1
|
Tao HZ, He WB, Ding L, Wen L, Xu Z, Cheng YH, Chen ML. Enrichment of antioxidant peptide from rice protein hydrolysates via rice husk derived biochar. Food Chem 2025; 463:141050. [PMID: 39236384 DOI: 10.1016/j.foodchem.2024.141050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
In this study, rice husk biochar was engineered with abundant iron ion sites to enhance the enrichment of antioxidant peptides from rice protein hydrolysates through metal-chelating interactions. The π-π interactions and metal ion chelation were identified as the primary mechanisms for the enrichment process. Through peptide sequencing, four peptides were identified: LKFL (P1: Leu-Lys-Phe-Leu), QLLF (P2: Gln-Leu-Leu-Phe), WLAYG (P3: Trp-Leu-Ala-Tyr-Gly), and HFCGG (P4: His-Phe-Cys-Gly-Gly). The vitro analysis and molecular docking revealed that peptides P1-P4 possessed remarkable scavenging ability against radicals and Fe2+ chelating ability. Notably, peptide P4 showed radical scavenging activity comparable to glutathione (GSH) against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate (ABTS) radicals. Cellular experiments further confirmed that peptide P4 effectively protected HepG2 cells from oxidative stress-induced damage. The modified rice husk biochar proved to be an effective means for enriching rice antioxidant peptides from protein hydrolysates.
Collapse
Affiliation(s)
- Hui-Zhen Tao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Wen-Bin He
- Hunan Provincial Institute of Product and Goods Quality Inspection, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha, Hunan, China 410007
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
2
|
Wang R, Liu H, Tang Z, Zhu H, Liu H, Guo R, Song Z, Xu H, Li B, Li G, Zhang Y. Effect of the Total Saponins of Bupleurum chinense DC. Water Extracts Following Ultrafiltration Pretreatment on Macroporous Resin Adsorption. Molecules 2024; 29:5153. [PMID: 39519795 PMCID: PMC11547492 DOI: 10.3390/molecules29215153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Macroporous resin is an efficient separation technology that plays a crucial role in the separation and purification of traditional Chinese medicine (TCM). However, the application of macroporous resins in TCM pharmaceuticals is hindered by serious fouling caused by the complex materials used in TCM. This study examines the impact of ultrafiltration (UF) membrane technology on the macroporous resin adsorption behavior of TCM extracts. In this paper, Bupleurum chinense DC. (B. chinense) water extracts were included as an example to study the effect of UF pretreatment on the macroporous resin adsorption of total saponins. The study results indicated that the adsorption of total saponins constituents from the water extracts of B. chinense on the macroporous resin followed the pseudo-second-order kinetic model and the Langmuir model. The thermodynamic parameters of adsorption, including enthalpy changes and Gibbs free energies, were negative, while entropy changes were positive. These results demonstrated that the total saponin components form a monolayer adsorption layer by spontaneous thermal adsorption on the macroporous resin, and that the adsorption rate is not determined by the rate of intraparticle diffusion. Following treatment with a UF membrane with an average molecular weight cut-off of 50 kDa, the protein, starch, pectin, tannin, and other impurities in the water extracts of B. chinense were reduced, while the total saponin content was retained at 82.32%. The adsorption kinetic model of the saponin constituents on the macroporous resin remained unchanged and was consistent with both the second-order kinetic model and the Langmuir model; the adsorption rate of the second-order kinetic model increased by 1.3 times and in the Langmuir model at 25 °C, the adsorption performance improved by 1.16 times compared to the original extracts. This study revealed that UF technology as a pretreatment method can reduce the fouling of macroporous resin by TCM extracts and improve the adsorption performance of macroporous resin.
Collapse
Affiliation(s)
- Ruihong Wang
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Hongbo Liu
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhishu Tang
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.L.); (Y.Z.)
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huan Liu
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Ran Guo
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zhongxing Song
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Hongbo Xu
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Bo Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.L.); (Y.Z.)
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guolong Li
- State Key Laboratory of Research and Development for Characteristic Resources of Qin Medicine (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China; (R.W.); (H.L.); (R.G.); (Z.S.); (H.X.); (G.L.)
- Shaanxi University Engineering Research Center for the Research & Application of Membrane Technology for the Green Manufacturing of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yue Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; (B.L.); (Y.Z.)
