1
|
Al-Gethami W, Qamar MA, Shariq M, Alaghaz ANMA, Farhan A, Areshi AA, Alnasir MH. Emerging environmentally friendly bio-based nanocomposites for the efficient removal of dyes and micropollutants from wastewater by adsorption: a comprehensive review. RSC Adv 2024; 14:2804-2834. [PMID: 38234871 PMCID: PMC10792434 DOI: 10.1039/d3ra06501d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Water scarcity will worsen due to population growth, urbanization, and climate change. Addressing this issue requires developing energy-efficient and cost-effective water purification technologies. One approach is to use biomass to make bio-based materials (BBMs) with valuable attributes. This aligns with the goal of environmental conservation and waste management. Furthermore, the use of biomass is advantageous because it is readily available, economical, and has minimal secondary environmental impact. Biomass materials are ideal for water purification because they are abundant and contain important functional groups like hydroxyl, carboxyl, and amino groups. Functional groups are important for modifying and absorbing contaminants in water. Single-sourced biomass has limitations such as weak mechanical strength, limited adsorption capacity, and chemical instability. Investing in research and development is crucial for the development of efficient methods to produce BBMs and establish suitable water purification application models. This review covers BBM production, modification, functionalization, and their applications in wastewater treatment. These applications include oil-water separation, membrane filtration, micropollutant removal, and organic pollutant elimination. This review explores the production processes and properties of BBMs from biopolymers, highlighting their potential for water treatment applications. Furthermore, this review discusses the future prospects and challenges of developing BBMs for water treatment and usage. Finally, this review highlights the importance of BBMs in solving water purification challenges and encourages innovative solutions in this field.
Collapse
Affiliation(s)
- Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University Al-Hawiah, PO Box 11099 Taif City Saudi Arabia
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University Jazan 45142 Saudi Arabia
| | | | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38040 Pakistan
| | - Ashwaq A Areshi
- Samtah General Hospital, Ministry of Health Jazan 86735 Saudi Arabia
| | - M Hisham Alnasir
- Department of Physics, RIPHAH International University Islamabad 44000 Pakistan
| |
Collapse
|
2
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
3
|
Aoudi B, Boluk Y, Gamal El-Din M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156903. [PMID: 35753453 DOI: 10.1016/j.scitotenv.2022.156903] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, nanocellulose and its derivatives have drawn attention as promising bio-based materials for water treatment applications due to their high surface area, high strength, and renewable, biocompatible nature. The abundance of hydroxyl functional groups on the surfaces of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) enables a broad range of surface modifications which results in propitious nanocomposites with tunable characteristics. In this context, this review describes the continuously developing applications of nanocellulose-based materials in the areas of adsorption, catalysis, filtration, and flocculation, with a special emphasis on the removal of contaminants such as heavy metals, dyes, and pharmaceutical compounds from diverse water systems. Recent progresses in the diverse forms of application of nanocellulose adsorbents (suspension, hydrogel, aerogel, and membrane) are also highlighted. Finally, challenges and future perspectives on emerging nanocellulose-based materials and their possible industrial applications are presented and discussed.
Collapse
Affiliation(s)
- Bouthaina Aoudi
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
4
|
Iqbal D, Zhao Y, Zhao R, Russell SJ, Ning X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers (Basel) 2022; 14:2343. [PMID: 35745924 PMCID: PMC9229312 DOI: 10.3390/polym14122343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Globally, developing countries require access to safe drinking water to support human health and facilitate long-term sustainable development, in which waste management and control are critical tasks. As the most plentiful, renewable biopolymer on earth, cellulose has significant utility in the delivery of potable water for human consumption. Herein, recent developments in the application of nanoscale cellulose and cellulose derivatives for water treatment are reviewed, with reference to the properties and structure of the material. The potential application of nanocellulose as a primary component for water treatment is linked to its high aspect ratio, high surface area, and the high number of hydroxyl groups available for molecular interaction with heavy metals, dyes, oil-water separation, and other chemical impurities. The ability of superhydrophobic nanocellulose-based textiles as functional fabrics is particularly acknowledged as designed structures for advanced water treatment systems. This review covers the adsorption of heavy metals and chemical impurities like dyes, oil-water separation, as well as nanocellulose and nanostructured derivative membranes, and superhydrophobic coatings, suitable for adsorbing chemical and biological pollutants, including microorganisms.
