1
|
El Hanafi N, Zaabar A, Aoudjit F, Lounici H. Decolorization enhancement of basic fuchsin by UV/H 2O 2 process: optimization and modeling using Box Behnken design. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:251-259. [PMID: 38903027 DOI: 10.1080/10934529.2024.2369432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The present work deals with the optimization of basic fuchsin dye removal from an aqueous solution using the ultraviolet UV/H2O2 process. Response Surface Modeling (RSM) based on Box-Behnken experimental design (BBD) was applied as a tool for the optimization of operating conditions such as initial dye concentration (10-50 ppm), hydrogen peroxide dosage (H2O2) (10-20 mM/L) and irradiation time (60-180 min), at pH = 7.4 under ultra-violet irradiation (254 nm and 25 W intensity). Chemical oxygen demand (COD abatement) was used as a response variable. The Box-Behnken Design can be employed to develop a mathematical model for predicting UV/H2O2 performance for COD abatement. COD abatement is sensitive to the concentration of hydrogen peroxide and irradiation time. Statistical analyses indicate a high correlation between observed and predicted values (R2 > 0.98). In the BBD predictions, the optimal conditions in the UV/H2O2 process for removing 99.3% of COD were found to be low levels of pollutant concentration (10 ppm), a high concentration of hydrogen peroxide dosage (20 mM/L), and an irradiation time of 80 min.
Collapse
Affiliation(s)
- Nawel El Hanafi
- Laboratoire des Matériaux et Développement Durable (MDD), Faculté des Sciences et des Sciences Appliquées, Université de Bouira, Bouira, Algeria
| | - Aida Zaabar
- Laboratoire des Matériaux et Développement Durable (MDD), Faculté des Sciences et des Sciences Appliquées, Université de Bouira, Bouira, Algeria
- Laboratoire d'Electrochimie, Corrosion et de Valorisation Energétique (LECVE), Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
| | - Farid Aoudjit
- Laboratoire des Matériaux et Développement Durable (MDD), Faculté des Sciences et des Sciences Appliquées, Université de Bouira, Bouira, Algeria
| | - Hakim Lounici
- Laboratoire des Matériaux et Développement Durable (MDD), Faculté des Sciences et des Sciences Appliquées, Université de Bouira, Bouira, Algeria
| |
Collapse
|
2
|
Brillas E, Oliver R. Development of persulfate-based advanced oxidation processes to remove synthetic azo dyes from aqueous matrices. CHEMOSPHERE 2024; 355:141766. [PMID: 38527631 DOI: 10.1016/j.chemosphere.2024.141766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Azo dyes are largely used in many industries and discharged in large volumes of their effluents into the aquatic environment giving rise to non-esthetic pollution and health-risk problems. Due to the high stability of azo dyes in ambient conditions, they cannot be abated in conventional wastewater treatment plants. Over the last fifteen years, the decontamination of dyeing effluents by persulfate (PS)-based advanced oxidation processes (AOPs) has received a great attention. In these methods, PS is activated to be decomposed into sulfate radical anion (SO4•-), which is further partially hydrolyzed to hydroxyl radical (•OH). Superoxide ion (O2•-) and singlet oxygen (1O2) can also be produced as oxidants. This review summarizes the results reported for the discoloration and mineralization of synthetic and real waters contaminated with azo dyes covering up to November 2023. PS activation with iron, non-iron transition metals, and carbonaceous materials catalysts, heat, UVC light, photocatalysis, photodegradation with iron, electrochemical and related processes, microwaves, ozonation, ultrasounds, and other processes is detailed and analyzed. The principles and characteristics of each method are explained with special attention to the operating variables, the different oxidizing species generated yielding radical and non-radical mechanisms, the addition of inorganic anions and natural organic matter, the aqueous matrix, and the by-products identified. Finally, the overall loss of toxicity or partial detoxification of treated azo dye solutions during the PS-based AOPs is discussed.