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Sounderarajan S, Seenivasan H, Velayudhaperumal Chellam P, Puchalapalli DSR, Ayothiraman S. Selective recovery of esterase from Trichoderma harzianum through adsorption: Insights on enzymatic catalysis, adsorption isotherms and kinetics. Int J Biol Macromol 2024; 277:134133. [PMID: 39074704 DOI: 10.1016/j.ijbiomac.2024.134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
In recent years, numerous attempts have been made to develop a low-cost adsorbent for selectively recovering industrially important products from fermentation broth or complex mixtures. The current study is a novel attempt to selectively adsorb esterase from Trichoderma harzianum using cheap adsorbents like bentonite (BT), activated charcoal (AC), silicon dioxide (SiO2), and titanium dioxide (TiO2). AC had the highest esterase adsorption of 97.58% due to its larger surface area of 594.45 m3/g. SiO2 was found to have the highest selectivity over esterase, with an estimated purification fold of 7.2. Interestingly, the purification fold of 5.5 was found in the BT-extracted fermentation broth. The functional (FT-IR) and morphological analysis (SEM-EDX) were used to characterize the adsorption of esterase. Esterase adsorption on AC, SiO2, and TiO2 was well fitted by Freundlich isotherm, demonstrating multilayer adsorption of esterase. A pseudo-second-order kinetic model was developed for esterase adsorption in various adsorbents. Thermodynamic analysis revealed that adsorption is an endothermic process. AC has the lowest Gibbs free energy of -10.96 kJ/mol, which supports the spontaneous maximum adsorption of both esterase and protein. In the desorption study, the maximum recovery of esterase from TiO2 using sodium chloride was 41.34 %. Unlike other adsorbents, the AC-adsorbed esterase maintained its catalytic activity and stability, implying that it could be used as an immobilization system for commercial applications. According to the kinetic analysis, the overall rate of the reaction was controlled by reaction kinetics rather than external mass transfer resistance, as indicated by the Damkohler number.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, Tadepalliguem, Andhra Pradesh, India; Biochemical Engineering Research Group, Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, India
| | - Harshitha Seenivasan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | | | - Seenivasan Ayothiraman
- Department of Biotechnology National Institute of Technology Andhra Pradesh (Institute of National Importance, Govt. of India) Tadepalligudem, West Godavari Dist., Andhra Pradesh-534101, India.
| |
Collapse
|
4
|
Gou Q, Cai X, Yan Z, Gao Y, Tang J, Xiao W, Cai J. Highly Selective Pb(II) Adsorption by DTPA-Functionalized Graphene Oxide/Carboxymethyl Cellulose Aerogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8002-8014. [PMID: 38566445 DOI: 10.1021/acs.langmuir.3c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Graphene oxide (GO) exhibits a strong adsorption capacity for the removal of heavy metal ions from liquids, making it a topic of increasing interest among researchers. However, a significant challenge persists in the preparation of graphene oxide-based adsorbents that possess both high structural stability and excellent adsorption capacity. In this paper, a green and environmentally friendly ternary composite aerogel based on graphene was successfully synthesized. The adsorption capacity of graphene oxide was enhanced through diethylenetriaminepentaacetic acid modification, while the incorporation of composite carboxymethyl cellulose improved the structural stability of the composite aerogel in liquid. The composite aerogel demonstrates robust interactions between its components and features a multiscale porous structure. Adsorption tests conducted with Pb(II) revealed that the GO/DTPA/CMC (GDC) composite aerogel exhibits a favorable adsorption capacity. The study of adsorption kinetics and isotherms indicated that the adsorption process follows the quasi-secondary adsorption model and Freundlich adsorption model, suggesting a chemical multilayer adsorption mechanism, and the maximum adsorption capacity for Pb(II) ions was 521.917 mg/g based on the quasi-quadratic kinetic model fitting. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analyses, performed before and after adsorption, confirmed that the adsorption of Pb(II) primarily occurs through chelation, complexation, proton exchange, and electrostatic interactions between ions and active sites such as hydroxyl and carboxyl groups. This study presents an innovative strategy for simultaneously enhancing the adsorption properties of graphene oxide-based composite aerogels and ensuring solution stability.
Collapse
Affiliation(s)
- Quan Gou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoming Cai
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengyang Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yu Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junwen Tang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Weiqi Xiao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Southwest United Graduate School, Kunming 650000, China
| |
Collapse
|
5
|
Wang F, Zheng Y, Zhu H, Wu T. Screening of MnO 2 with desired facet and its behavior in highly selective adsorption of aqueous Pb (II): Theoretical and experimental studies. CHEMOSPHERE 2023:139239. [PMID: 37379975 DOI: 10.1016/j.chemosphere.2023.139239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
In this study, Density Functional Theory (DFT) calculations and experimental methods were used to evaluate MnO2 with 5 different facets for their selective adsorption of Pb (II) from wastewater containing Cd (II), Cu (II), Pb (II), and Zn (II). The DFT calculations were used to screen the selective adsorption capability of the facets and demonstrated that the MnO2 (3 1 0) facet has an excellent performance in selective adsorption of Pb (II) among all facets. The validity of DFT calculations was verified by comparing with the experimental results. MnO2 with different facets was prepared in a controlled manner and the characterizations confirmed that the lattice indices of the fabricated MnO2 have the desired facets. Adsorption performance experiments illustrated a high adsorption capacity (320.0 mg/g) on the (3 1 0) facet MnO2. The selectivity of adsorption of Pb (II) was 3-32 times greater than that of the other coexisting ions, i.e., Cd (II), Cu (II), and Zn (II)), which is consistent with results of the DFT calculations. Furthermore, DFT calculations of the adsorption energy, charge density difference, and projected density of states (PDOS) showed that the adsorption of Pb (II) on the MnO2 (3 1 0) facet is non-activated chemisorption. This study shows that it is feasible to use DFT calculations to quickly screen suitable adsorbents for environmental applications.