Collapse
Affiliation(s)
- Danish Iqbal
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Yintao Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Renhai Zhao
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| | - Stephen J. Russell
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds LS2 9JT, UK;
| | - Xin Ning
- Shandong Center for Engineered Nonwovens, Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (D.I.); (Y.Z.); (R.Z.)
| |
Collapse
|
5
|
Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose Nanopaper: Fabrication, Functionalization, and Applications. NANO-MICRO LETTERS 2022; 14:104. [PMID: 35416525 PMCID: PMC9008119 DOI: 10.1007/s40820-022-00849-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/22/2022] [Indexed: 05/07/2023]
Abstract
Cellulose nanopaper has shown great potential in diverse fields including optoelectronic devices, food packaging, biomedical application, and so forth, owing to their various advantages such as good flexibility, tunable light transmittance, high thermal stability, low thermal expansion coefficient, and superior mechanical properties. Herein, recent progress on the fabrication and applications of cellulose nanopaper is summarized and discussed based on the analyses of the latest studies. We begin with a brief introduction of the three types of nanocellulose: cellulose nanocrystals, cellulose nanofibrils and bacterial cellulose, recapitulating their differences in preparation and properties. Then, the main preparation methods of cellulose nanopaper including filtration method and casting method as well as the newly developed technology are systematically elaborated and compared. Furthermore, the advanced applications of cellulose nanopaper including energy storage, electronic devices, water treatment, and high-performance packaging materials were highlighted. Finally, the prospects and ongoing challenges of cellulose nanopaper were summarized.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Ting Zheng
- Department of Automotive Engineering, Clemson University, Greenville, SC, 29607, USA
| | - Ning Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ting Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Bo Pang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
6
|
Das R, Lindström T, Sharma PR, Chi K, Hsiao BS. Nanocellulose for Sustainable Water Purification. Chem Rev 2022; 122:8936-9031. [PMID: 35330990 DOI: 10.1021/acs.chemrev.1c00683] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocelluloses (NC) are nature-based sustainable biomaterials, which not only possess cellulosic properties but also have the important hallmarks of nanomaterials, such as large surface area, versatile reactive sites or functionalities, and scaffolding stability to host inorganic nanoparticles. This class of nanomaterials offers new opportunities for a broad spectrum of applications for clean water production that were once thought impractical. This Review covers substantial discussions based on evaluative judgments of the recent literature and technical advancements in the fields of coagulation/flocculation, adsorption, photocatalysis, and membrane filtration for water decontamination through proper understanding of fundamental knowledge of NC, such as purity, crystallinity, surface chemistry and charge, suspension rheology, morphology, mechanical properties, and film stability. To supplement these, discussions on low-cost and scalable NC extraction, new characterizations including solution small-angle X-ray scattering evaluation, and structure-property relationships of NC are also reviewed. Identifying knowledge gaps and drawing perspectives could generate guidance to overcome uncertainties associated with the adaptation of NC-enabled water purification technologies. Furthermore, the topics of simultaneous removal of multipollutants disposal and proper handling of post/spent NC are discussed. We believe NC-enabled remediation nanomaterials can be integrated into a broad range of water treatments, greatly improving the cost-effectiveness and sustainability of water purification.