Collapse
Affiliation(s)
- Enric Brillas
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcclona, Spain.
| | - Ramon Oliver
- Departament d'Enginyeria Químia, Universitat Politècnica de Catalunya, Avinguda Eduard Maristany16, edifici I, segona planta, Barcelona, Spain.
| |
Collapse
|
3
|
Wei J, Yan L, Zhang Z, Hu B, Gui W, Cui Y. Carbon nanotube/Chitosan hydrogel for adsorption of acid red 73 in aqueous and soil environments. BMC Chem 2023; 17:104. [PMID: 37620928 PMCID: PMC10463536 DOI: 10.1186/s13065-023-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Acid red 73 is an azo dye, and its residue can pollute the environment and seriously threaten human health and life. In this study, glutaraldehyde was used as the crosslinking agent, chitosan and polyvinyl alcohol were crosslinked under appropriate conditions to obtain a chitosan hydrogel film, and carbon nanotubes were dispersed in the chitosan hydrogel film. The FTIR, XRD, BET, SEM were applied to chatacterize the structure and the morphology of the absorbent and results showed that when the mass fraction of the carbon nanotubes was 1%, the structure was a three-dimensional network with microporous, and the water absorption reached to the maximum value of 266.07% and the elongation at break reached to a maximum of 98.87%. The ability to remove acid red 73 from aqueous and soil environments was evaluated by UV. In the aqueous samples, 70 mg of the adsorbent reached a saturated adsorption capacity of 101.07 mg/g and a removal rate of 92.23% at pH = 5. The thermodynamics conformed with the Langmuir adsorption isotherm and pseudo second-order adsorption kinetic models. In the soil samples, 100 mg of the adsorbent reached an adsorption capacity of 24.73 mg/g and removal rate of 49.45%. When the pH of the soil is between 4 and 7, the removal rate and adsorption capacity do not change much; hence, the pH should be maintained between 5.2 and 6.8, which is extremely suitable for the growth of general plants. Moreover, the experimental results demonstrated that the adsorbent maintained a good removal rate of acid red 73 over six adsorption cycles.
Collapse
Affiliation(s)
- Jia Wei
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Luchun Yan
- Gansu Henglu Traffic Survey and Design Institute, Lanzhou, Gansu, 730070 China
| | - Zhifang Zhang
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Wenjun Gui
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Yanjun Cui
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| |
Collapse
|
4
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Wang B, Wang Y. A comprehensive review on persulfate activation treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154906. [PMID: 35364155 DOI: 10.1016/j.scitotenv.2022.154906] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
With increasingly serious environmental pollution and the production of various wastewater, water pollutants have posed a serious threat to human health and the ecological environment. The advanced oxidation process (AOP), represented by the persulfate (PS) oxidation process, has attracted increasing attention because of its economic, practical, safety and stability characteristics, opening up new ideas in the fields of wastewater treatment and environmental protection. However, PS does not easily react with organic pollutants and usually needs to be activated to produce oxidizing active substances such as sulfate radicals (SO4-) and hydroxyl radicals (OH) to degrade them. This paper summarizes the research progress of PS activation methods in the field of wastewater treatment, such as physical activation (e.g., thermal, ultrasonic, hydrodynamic cavitation, electromagnetic radiation activation and discharge plasma), chemical activation (e.g., alkaline, electrochemistry and catalyst) and the combination of the different methods, putting forward the advantages, disadvantages and influencing factors of various activation methods, discussing the possible activation mechanisms, and pointing out future development directions.
Collapse
Affiliation(s)
- Baowei Wang
- School of Chemical Engineering and Technology, Tianjin University, China.
| | - Yu Wang
- School of Chemical Engineering and Technology, Tianjin University, China
| |
Collapse
|
7
|
Han S, Xiao P, An L, Wu D. Oxidative degradation of tetracycline using peroxymonosulfate activated by cobalt-doped pomelo peel carbon composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21656-21669. [PMID: 34767166 DOI: 10.1007/s11356-021-17391-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Tetracycline (TC) is a typical ecotoxic antibiotic, which easily causes bacterial resistance. Therefore, it is necessary to remove TC from the water environment. In recent years, advanced oxidation processes (AOPs) rely on the use of highly reactive oxidizing sulfate radical which is turning into an increasingly popular as a tool of the removal of TC. In this study, cobalt-doped pomelo peel carbon composite (Co-PPCC) was prepared by the impregnation coprecipitation method to activate peroxymonosulfate (PMS) to remove TC. SEM, BET, XRD, FTIR, XPS, TGA, and other analytical techniques indicated that a carbon composite catalyst with excellent performance has been successfully prepared. TC was removed by the synergistic effect of adsorption and catalytic degradation processes. The adsorption capacity was limited (only approximately 20% within 60 min) and tending to saturation, which indicated that the removal of TC in the Co-PPCC/PMS system was mainly due to oxidative degradation. The influence of the Co-PPCC and PMS dosage, initial TC concentration, initial pH values, and coexisting anions on the removal efficiency of TC was investigated. When the Co-PPCC catalyst dosage was 1 g/L, PMS concentration was 2 g/L, and pH value was 11, the removal efficiency of TC with a concentration of 50 mg/L reached 99% within 60 min. Free radical quenching experiment and electron paramagnetic resonance (EPR) analysis indicated that the free radical and non-radical degradation processes exist in the Co-PPCC/PMS/TC system. The main degradation products and the possible transformation pathways of TC were explored by LC-MS. In addition, after four cycles of Co-PPCC tests, the removal efficiency of TC can reach 64%. This study provides a new method to reuse abandoned pomelo peels and synthesize an economical and environmentally friendly catalyst for activating peroxymonosulfate to remove TC antibiotics in water.