Collapse
Affiliation(s)
- Fan Wang
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yueying Zheng
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Huiwen Zhu
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- New Materials Institute, University of Nottingham, Ningbo 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Ningbo 315100, China.
| |
Collapse
|
6
|
Hadidi M, Orellana Palacios JC, McClements DJ, Mahfouzi M, Moreno A. Alfalfa as a sustainable source of plant-based food proteins. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Hansen M, Hobley TJ, Jensen PR. Treatment with Supercritical CO 2 Reduces Off-Flavour of White Alfalfa Protein Concentrate. Foods 2023; 12:845. [PMID: 36832919 PMCID: PMC9956094 DOI: 10.3390/foods12040845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
White alfalfa protein concentrate from alfalfa (Medicago sativa) is a promising substitute for milk and egg protein due to its functionality. However, it contains many unwanted flavours that limits the amount that can be added to a food without affecting its taste negatively. In this paper, we have demonstrated a simple method for the extraction of white alfalfa protein concentrate followed by a treatment with supercritical CO2. Two concentrates were produced at lab scale and pilot scale, with yields of 0.012 g (lab scale) and 0.08 g (pilot scale), of protein per g of total protein introduced into the process. The solubility of the protein produced at lab scale and pilot scale was approximately 30% and 15%, respectively. By treating the protein concentrate at 220 bar and 45 °C for 75 min with supercritical CO2, off-flavours were lowered. The treatment did not decrease the digestibility or alter the functionality of white alfalfa protein concentrate when it was used to substitute egg in chocolate muffins and egg white in meringues.
Collapse
Affiliation(s)
| | | | - Peter Ruhdal Jensen
- National Food Institute (DTU Food), Søltofts Plads 222, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Zhang C, Sun G, Quan B, Shi X, Xiao N, Zhang Y, Tong J, Wang W, Tang Y, Xiao B, Zhang C. Preparation of Mn/Ti-modified zeolite and its performance for removing iron and manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80581-80596. [PMID: 35718848 DOI: 10.1007/s11356-022-21309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Excessive iron and manganese presented in groundwater sources may cause harm to human health that needs to be solved urgently. This research aims to develop high-performance Mn/Ti-modified zeolites using sol-gel method and hydrothermal synthesis method to remove Fe2+ and Mn2+ simultaneously. The preparation parameters were optimized by response surface methodology, and the results confirmed that the optimal preparation conditions were as follows: mass ratio of MnO2-TiO2/zeolite = 1, hydrothermal temperature = 200°C, and calcination temperature = 500°C. The results of batch adsorption experiments showed that the best removal rate of Fe2+ and Mn2+ by modified zeolite materials which was prepared under the optimum conditions reached 96.8% and 94.4%, respectively, at which the saturated adsorption capacity was 2.80 mg/g and 1.86 mg/g. Through the adsorption kinetics, thermodynamics, internal diffusion, and isothermal adsorption analyses, it is confirmed that the adsorption process of Fe2+ and Mn2+ by the modified zeolite is mainly chemical adsorption. The results of the Weber-Morris internal diffusion model prove that internal diffusion is not the only step that controls the adsorption process. In addition, combined with the characterization of the composite-modified zeolite and the adsorption experimental study, it shows that there is an autocatalytic reaction in the adsorption process.
Collapse
Affiliation(s)
- Chunhui Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China.
| | - Guirong Sun
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Bingxu Quan
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Xuelu Shi
- Multidisciplinary Digital Publishing Institute, Beijing, 100088, People's Republic of China
| | - Nan Xiao
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing, 100070, People's Republic of China
| | - Yizhen Zhang
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing, 100070, People's Republic of China
| | - Jinghua Tong
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing, 100070, People's Republic of China
| | - Wenqian Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Yuanhui Tang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Binhu Xiao
- China Coal Shaanxi Yulin Energy and Chemical Co., Ltd., Yulin, Shaanxi, 719000, People's Republic of China
| | - Chunyu Zhang
- China Coal Shaanxi Yulin Energy and Chemical Co., Ltd., Yulin, Shaanxi, 719000, People's Republic of China
| |
Collapse
|
9
|
Combination of Medium- and High-Pressure Liquid Chromatography for Isolation of L-tryptophan (Q-marker) from Medicago sativa Extract. SEPARATIONS 2022. [DOI: 10.3390/separations9090240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Medicago sativa (alfalfa) is a widely used animal feed. However, its quality has been difficult to control due to the lack of appropriate marker compounds. Therefore, it is very necessary to select an appropriate quality marker (Q-marker) to control its quality. In this study, medium-pressure liquid chromatography and high-pressure liquid chromatography were employed to effectively prepare the separation of the Q-marker (L-tryptophan) from Medicago sativa. Firstly, using MCI GEL® CHP20P as the stationary phase, 2.5 g of the target fraction Fr3 was enriched from crude Medicago sativa extract (2.9 kg) by medium-pressure liquid chromatography. Secondly, Sephadex LH-20 was used to further separate Fr3 fractions, and the Fr34 fraction (358.3 mg) was enriched after 14 repetitions. Lastly, using the ReproSil-Pur C18 AQ preparative column, 63.4 mg of L-tryptophan was obtained by high-pressure liquid chromatography, and the purity was above 95%. The results showed that medium-pressure liquid chromatography (MCI GEL® CHP20P and Sephadex LH-20) combined with high-pressure liquid chromatography (ReproSil-Pur C18 AQ) could be used to effectively prepare the Q-marker from natural products with satisfactory purity.