Collapse
Affiliation(s)
- Rasel Das
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Tom Lindström
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Priyanka R Sharma
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kai Chi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
7
|
Khraisheh M, Elhenawy S, AlMomani F, Al-Ghouti M, Hassan MK, Hameed BH. Recent Progress on Nanomaterial-Based Membranes for Water Treatment. MEMBRANES 2021; 11:995. [PMID: 34940495 PMCID: PMC8709222 DOI: 10.3390/membranes11120995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Nanomaterials have emerged as the new future generation materials for high-performance water treatment membranes with potential for solving the worldwide water pollution issue. The incorporation of nanomaterials in membranes increases water permeability, mechanical strength, separation efficiency, and reduces fouling of the membrane. Thus, the nanomaterials pave a new pathway for ultra-fast and extremely selective water purification membranes. Membrane enhancements after the inclusion of many nanomaterials, including nanoparticles (NPs), two-dimensional (2-D) layer materials, nanofibers, nanosheets, and other nanocomposite structural materials, are discussed in this review. Furthermore, the applications of these membranes with nanomaterials in water treatment applications, that are vast in number, are highlighted. The goal is to demonstrate the significance of nanomaterials in the membrane industry for water treatment applications. It was found that nanomaterials and nanotechnology offer great potential for the advancement of sustainable water and wastewater treatment.
Collapse
Affiliation(s)
- Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | | | - Bassim H. Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.); (B.H.H.)
| |
Collapse
|
8
|
Qiao A, Cui M, Huang R, Ding G, Qi W, He Z, Klemeš JJ, Su R. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydr Polym 2021; 272:118471. [PMID: 34420730 DOI: 10.1016/j.carbpol.2021.118471] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
In recent years, nanocellulose-based materials have been increasingly applied as a lot of biosorbents for the treatment of water pollutants due to their large specific surface area, easy modification, environmental friendliness, and reproducibility. In this review, surface modification of nanocellulose-based adsorbents with various effective adsorption groups is described, as well as polymer grafting and hybrid composite fabrication. The adsorption mechanisms involved in the adsorption process of pollutants by adsorbents are further analysed and summarized. The regeneration methods of nanocellulose adsorbents with different adsorption mechanisms are also demonstrated. In addition, this paper also briefly describes the forms of nanocellulose-based adsorbents with large-scale application including membranes, gels, flocculants and magnetic composites.
Collapse
Affiliation(s)
- Aihua Qiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Guojie Ding
- Tianjin Rumi Novel Materials Company, Tianjin 300356, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China.
| |
Collapse
|
9
|
Salama A, Abouzeid R, Leong WS, Jeevanandam J, Samyn P, Dufresne A, Bechelany M, Barhoum A. Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3008. [PMID: 34835769 PMCID: PMC8620168 DOI: 10.3390/nano11113008] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Nanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.e., adsorption, absorption, flocculation, photocatalytic degradation, disinfection, antifouling, ultrafiltration, nanofiltration, and reverse osmosis. Firstly, the nanocellulose synthesis methods (mechanical, physical, chemical, and biological), unique properties (sizes, geometries, and surface chemistry) were presented and their use for capturing and removal of wastewater pollutants was explained. Secondly, different chemical modification approaches surface functionalization (with functional groups, polymers, and nanoparticles) for enhancing the surface chemistry of the nanocellulose for enabling the effective removal of specific pollutants (suspended particles, microorganisms, hazardous metals ions, organic dyes, drugs, pesticides fertilizers, and oils) were highlighted. Thirdly, new fabrication approaches (solution casting, thermal treatment, electrospinning, 3D printing) that integrated nanocelluloses (spherical nanoparticles, nanowhiskers, nanofibers) to produce water treatment materials (individual composite nanoparticles, hydrogels, aerogels, sponges, membranes, and nanopapers) were covered. Finally, the major challenges and future perspectives concerning the applications of nanocellulose based materials in water treatment and purification were highlighted.
Collapse
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; (A.S.); (R.A.)
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Wei Sun Leong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore;
| | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Pieter Samyn
- Institute for Materials Research (MO-IMOMEC), Applied and Analytical Chemistry, University of Hasselt, B-3590 Diepenbeek, Belgium;
| | - Alain Dufresne
- University of Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| |
Collapse
|
10
|
Huang Y, Yang P, Yang F, Chang C. Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Cadmium(II) ion removal from aqueous solution using chitosan oligosaccharide-based blend. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03136-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Liang L, Bhagia S, Li M, Huang C, Ragauskas AJ. Cross-Linked Nanocellulosic Materials and Their Applications. CHEMSUSCHEM 2020; 13:78-87. [PMID: 31452315 DOI: 10.1002/cssc.201901676] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/26/2019] [Indexed: 05/24/2023]
Abstract
Nanocelluloses (NCs) have remarkable mechanical properties and contain abundant surface functional groups that can be modified or cross-linked with other materials. They have been widely used as an environment-friendly reinforcing agent in polymer composites. However, for applications that are carried out in humid environments or aqueous suspensions, hydrophilicity of NCs lower their mechanical integrity. Hence, cross-linking techniques have been investigated in recent years for preparing NC-based materials that are dimensionally stable under humid or aqueous environments and have better physicochemical properties. This Minireview examines the quickly growing field of cross-linked NC-based materials, which have many benefits including improved aqueous, structural, mechanical, and thermal stability. In addition, the potential application of cross-linked NC-based materials in adsorption of heavy metal is discussed.