Collapse
Affiliation(s)
- Shuang Han
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China.
| | - Lu An
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
8
|
Rodrigues AS, Silveira JE, Carbajo J, Zazo JA, Casas JA, Fernandes A, Pacheco MJ, Ciríaco L, Lopes A. Diclofenac photodegradation with the Perovskites BaFe yTi 1-yO 3 as catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23822-23832. [PMID: 33145735 DOI: 10.1007/s11356-020-11328-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Perovskite oxides BaFeyTi1-yO3, with y = 0, 0.6, 0.8 and 1, were prepared by ceramic (CM) and complex polymerization methods (CPM) and utilized in UV-LED (365 nm) photocatalytic degradation assays of 25 mg L-1 diclofenac (DIC) model solutions. BaTiO3-CM was also used in the photocatalytic degradation test of a real mineral water for human consumption spiked with 2 mg L-1 DIC. The XRD patterns of the synthesized perovskites showed cubic structure for those prepared by CPM, with distortions of the cubic lattice to hexagonal or tetragonal when prepared by CM, except for BaTiO3. All the perovskites showed good catalytic activity, higher than photolysis, except BaFeO3-CM that presented similar results. BaTiO3-CM and CPM and BaFeO3-CPM were also utilized in UV-LED photocatalytic DIC degradation assays with peroxydisulfate addition. BaFeO3-CPM and BaTiO3-CPM showed better ability to persulfate activation, but the highest mineralization degree was obtained with BaTiO3-CM. This last perovskite was also able to perform DIC degradation in a real matrix. The studied oxides show potentiality for photocatalytic degradation of organic compounds, with or without persulfate addition. A degradation mechanism is proposed.
Collapse
Affiliation(s)
- Ana Sofia Rodrigues
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Jefferson E Silveira
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Chemical Engineering Department, Autonomous University of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Carbajo
- Chemical Engineering Department, Autonomous University of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juan A Zazo
- Chemical Engineering Department, Autonomous University of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Jose A Casas
- Chemical Engineering Department, Autonomous University of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Annabel Fernandes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Maria José Pacheco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Lurdes Ciríaco
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
| | - Ana Lopes
- FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| |
Collapse
|
9
|
Wang L, Lan X, Peng W, Wang Z. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124436. [PMID: 33191023 DOI: 10.1016/j.jhazmat.2020.124436] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The identification of reactive radical species using quenching and electron paramagnetic resonance (EPR) tests has attracted extensive attention, but some mistakes or misinterpretations are often present in recent literature. This review aims to clarify the corresponding issues through surveying literature, including the uncertainty about the identity of radicals in the bulk solution or adsorbed on the catalyst surface in quenching tests, selection of proper scavengers, data explanation for incomplete inhibition, the inconsistent results between quenching and EPR tests (e.g., SO4•- is predominant in quenching test while the signal of •OH predominates in EPR test), and the incorrect identification of EPR signals (e.g., SO4•- is identified by indiscernible or incorrect signals). In addition, this review outlines the transformation of radicals for better tracing the origin of radicals. It is anticipated that this review can help in avoiding mistakes while investigating catalytic oxidative mechanism with quenching and EPR tests.