Collapse
|
10
|
Adsorption differences and mechanism of chitooligosaccharides with specific degree of polymerization on macroporous resins with different functional groups. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Resource Recycling Utilization of Distillers Grains for Preparing Cationic Quaternary Ammonium—Ammonium Material and Adsorption of Acid Yellow 11. SUSTAINABILITY 2022. [DOI: 10.3390/su14042469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using distillers grains (DG) as raw material after pre-treatment with sodium hydroxide (NaOH) and modified with cationic etherification agent 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC), cationic quaternary ammonium distillers grains adsorption material (CDG) was successfully prepared. The optimal adsorption conditions were an adsorption temperature of 25 °C, adsorption time of 180 min, amount of adsorbent at 8.5 g/L, initial dye concentration of 100 mg/L, and pH of dye solution 7.0. The structure of CDG was characterized by FTIR, EDS, SEM, BET, ultraviolet spectrum analysis, and analysis of the zeta potential, while the adsorption mechanism was studied by adsorption kinetics, isotherms, and thermodynamics. The results showed that CHPTAC modified the distillers grains successfully and induced the formation of CDG with a large number of pore structures and good adsorption effect. The highest adsorption yield was above 98%, while after eight rounds of adsorption–desorption experiments, the adsorption rate was 81.80%. The adsorption mechanism showed that the adsorption process of acid yellow 11 (AY11) by CDG conforms to the pseudo-second-order kinetic model, mainly with chemical and physical adsorption such as pore adsorption and electrostatic adsorption. Thermodynamics conforms to the Freundlich isothermal model, and the adsorption process is a spontaneous, endothermic and entropy-increasing process.
Collapse
|
12
|
Møller AH, Hammershøj M, Dos Passos NHM, Tanambell H, Stødkilde L, Ambye-Jensen M, Danielsen M, Jensen SK, Dalsgaard TK. Biorefinery of Green Biomass─How to Extract and Evaluate High Quality Leaf Protein for Food? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14341-14357. [PMID: 34845908 DOI: 10.1021/acs.jafc.1c04289] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a growing need for protein for both feed and food in order to meet future demands. It is imperative to explore and utilize novel protein sources such as protein from leafy plant material, which contains high amounts of the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCo). Leafy crops such as grasses and legumes can in humid climate produce high protein yields in a sustainable way when compared with many traditional seed protein crops. Despite this, very little RuBisCo is utilized for foods because proteins in the leaf material has a low accessibility to monogastrics. In order to utilize the leaf protein for food purposes, the protein needs to be extracted from the fiber rich leaf matrix. This conversion of green biomass to valuable products has been labeled green biorefinery. The green biorefinery may be tailored to produce different products, but in this Review, the focus is on production of food-grade protein. The existing knowledge on the extraction, purification, and concentration of protein from green biomass is reviewed. Additionally, the quality and potential application of the leaf protein in food products and side streams from the green biorefinery will be discussed along with possible uses of side streams from the protein production.