Collapse
Affiliation(s)
- Luna Liang
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Samarthya Bhagia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mi Li
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Chen Huang
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
- UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
13
|
Luo M, Li M, Jiang S, Shao H, Razal J, Wang D, Fang J. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120947. [PMID: 31394395 DOI: 10.1016/j.jhazmat.2019.120947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Organic-inorganic nanoflower is a new type of functional material that can effectively immobilize a wide range of enzymes to form flower-like structures for various enzymatic applications with enhanced catalytic performance and stability. In order to avoid the processing inconvenience and flower structure damage caused by the particular form of these hybrid nanoflowers during material fabrication and catalytic application, different substrates have been used to carry out supported growth of hybrid nanoflowers. However, all previously used substrates have only 2-dimensional feature and only incorporate hybrid nanoflowers on surface with limited nanoflower loading. In this study, three-dimensional (3D) hierarchically porous nanofibrous PVA-co-PE membranes (HPNM) are prepared by a simple template method for effectively immobilizing laccase-Cu2(PO4)3•3H2O hybrid nanoflowers. Compared with dense nanofibre membrane with only small sized pores (<1 micron), the coexistence of both small and large sized (30-80 microns) pores of HPNM could significantly increase the nanoflower density and allow the penetrated growth of hybrid nanoflowers into the inner structure of the membrane. The hybrid nanoflower containing hierarchically porous nanofibrous membranes (HNF-HPNM) show excellent catalytic performance in degrading different types of textile dyes (reactive blue 2, acid blue 25, acid yellow 76 and indigo carmine), with a degradation efficiency of ˜99.5% for indigo carmine. In addition, the HNF-HPNM could be reused at least 14 times for indigo carmine degradation, with a negligible degradation efficiency drop from 99.48% to 98.52%. These results indicate that hierarchically porous nanofibrous membrane can be a promising type of materials for supported hybrid nanoflower growth for practical applications such as waste water treatment, dye degradation and biosensing.
Collapse
Affiliation(s)
- Mengying Luo
- Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China; Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Mufang Li
- Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China; Hebei Key Laboratory of Advanced Textile Materials & Application, Wuhan 430200, China.
| | - Shan Jiang
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Hao Shao
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Joselito Razal
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Dong Wang
- Institute of Science and Technology, Wuhan Textile University, Wuhan 430200, China; Hebei Key Laboratory of Advanced Textile Materials & Application, Wuhan 430200, China
| | - Jian Fang
- Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia.
