anoxic–oxic–oxic (FB-A2/O2) system.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
- State Key Laboratory of Urban Water Resources and Environment
| | - Zeqian Zhang
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Yaxin Li
- College of Environmental Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| |
Collapse
|