Collapse
Affiliation(s)
- Anders Hauer Møller
- Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- CiFOOD, Aarhus University Centre for Innovative Food Research, 8200 Aarhus N, Denmark
| | - Marianne Hammershøj
- Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- CiFOOD, Aarhus University Centre for Innovative Food Research, 8200 Aarhus N, Denmark
| | - Natalia Hachow Motta Dos Passos
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- Department of Biological and Chemical Engineering, 8000 Aarhus C, Denmark
| | - Hartono Tanambell
- Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark
- CiFOOD, Aarhus University Centre for Innovative Food Research, 8200 Aarhus N, Denmark
| | - Lene Stødkilde
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Morten Ambye-Jensen
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- Department of Biological and Chemical Engineering, 8000 Aarhus C, Denmark
| | - Marianne Danielsen
- Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- CiFOOD, Aarhus University Centre for Innovative Food Research, 8200 Aarhus N, Denmark
| | - Søren K Jensen
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Trine K Dalsgaard
- Department of Food Science, Aarhus University, 8200 Aarhus N, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark
- CiFOOD, Aarhus University Centre for Innovative Food Research, 8200 Aarhus N, Denmark
| |
Collapse
|
13
|
Preparation and Adsorption Properties of Lanthanide Ion Surface-Imprinted Polymer Based on Reaming MCM-41. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Protein Fractionation of Green Leaves as an Underutilized Food Source-Protein Yield and the Effect of Process Parameters. Foods 2021; 10:foods10112533. [PMID: 34828813 PMCID: PMC8622718 DOI: 10.3390/foods10112533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Green biomass has potential as a sustainable protein source for human consumption, due to its abundance and favorable properties of its main protein, RuBisCO. Here, protein fractionation outcomes of green leafy biomass from nine crops were evaluated using a standard protocol with three major steps: juicing, thermal precipitation, and acid precipitation. Successful protein fractionation, with a freeze-dried, resolubilized white protein isolate containing RuBisCO as the final fraction, was achieved for seven of the crops, although the amount and quality of the resulting fractions differed considerably between crops. Biomass structure was negatively correlated with successful fractionation of proteins from biomass to green juice. The proteins in carrot and cabbage leaves were strongly associated with particles in the green juice, resulting in unsuccessful fractionation. Differences in thermal stability were correlated with relatedness of the biomass types, e.g., Beta vulgaris varieties showed similar performance in thermal precipitation. The optimal pH values identified for acid precipitation of soluble leaf proteins were lower than the theoretical value for RuBisCO for all biomass types, but with clear differences between biomass types. These findings reveal the challenges in using one standard fractionation protocol for production of food proteins from all types of green biomass and indicate that a general fractionation procedure where parameters are easily adjusted based on biomass type should instead be developed.
Collapse
|
15
|
Le TT, Framboisier X, Aymes A, Ropars A, Frippiat JP, Kapel R. Identification and Capture of Phenolic Compounds from a Rapeseed Meal Protein Isolate Production Process By-Product by Macroporous Resin and Valorization Their Antioxidant Properties. Molecules 2021; 26:molecules26195853. [PMID: 34641397 PMCID: PMC8512146 DOI: 10.3390/molecules26195853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, phenolic compounds from an aqueous protein by-product from rapeseed meal (RSM) were identified by HPLC-DAD and HPLC-ESI-MS, including sinapine, sinapic acid, sinapoyl glucose, and 1,2-di-sinapoyl gentibiose. The main phenolic compound in this by-product was sinapine. We also performed acid hydrolysis to convert sinapine, and sinapic acid derivatives present in the permeate, to sinapic acid. The adsorption of phenolic compounds was investigated using five macroporous resins, including XAD4, XAD7, XAD16, XAD1180, and HP20. Among them, XAD16 showed the highest total phenolic contents adsorption capacities. The adsorption behavior of phenolic compounds was described by pseudo-second-order and Langmuir models. Moreover, thermodynamics tests demonstrated that the adsorption process of phenolic compounds was exothermic and spontaneous. The highest desorption ratio was obtained with 30% (v/v) and 70% (v/v) ethanol for sinapine and sinapic acid, respectively, with a desorption ratio of 63.19 ± 0.03% and 94.68 ± 0.013%. DPPH and ABTS tests revealed that the antioxidant activity of the hydrolyzed fraction was higher than the non-hydrolyzed fraction and higher than the one of vitamin C. Antioxidant tests demonstrated that these phenolic compounds could be used as natural antioxidants, which can be applied in the food industry.
Collapse
Affiliation(s)
- Tuong Thi Le
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Unité Mixte de Recherche CNRS/Ministère (UMR) 7274, LRGP, F-54500 Vandœuvre-lès-Nancy, France; (T.T.L.); (X.F.); (A.A.)
- Stress, Immunity, Pathogens Laboratory, SIMPA UR7300, Université de Lorraine, F-54000 Nancy, France;
| | - Xavier Framboisier
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Unité Mixte de Recherche CNRS/Ministère (UMR) 7274, LRGP, F-54500 Vandœuvre-lès-Nancy, France; (T.T.L.); (X.F.); (A.A.)
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Unité Mixte de Recherche CNRS/Ministère (UMR) 7274, LRGP, F-54500 Vandœuvre-lès-Nancy, France; (T.T.L.); (X.F.); (A.A.)
| | - Armelle Ropars
- Stress, Immunity, Pathogens Laboratory, SIMPA UR7300, Université de Lorraine, F-54000 Nancy, France;
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA UR7300, Université de Lorraine, F-54000 Nancy, France;
- Correspondence: (J.-P.F.); (R.K.)
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Unité Mixte de Recherche CNRS/Ministère (UMR) 7274, LRGP, F-54500 Vandœuvre-lès-Nancy, France; (T.T.L.); (X.F.); (A.A.)