| |
Collapse
|
14
|
Xu S, Jiang X, Liu L, Wang Z, Zhang X, Peng Y, Cao M. Preparation of PVA/tetra-ZnO composite with framework-supported pore-channel structure and the removal research of lead ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24062-24074. [PMID: 31228065 DOI: 10.1007/s11356-019-05721-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Polyvinyl alcohol (PVA) filled with different kinds of ZnO whisker was prepared by chemical cross-linking reaction. It was found that the ZnO whiskers dispersed uniformly after being modified by 3-aminopropyltriethoxysilane (APTES). The PVA/tetrapod-shaped ZnO (PVA/tetra-ZnO) composites showed better adsorption performance than other kinds of PVA/ZnO composites. The framework-supported pore-channel structure was beneficial for the transmission and adsorption of heavy metal ions, and the formation of "brush" pore-channel of PVA/tetra-ZnO composites can effectively retain and capture the heavy metal ions. The PVA/tetra-ZnO composites presented well adsorption on Pb(II), Cd(II), and Cr(III) ions than Ni(II) and showed relatively selective removal on Pb(II) and Cr(III) ions. The adsorbed heavy metal ions presented gradient distribution with high content in the out layer and low content in the inner layer. Pb(II) adsorption capacity qe increased gradually with the increase of initial solution concentration and contact time which tended to be stable at 400 mg/L and 800 min. The maximal adsorption capacity qm obtained by nonlinear fitting reached to about 116 mg/g which was very close to the experiment data. Adsorption isotherm results indicated the monolayer adsorption process of the Langmuir model and the adsorption kinetics data fitted well to the pseudo-second-order model. The adsorption process was spontaneous and the high temperature was in favor of adsorption. The adsorption mechanism was explored as the combination of coordination and ion exchange. Besides, the PVA/tetra-ZnO composites exhibited better stress stability, thermo stability, and favorable regeneration than neat PVA.
Collapse
Affiliation(s)
- Sheng Xu
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Xinde Jiang
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Lingli Liu
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Zhenxi Wang
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China.
| | - Xiaohang Zhang
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Yong Peng
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Meng Cao
- College of Sciences, Nanchang Institute of Technology, Nanchang, 330099, China
| |
Collapse
|
15
|
Zhou MY, Zhang P, Fang LF, Zhu BK, Wang JL, Chen JH, Abdallah H. A positively charged tight UF membrane and its properties for removing trace metal cations via electrostatic repulsion mechanism. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:168-175. [PMID: 30913514 DOI: 10.1016/j.jhazmat.2019.03.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The development of highly efficient membranes technology using low-pressure driven filtration process, is one of the principal challenges in the wastewater treatment field, especially those aimed at the removal of trace heavy metals. In this work, a novel positively charged tight ultrafiltration (PCTUF) membrane was developed to remove heavy metal cations (Mn2+, Co2+, Ni2+, Zn2+ and Cd2+) from contaminated waters via electrostatic repulsion mechanism. The PCTUF membrane was fabricated from a new polymer with poly (vinyl chloride co dimethylaminoethyl methacrylate), P (VC-co-DMA) via a nonsolvent induce phase separation (NIPS) process and following facile surface quaternization. The quaternization conditions, the pore structures and chemical properties of the membranes were investigated in detail. The optimally quaternized membrane possessed a positively charged surface and 3.27 nm charged channel with the water permeability of 84 L m-2 h-1 bar-1. The rejections of heavy metal cations surpassed 95% for feed solutions containing 10 ppm heavy metal. Moreover, the influences of feed concentrations and the operating condition with pressure and pH on the membrane performances were also investigated. The results revealed that the prepared PCTUF membrane with its high perm-selectivity performance provides a worthy reference for highly efficient removal of heavy metal cations.
Collapse
Affiliation(s)
- Ming-Yong Zhou
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOC), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China; Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Peng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Feng Fang
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOC), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China
| | - Bao-Ku Zhu
- Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOC), Key Laboratory of Macromolecular Synthesis and Functionalization (MOE), Zhejiang University, Hangzhou 310027, China.