Collapse
Affiliation(s)
- Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Lan
- Shanghai Institute of Quality Inspection and Technical Research, 900 Jiangyue Road, Minhang District, Shanghai 201114, China
| | - Wenya Peng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
10
|
Xia X, Zhu F, Li J, Yang H, Wei L, Li Q, Jiang J, Zhang G, Zhao Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front Chem 2020; 8:592056. [PMID: 33330379 PMCID: PMC7729018 DOI: 10.3389/fchem.2020.592056] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
High levels of toxic organic pollutants commonly detected during domestic/industrial wastewater treatment have been attracting research attention globally because they seriously threaten human health. Sulfate-radical-based advanced oxidation processes (SR-AOPs) have been successfully used in wastewater treatment, such as that containing antibiotics, pesticides, and persistent organic pollutants, for refractory contaminant degradation. This review summarizes activation methods, including physical, chemical, and other coupling approaches, for efficient generation of sulfate radicals and evaluates their applications and economic feasibility. The degradation behavior as well as the efficiency of the generated sulfate radicals of typical domestic and industrial wastewater treatment is investigated. The categories and characteristics of the intermediates are also evaluated. The role of sulfate radicals, their kinetic characteristics, and possible mechanisms for organic elimination are assessed. In the last section, current difficulties and future perspectives of SR-AOPs for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Fengyi Zhu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiaoyang Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Agricultural University, Qingdao, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Qian R, Shen T, Yang Q, Andrew Lin KY, Tong S. Activation of persulfate by graphite supported CeO2 for isoniazid degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Liu L, Yang C, Tan W, Wang Y. Degradation of Acid Red 73 by Activated Persulfate in a Heat/Fe 3O 4@AC System with Ultrasound Intensification. ACS OMEGA 2020; 5:13739-13750. [PMID: 32566839 PMCID: PMC7301586 DOI: 10.1021/acsomega.0c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the degradation efficiency of waste water with an azo dye, Acid Red 73 (AR73), by persulfate/heat/Fe3O4@AC/ultrasound (US). The introduction of ultrasound into the persulfate/heat/Fe3O4@AC system greatly enhanced the reaction rate because of the physical and chemical effects induced by cavitation. Various parameters such as temperature, initial pH, sodium persulfate dosage, catalyst dosage, initial concentration of AR73, ultrasonic frequency and power, and free-radical quenching agents were investigated. The optimal conditions were determined to be AR73 50 mg/L, PS 7.5 mmol/L, catalyst dosage 2 g/L, ultrasound frequency 80 kHz, acoustic density 5.4 W/L, temperature 50 °C, and pH not adjusted. Nearly, 100% decolorization was achieved within 10 min under optimal conditions. Different from some other similar research studies, the reaction did not follow a radical-dominating way but rather had 1O2 as the main reactive species. The recycling and reusability test confirmed the superiority of the prepared Fe3O4@AC catalyst. The research achieved a rapid decolorization method not only using waste heat of textile water as a persulfate activator but also applicable to a complex environment where common radical scavengers such as ethanol exist.
Collapse
Affiliation(s)
- Liyan Liu
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chao Yang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wei Tan
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yang Wang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Tianjin
Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| |
Collapse
|
13
|
Zhang N, Bu J, Meng Y, Wan J, Yuan L, Peng X. Degradation of p‐aminophenol wastewater using Ti‐Si‐Sn‐Sb/GAC particle electrodes in a three‐dimensional electrochemical oxidation reactor. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Na Zhang
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Yong Meng
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| | - Jia Wan
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
| | - Lu Yuan
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| | - Xin Peng
- College of Chemistry and Chemical Engineering of Hunan Normal University Changsha 410081 China
- National & Local Joint Engineering Laboratory for New Petro‐chemical Materials and Fine Utilization of Resources Changsha 410081 China
- Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province College Changsha 410081 China
- Research Center of Resource Recycling Complex TechnologyHunan Normal University Changsha 410081 China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education Changsha 410081 China
| |
Collapse
|
14
|
Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation. J Colloid Interface Sci 2020; 566:33-45. [DOI: 10.1016/j.jcis.2020.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/22/2022]
|
15
|
Ma Q, Nengzi LC, Li B, Wang Z, Liu L, Cheng X. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Enhanced activation of persulfate by AC@CoFe2O4 nanocomposites for effective removal of lomefloxacin. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115978] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Zhong X, Ye XY, Wu D, Zhang KX, Huang W. A facile heterogeneous system for persulfate activation by CuFe 2O 4 under LED light irradiation. RSC Adv 2019; 9:32328-32337. [PMID: 35530784 PMCID: PMC9072953 DOI: 10.1039/c9ra05574f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022] Open
Abstract
In this study, the removal performance for rhodamine B (RB) by persulfate (PS) activated by the CuFe2O4 catalyst in a heterogeneous catalytic system under LED light irradiation was investigated. The effect of vital experimental factors, including initial solution pH, CuFe2O4 dosage, PS concentration, co-existing anion and initial RB concentration on the removal of RB was systematically studied. The removal of RB was in accordance with the pseudo first-order reaction kinetics. Over 96% of 20 mg L-1 RB was removed in 60 min using 0.5 g L-1 CuFe2O4 catalyst and 0.2 mM PS at neutral pH. In addition, free radical quenching experiments and electron spin resonance (EPR) experiments were performed, which demonstrated the dominant role of sulfate radical, photogenerated holes and superoxide radical in the CuFe2O4/PS/LED system. The morphology and physicochemical properties of the catalyst were characterized by XRD, SEM-EDS, TEM, N2 adsorption-desorption isotherm, UV-vis DRS, and XPS measurements. Moreover, 18.23% and 38.79% total organic carbon (TOC) removal efficiency was reached in 30 min and 60 min, respectively. The catalyst revealed good performance during the reusability experiments with limited iron and copper leaching. Eventually, the major intermediates in the reaction were detected by GC/MS, and the possible photocatalytic pathway for the degradation of RB in the CuFe2O4/PS/LED system was proposed. The results suggest that the CuFe2O4/PS/LED system has good application for further wastewater treatment.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Environment Science and Engineering, Beijing Normal University Zhuhai 519000 China
| | - Xiao-Yu Ye
- Department of Environment Science and Engineering, Beijing Normal University Zhuhai 519000 China
| | - Di Wu
- Department of Environment Science and Engineering, Beijing Normal University Zhuhai 519000 China
| | - Kai-Xin Zhang
- Department of Environment Science and Engineering, Beijing Normal University Zhuhai 519000 China
| | - Wei Huang
- Department of Environment Science and Engineering, Beijing Normal University Zhuhai 519000 China
| |
Collapse
|
18
|
A novel carbon-coated Fe-C/N composite as a highly active heterogeneous catalyst for the degradation of Acid Red 73 by persulfate. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Gu Z, Chen W, Li Q, Zhang A. Kinetics study of dinitrodiazophenol industrial wastewater treatment by a microwave-coupled ferrous-activated persulfate process. CHEMOSPHERE 2019; 215:82-91. [PMID: 30316160 DOI: 10.1016/j.chemosphere.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/15/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a ferrous-activated persulfate (PS) process induced by microwave (MW) energy was used to treat an industrial wastewater containing dinitrodiazophenol (DDNP). The effect of different operational parameters, such as PS dose, initial pH, MW power, and the mass ratio of ferrous to PS [i.e., n(Fe2+/PS)], on chemical oxygen demand (COD) removal and the pseudo first-order constant k was systematically studied. Results showed that the constant k and COD removal increased considerably with increasing PS dose, MW power, and n(Fe2+/PS); however, the constant k and COD removal decreased proportionally as the initial pH increased from 3 to 11. A base-activated PS system was formed when the initial pH further increased to 13, which resulted in a dramatic increase of k and COD removal. Controlled experiments demonstrated that the synergetic effect of MW, Fe2+, and PS were significant. The value of k was 0.2425 min-1, COD removal was 71.42%, and biodegradability remarkably increased from 0.056 to 0.6712 during treatment by MW-Fe2+/PS at a PS dose of 8 g/L, MW power of 600 W, initial pH of 3, n(Fe2+/PS) of 0.04, and reaction time of 14 min. Spectral analyses showed that the chromophores (including the diazo group and nitro group compounds) and benzene rings were greatly decomposed. Identification tests for reactive oxygen species showed that the predominant oxidizing species in the MW-Fe2+/PS process was the sulfate radical, and that the hydroxyl radical played a lesser role for color number elimination. From the perspective of both treatment efficiency energy consumption, the MW-Fe2+/PS process was confirmed to be an economical and promising pretreatment process for DDNP industrial wastewater.