- Correspondence: (J.-P.F.); (R.K.)
| |
Collapse
|
16
|
Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Su R, Song Y, Wang Y. Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143871. [PMID: 33293086 DOI: 10.1016/j.scitotenv.2020.143871] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Layer-structured graphene oxide excellent carrier for modifications; however, its poor recoverability and stability preclude its application in wastewater treatment fields. Herein, three-dimensional magnetic fungal hyphal/graphene oxide nanofibers (MFHGs) were assembled by a reductive self-assembly (RSA) strategy for the efficient capture of Co(II) and Ni(II) from high-salinity aqueous solution. The RSA strategy is inexpensive, eco-friendly and easy to scale up. The obtained MFHGs enhanced the dispersity and stability of graphene oxide and exhibited excellent magnetization and large coercivity, leading to satisfactory solid-liquid separation performance and denser sediment. The results of batch removal experiments showed that the maximum removal capacity of MFHGs for Ni(II) and Co(II) was 97.44 and 104.34 mg/g, respectively, in 2 g/L Na2SO4 aqueous solution with a pH of 6.0 at 323 K, and the effects of initial pH and ionic strength on Co(II) and Ni(II) removal were explored. Yield residue analysis indicated that the high porosity and oxygen-containing functional groups of MFHGs remarkably improved their Co(II)- and Ni(II)-removal capacities. According to the analysis, hydroxyl groups and amine groups participated in the chemical reaction of Co(II) and Ni(II) removal, and cation-exchange chemical adsorption was dominant during the Co(II)- and Ni(II)-removal process. Based on the attributes of MFHGs, a continuous-flow recycle reactor (CFRR) was proposed for emergency aqueous solution treatment and exhibited satisfactory removal efficiency and regeneration performance. The combination of MFHGs and the proposed CFRR is a promising water treatment strategy for rapid treatment applications.
Collapse
Affiliation(s)
- Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuying Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Si Wan
- Hunan Research Institute for Nonferrous Metals, Changsha 410100, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shunhong Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuxia Song
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China.
| |
Collapse
|
17
|
Zhan Y, Chang M, Lin J. Suppression of phosphorus release from sediment using lanthanum carbonate as amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3280-3295. [PMID: 32914304 DOI: 10.1007/s11356-020-10714-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The performance of lanthanum carbonate (LC) pertaining to the adsorption of phosphate (HwPO4w-3) was investigated, and the possible adsorption mechanism was elucidated. The stabilization of HwPO4w-3 adsorbed to LC was evaluated. The influence of LC addition on the upward transport of phosphorus (P) from sediment to overlying water (OL-W) was studied, and the adsorption performance of HwPO4w-3 on the LC-amended sediment was explored. The results of this work indicated that LC performed well in the elimination of HwPO4w-3 from water in the pH range of 4 to 11, and the commercial and self-prepared LC samples afforded the maximum HwPO4w-3 adsorption capacities of 57.9 and 99.4 mg P/g, respectively, at pH 7. The presence of coexisting species including chloride, bicarbonate, and sulfate had a small influence on the HwPO4w-3 adsorption onto LC. The main HwPO4w-3 adsorption mechanism of LC at pH 7 was the ligand exchange reaction between carbonate and HwPO4w-3 forming the inner-sphere La-phosphate complexation. The self-synthesized LC exhibited much higher HwPO4w-3 adsorption performance than the commercial LC. The overwhelming majority (> 97.0%) of HwPO4w-3 adsorbed to LC primarily existed in the form of muriatic acid-extractable P, which has relatively low re-releasing risk. The addition of LC into sediment could significantly prevent the release of P from the sediment solid into the OL-W, thereby leading to a lower concentration level of reactive soluble P (RSP) in the OL-W compared with no LC treatment. The addition of LC into sediment could greatly improve the HwPO4w-3 uptake ability for the sediment, and the enhancement of HwPO4w-3 adsorption onto the sediment by the added LC increased as the increase of the amendment dosage and the initial HwPO4w-3 concentration. All results suggest that LC could serve as a promising amendment material for the control of sedimentary P release.
Collapse
Affiliation(s)
- Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| | - Mingyue Chang
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Hucheng Ring Road No. 999, Shanghai, 201306, China.
| |
Collapse
|
18
|
Ducrocq M, Boire A, Anton M, Micard V, Morel MH. Rubisco: A promising plant protein to enrich wheat-based food without impairing dough viscoelasticity and protein polymerisation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Nguyen TTQ, Loganathan P, Nguyen TV, Vigneswaran S, Ngo HH. Iron and zirconium modified luffa fibre as an effective bioadsorbent to remove arsenic from drinking water. CHEMOSPHERE 2020; 258:127370. [PMID: 32554019 DOI: 10.1016/j.chemosphere.2020.127370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Porous luffa plant fibre (LF) was grafted with Fe and Zr, and the ability of the fabricated adsorbents to remove arsenate (As(V)) from water was investigated in batch and column adsorption experiments. The Langmuir adsorption capacity (mg g-1) at pH 7 of LF was found to be 0.035, which increased to 2.55 and 2.89 after being grafted with Fe (FLF-3) and Zr (ZLF-3), respectively. Grafting with Fe and Zr increased the zeta potential and zero point of charge (ZPC) of LF (from pH 3.9 to 7.4 for Fe grafting and to 7.6 for Zr grafting), due to chemical bonding of the metals, possibly with the hydroxyl and carboxylic groups in LF as indicated in FTIR peaks. Zeta potential and ZPC decreased after As adsorption owing to inner-sphere complexation mechanism of adsorption. The increase of pH from 3 to 10 progressively reduced the adsorbents' adsorption capacity. Co-existing anions weakened the As(V) removal efficiency in the order, PO43- > SiO32- > CO32- > SO42-. Adsorption kinetics data fitted well to the Weber and Morris model, which revealed initial fast and subsequent slow rates of intra-particle As diffusion into the bigger pores and smaller pores, respectively. Column adsorption data fitted well to the Thomas model with the predicted adsorption capacities in the same order as in the batch adsorption experiment (ZLF-3 > FLF-3 > LF).