| | - Jian-Li Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
| | - Heba Abdallah
- Chemical Engineering and Pilot Plant Department, Engineering Research Division, National Research Centre, Dokki, Giza12622, Egypt
| |
Collapse
|
16
|
Amit C, Helly C, Kumar MA, Varjani S. Nanotechnological Interventions for the Decontamination of Water and Wastewater. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-3259-3_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Kabir A, Dunlop MJ, Acharya B, Bissessur R, Ahmed M. Polymeric Composites with Embedded Nanocrystalline Cellulose for the Removal of Iron(II) from Contaminated Water. Polymers (Basel) 2018; 10:E1377. [PMID: 30961302 PMCID: PMC6401701 DOI: 10.3390/polym10121377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 11/16/2022] Open
Abstract
The exponential increase in heavy metal usage for industrial applications has led to the limited supply of clean water for human needs. Iron is one of the examples of heavy metals, which is responsible for an unpleasant taste of water and its discoloration, and is also associated with elevated health risks if it persists in drinking water for a prolonged period of time. The adsorption of a soluble form of iron (Fe2+) from water resources is generally accomplished in the presence of natural or synthetic polymers or nanoparticles, followed by their filtration from treated water. The self-assembly of these colloidal carriers into macroarchitectures can help in achieving the facile removal of metal-chelated materials from treated water and hence can reduce the cost and improve the efficiency of the water purification process. In this study, we aim to develop a facile one-pot strategy for the synthesis of polymeric composites with embedded nanocrystalline cellulose (NCC) for the chelation of iron(II) from contaminated water. The synthesis of the polymeric composites with embedded nanoparticles was achieved by the facile coating of ionic monomers on the surface of NCC, followed by their polymerization, crosslinking, and self-assembly in the form of three-dimensional architectures at room temperature. The composites prepared were analyzed for their physiochemical properties, antifouling properties, and for their iron(II)-chelation efficacies in vitro. The results indicate that the embedded-NCC polymeric composites have antifouling properties and exhibit superior iron(II)-chelation properties at both acidic and basic conditions.
Collapse
Affiliation(s)
- Anayet Kabir
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Matthew J Dunlop
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Bishnu Acharya
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
- Faculty of Sustainable Design & Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
18
|
Thomas B, Raj MC, B AK, H RM, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev 2018; 118:11575-11625. [PMID: 30403346 DOI: 10.1021/acs.chemrev.7b00627] [Citation(s) in RCA: 570] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce either charged or hydrophobic moieties, and include amidation, esterification, etherification, silylation, polymerization, urethanization, sulfonation, and phosphorylation. Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material. Nanocellulose participates in the fabrication of a large range of nanomaterials and nanocomposites, including those based on polymers, metals, metal oxides, and carbon. In particular, nanocellulose complements organic-based materials, where it imparts its mechanical properties to the composite. Nanocellulose is a promising material whenever material strength, flexibility, and/or specific nanostructuration are required. Applications include functional paper, optoelectronics, and antibacterial coatings, packaging, mechanically reinforced polymer composites, tissue scaffolds, drug delivery, biosensors, energy storage, catalysis, environmental remediation, and electrochemically controlled separation. Phosphorylated nanocellulose is a particularly interesting material, spanning a surprising set of applications in various dimensions including bone scaffolds, adsorbents, and flame retardants and as a support for the heterogenization of homogeneous catalysts.
Collapse
Affiliation(s)
- Bejoy Thomas
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Midhun C Raj
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Athira K B
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Rubiyah M H
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Jithin Joy
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India.,International and Interuniversity Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University , 686 560 Kottayam , Kerala , India
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Glenna L Drisko
- CNRS, ICMCB, Université de Bordeaux, UMR 5026 , F-33600 Pessac , France
| | - Clément Sanchez
- UPMC Université Paris 06, CNRS, UMR 7574 Laboratoire Chimie de la Matière Condensée de Paris, Collège de France , 11 place, Marcelin Berthelot , F-75005 , Paris , France
| |
Collapse
|
19
|
Microfluidic reactor for Pb(II) ion extraction and removal with an amide derivative of calix[4]arene supported by spectroscopic studies. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Strachowski P, Fronczak M, Olechno E, Kowalik M, Kiciński W, Kaszuwara W, Bystrzejewski M. Magnetic organic xerogels: efficient adsorbents for the removal of heavy metal ions from aqueous solutions. NEW J CHEM 2018. [DOI: 10.1039/c8nj01251b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of novel mobile composite adsorbents dedicated to the efficient removal of heavy metal ions from aqueous solutions is presented.
Collapse
Affiliation(s)
| | | | - Eliza Olechno
- University of Warsaw
- Faculty of Chemistry
- 02-093 Warsaw
- Poland
| | | | - Wojciech Kiciński
- Military University of Technology
- Faculty of Advanced Technologies and Chemistry
- 00-908 Warsaw
- Poland
| | - Waldemar Kaszuwara
- Warsaw University of Technology
- Faculty of Materials Science and Engineering
- 02-507 Warsaw
- Poland
| | | |
Collapse
|