Collapse
Affiliation(s)
- Zhepei Gu
- Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Aiping Zhang
- Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
20
|
Zhu J, Chen C, Li Y, Zhou L, Lan Y. Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Lin KYA, Yang MT, Lin JT, Du Y. Cobalt ferrite nanoparticles supported on electrospun carbon fiber as a magnetic heterogeneous catalyst for activating peroxymonosulfate. CHEMOSPHERE 2018; 208:502-511. [PMID: 29886339 DOI: 10.1016/j.chemosphere.2018.05.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Cobalt ferrite (CF) nanoparticle (NP) represents a promising alternative to Co3O4 NP for peroxymonosulfate (PMS) activation in view of its strong magnetism for easy recovery. As CF NPs in water are prone to agglomerate, a few attempts have been made to immobilize CF NPs on substrates. While carbonaceous supports are more favorable owing to their earth abundancy, the study of carbon-supported CF for PMS activation is limited to graphene-based CF, which, however, requires complicated protocols to prepare. As carbon-supported CF, by straightforward preparation, is still greatly desired, this study aims to employ electrospinning techniques for preparing carbon-supported CF by carbonizing an electrospun CF-embedded polyacrylonitrile (PAN) fiber. After carbonization, the CF-PAN fiber is converted into CF-embedded carbon nanofiber (CF@CNF), which contains well distributed CF NPs, high magnetism and stable carbon support, making CF@CNF a highly promising catalyst for activating PMS. As amaranth decolorization is used as a model reaction, CF@CNF is able to activate PMS for generating sulfate radicals and then decolorize amaranth in water. Amaranth decolorization by CF@CNF-PMS is also substantially facilitated at elevated temperature, and enhanced under the weakly acidic condition. CF@CNF also remains effective to activate PMS even in the presence of salts and surfactants, and re-usable over multiple cycles. Compared to other reported catalysts, CF@CNF also exhibited a much lower Ea value (35.8 kJ/mol) for amaranth decolorization. These features validate that CF@CNF is an advantageous and convenient catalyst for activating PMS.
Collapse
Affiliation(s)
- Kun-Yi Andrew Lin
- Department of Environmental Engineering, Taiwan; Research Center of Sustainable Energy and Nanotechnology, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| | | | | | - Yunchen Du
- Department of Chemistry, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
22
|
Silveira JE, Claro EMT, Paz WS, Oliveira AS, Zazo JA, Casas JA. Optimization of Disperse Blue 3 mineralization by UV-LED/FeTiO3 activated persulfate using response surface methodology. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
A novel composite Fe-N/O catalyst for the effective enhancement of oxidative capacity of persulfate at ambient temperature. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2017.09.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Zhang A, Chen W, Gu Z, Li Q, Shi G. Mechanism of adsorption of humic acid by modified aged refuse. RSC Adv 2018; 8:33642-33651. [PMID: 35548845 PMCID: PMC9086569 DOI: 10.1039/c8ra05933k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022] Open
Abstract
In the present study, aged refuse (AR) was modified to be applied as an adsorbent to remove humic acid from water. The efficiency of humic acid removal by modified aged refuse (MAR) under different preparation conditions (calcination temperature, dose of aged refuse for calcination and holding time) was systematically investigated. Results showed that the optimum preparation conditions are calcination temperature = 700 °C, AR dose for calcination = 25 g, and holding time = 2.0 h. The characteristics of the modified aged refuse obtained under different calcination conditions were determined by Fourier transform infrared, X-ray diffraction and X-ray photoelectron spectroscopy analysis. In addition, the effects of modified aged refuse dose and initial solution pH on adsorption performance were studied. The removal of humic acid increased with higher doses of modified aged refuse, and weak alkaline (initial pH = 8.0) conditions were favorable for humic acid removal. A pseudo-second order model fitted the experimental data well. Moreover, the adsorption isotherms were well described by the Langmuir isotherm model, in which the monolayer surface loading was calculated to be approximately 37 mg g−1. During the adsorption process, the molecular weight, degree of condensation and aromaticity of humic acid were considerably decreased, according to 3D-EEM analysis. MAR as a new type of adsorbent thus provides a potential adsorption method for humic acid. In the present study, aged refuse (AR) was modified to be applied as an adsorbent to remove humic acid from water.![]()
Collapse
Affiliation(s)
- Aiping Zhang
- Key Laboratory of Special Wastewater Treatment of Collages of Sichuan Province
- College of Chemistry and Material Science of Sichuan Normal University
- Chengdu 610068
- China
- Laboratory of Development and Application of Rural Renewable Energy
| | - Weiming Chen
- Faculty of Geosciences and Environmental Engineering
- Southwest Jiaotong University
- Chengdu 611756
- China
| | - Zhepei Gu
- Key Laboratory of Special Wastewater Treatment of Collages of Sichuan Province
- College of Chemistry and Material Science of Sichuan Normal University
- Chengdu 610068
- China
| | - Qibin Li
- Key Laboratory of Special Wastewater Treatment of Collages of Sichuan Province
- College of Chemistry and Material Science of Sichuan Normal University
- Chengdu 610068
- China
- Faculty of Geosciences and Environmental Engineering
| | - Guozhong Shi
- Laboratory of Development and Application of Rural Renewable Energy
- Ministry of Agriculture
- Chengdu 610041
- China
- Biogas Institute of Ministry of Agriculture
| |
Collapse
|