Collapse
Affiliation(s)
- Thi Thuc Quyen Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| | | | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia.
| | | | - Huu Hao Ngo
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| |
Collapse
|
20
|
Liu B, Liu J, Huang D, Pei D, Di D. Separation and purification of hydroxytysol and oleuropein from
Olea europaea
L. (olive) leaves using macroporous resins and a novel solvent system. J Sep Sci 2020; 43:2619-2625. [DOI: 10.1002/jssc.201901227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Baoqian Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
| | - Dongdong Huang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
| | - Dong Pei
- Centre of Resource Chemical and New MaterialLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Qingdao P. R. China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 P. R. China
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou P. R. China
| |
Collapse
|
21
|
Hadidi M, Khaksar FB, Pagan J, Ibarz A. Application of Ultrasound-Ultrafiltration-Assisted alkaline isoelectric precipitation (UUAAIP) technique for producing alfalfa protein isolate for human consumption: Optimization, comparison, physicochemical, and functional properties. Food Res Int 2020; 130:108907. [DOI: 10.1016/j.foodres.2019.108907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/23/2022]
|
22
|
Nguyen TTQ, Loganathan P, Nguyen TV, Vigneswaran S. Removing arsenic from water with an original and modified natural manganese oxide ore: batch kinetic and equilibrium adsorption studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5490-5502. [PMID: 31853842 DOI: 10.1007/s11356-019-07284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Arsenic contamination of drinking water is a serious water quality problem in many parts of the world. In this study, a low-cost manganese oxide ore from Vietnam (Vietnamese manganese oxide (VMO)) was firstly evaluated for its performance in arsenate (As(V)) removal from water. This material contains both Mn (25.6%) and Fe (16.1%) mainly in the form of cryptomelane and goethite minerals. At the initial As(V) concentration of 0.5 mg/L, the adsorption capacity of original VMO determined using the Langmuir model was 0.11 mg/g. The modified VMOs produced by coating VMO with iron oxide (Fea-VMO) and zirconium oxide (Zra-VMO) at 110 °C and 550 °C achieved the highest As(V) adsorption capacity when compared to three other methods of VMO modifications. Langmuir maximum adsorption capacities of Fea-VMO and Zra-VMO at pH 7.0 were 2.19 mg/g and 1.94 mg/g, respectively, nearly twenty times higher than that of the original VMO. Batch equilibrium adsorption data fitted well to the Langmuir, Freundlich, and Temkin models and batch kinetics adsorption data to pseudo-first order, pseudo-second order, and Elovich models. The increase of pH progressively from 3 to 10 reduced As(V) adsorption with a maximum reduction of 50-60% at pH 10 for both original and modified VMOs. The co-existing oxyanions considerably weakened the As(V) removal efficiency because they competed with As(V) anions. The competition order was PO43- > SiO32- > CO32- > SO42-. The characteristics of the original and modified VMOs evaluated using SEM, FTIR, XRD, XRF, surface area, and zeta potential explained the As(V) adsorption behaviour.
Collapse
Affiliation(s)
- Thi Thuc Quyen Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| | | | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia.
| | | |
Collapse
|
23
|
Mudzielwana R, Gitari MW, Ndungu P. Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics. Heliyon 2019; 5:e02756. [PMID: 31768432 PMCID: PMC6872766 DOI: 10.1016/j.heliyon.2019.e02756] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
In this paper surfactant modified kaolin clay for As(III) and As(V) was prepared by intercalating hexadecyltrimethylamonium bromide (HDTMA-Br) cationic surfactant onto the clay interlayers. Batch experiments were used to evaluate the effectiveness of surfactant modified kaolin clay towards As(III) and As(V) removal. The results revealed that adsorption of As(III) and As(V) is optimum at pH range 4–8. The maximum As(III) and As(V) adsorption capacities were found 2.33 and 2.88 mg/g, respectively after 60 min contact time. The data for adsorption of As(III) showed a better fit too pseudo first order model of reaction kinetics while the data for As(V) fitted better to pseudo second order model. The adsorption isotherm data for As(III) and As(V) fitted well to Langmuir model indicating that adsorption of both species occurred on a mono-layered surface. Adsorption thermodynamics model revealed that adsorption of As(III) and As(V) was spontaneous and exothermic. The presence of Mg2+ and Ca2+ increased As(III) and As(V) adsorption efficiency. The regeneration study showed that synthesized adsorbent can be used for up to 5 times with maximum As(III) and As(V) percentage removal of 54.2% and 62.33%, respectively achieved after 5th cycle. Surfactant modified kaolin clay mineral showed higher adsorption capacity towards As(III) and As(V) as compared to unmodified kaolin clay mineral and competitive with other adsorbent in the literature. The results obtained from this study revealed that surfactant modified kaolin mineral is a candidate material for arsenic remediation from groundwater.
Collapse
Affiliation(s)
- Rabelani Mudzielwana
- Environmental Remediation and Nano Science Research Group, Department of Ecology and Resource Management, Thohoyandou, South Africa
| | - Mugera Wilson Gitari
- Environmental Remediation and Nano Science Research Group, Department of Ecology and Resource Management, Thohoyandou, South Africa
| | - Patrick Ndungu
- Department of Applied Chemistry, University of Johannesburg, South Africa
| |
Collapse
|
24
|
Kang HJ, Kim JH. Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures onto Sylopute. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0001-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hadidi M, Ibarz A, Conde J, Pagan J. Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food Chem 2018; 276:591-598. [PMID: 30409637 DOI: 10.1016/j.foodchem.2018.10.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
The use of alfalfa protein in human food is limited by its low quality. Response Surface Methodology was employed to optimise the combined effects of different steam blanching conditions on the enzymatic activity, browning and protein degrading which cause undesirable characteristics. The optimum conditions were: steaming time 4.36 min, particle size 23 mm, time from harvesting to steaming 2 h leading to a residual activity of polyphenol oxidase of 1.31% and a completely inactivation of peroxidase. The Browning Index value was 108.3 and the non-protein nitrogen 170.2 (g kg-1 TN). The browning and protein degradation rates of alfalfa treated under the optimum conditions were much lower than the control alfalfa after 60 days ensiling. This suggests that blanching of fresh whole alfalfa leaves under the optimum conditions was helpful for avoiding the appearance of the dark color and degradation of the extracted protein, improving its quality for human consumption.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Food Technology, Universitat de Lleida, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - Albert Ibarz
- Department of Food Technology, Universitat de Lleida, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Josep Conde
- Departament de Mathematics, Universitat de Lleida, Carrer Jaume II, 69, 25001 Lleida, Spain
| | - Jordi Pagan
- Department of Food Technology, Universitat de Lleida, Av. Rovira Roure, 191, 25198 Lleida, Spain
| |
Collapse
|
26
|
Chen X, Liu L, Luo Z, Shen J, Ni Q, Yao J. Facile preparation of a cellulose-based bioadsorbent modified by hPEI in heterogeneous system for high-efficiency removal of multiple types of dyes. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Sumalinog DAG, Capareda SC, de Luna MDG. Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:255-262. [PMID: 29367138 DOI: 10.1016/j.jenvman.2018.01.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
The adsorption potential and governing mechanisms of emerging contaminants, i.e. acetaminophen or acetyl-para-aminophenol (APAP) and methylene blue (MB) dye, on activated carbon derived from municipal solid waste were investigated in this work. Results showed that MB adsorption was significantly more effective, with a maximum removal of 99.9%, than APAP adsorption (%Rmax = 63.7%). MB adsorption was found to be unaffected by pH change, while the adsorption capacity of APAP drastically dropped by about 89% when the pH was adjusted from pH 2 to 12. Surface reactions during APAP adsorption was dominated by both physical and chemical interactions, with the kinetic data showing good fit in both pseudo-first order (R2 = 0.986-0.997) and pseudo-second order (R2>0.998) models. On the other hand, MB adsorption was best described by the pseudo-second order model, with R2>0.981, denoting that chemisorption controlled the process. Electrostatic attractions and chemical reactions with oxygenated surface functional groups (i.e., -OH and -COOH) govern the adsorption of APAP and MB on the activated biochar. Thermodynamic study showed that APAP and MB adsorption were endothermic with positive ΔH° values of 16.5 and 74.7 kJ mol-1, respectively. Negative ΔG° values obtained for APAP (-3.7 to -5.1 kJ mol-1) and MB (-11.4 to -17.1 kJ mol-1) implied that the adsorption onto the activated biochar was spontaneous and feasible. Overall, the study demonstrates the effectiveness of activated biochar from municipal solid wastes as alternative adsorbent for the removal of acetaminophen and methylene blue dye from contaminated waters.
Collapse
Affiliation(s)
- Divine Angela G Sumalinog
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, 1101, Quezon City, Philippines; Bio-Energy Testing and Analysis Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, 77840, TX, USA
| | - Sergio C Capareda
- Bio-Energy Testing and Analysis Laboratory, Biological and Agricultural Engineering Department, Texas A&M University, College Station, 77840, TX, USA.
| | - Mark Daniel G de Luna
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines Diliman, 1101, Quezon City, Philippines; Department of Chemical Engineering, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
28
|
Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.09.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Li Z, Wu P, Hou X, Liu D, Wang J, Lou B, Kong X. Probing the essence of strong interaction in oily sludge with thermodynamic analysis. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|