1
|
Ahmad A, Khan SUD, Khan R, Haneklaus N. Efficient and sustainable extraction of uranium from aquatic solution using biowaste-derived active carbon. Front Chem 2023; 11:1327212. [PMID: 38179238 PMCID: PMC10765602 DOI: 10.3389/fchem.2023.1327212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Efficient and cost-effective biosorbents derived from biowaste are highly demanding to handle various environmental challenges, and demonstrate the remarkable synergy between sustainability and innovation. In this study, the extraction of uranium U(VI) was investigated on biowaste activated carbon (BAC) obtained by chemical activation (phosphoric acid) using Albizia Lebbeck pods as biowaste. The biowaste powder (BP), biowaste charcoal (BC) and BAC were evaluated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) with nitrogen adsorption for thermal properties, chemical structures, porosity and surface area, respectively. The pHPZC for acidic or basic nature of the surface and X-ray diffraction (XRD) analysis were performed for BAC. The morphological and elemental analysis were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The extraction of uranium U(VI) ions from aqueous solutions using BAC as sorbent was investigated by using different variables such as pH, contact time, initial uranium U(VI) concentration and BAC dose. The highest adsorption (90.60% was achieved at 0.5 g BAC dose, 2 h contact time, pH 6, 10 ppm initial U(VI) concentration and with 200 rpm shaking speeds. The production of this efficient adsorbent from biowaste could be a potential step forward in adsorption of uranium to meet the high demand of uranium for nuclear energy applications.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salah Ud-Din Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Nils Haneklaus
- Td-Lab Sustainable Mineral Resources, Universität für Weiterbildung KremsKrems an der Donau, Austria
| |
Collapse
|
2
|
Wang Y, Yang Y, Wu Y, Li J, Hu B, Cai Y, Yuan L, Feng W. Selective Complexation and Separation of Uranium(VI) from Thorium(IV) with New Tetradentate N,O-Hybrid Diamide Ligands: Synthesis, Extraction, Spectroscopy, and Crystallographic Studies. Inorg Chem 2023; 62:4922-4933. [PMID: 36919932 DOI: 10.1021/acs.inorgchem.2c04384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An unmet challenge in the thorium-uranium fuel cycle is the efficient separation of uranium from thorium. Herein, two new tetradentate N,O-hybrid ligands, N,N'-diethyl-N,N'-di-p-tolyl-2,2'-bipyridine-6,6'-dicarboxamide (Et-Tol-BPDA) and N,N'-diethyl-N,N'-di-p-tolyl-2,2'-bipyrimidine-4,4'-dicarboxamide (Et-Tol-BPymDA), comprising a bipyridine or bipyrimidine core and amide moieties were designed and synthesized for selectively complexing and separating U(VI) from Th(IV). The high U(VI)/Th(IV) extraction selectivity was achieved by Et-Tol-BPDA (SFU/Th = 33 at 3 M HNO3) and Et-Tol-BPymDA (SFU/Th = 73 at 3 M HNO3) in nitric acid solutions. The extraction process for U(VI) or Th(IV) with these two ligands primarily proceeded through the solvation mechanism, as evidenced by slope analyses. Thermodynamic studies for the extraction of U(VI) and Th(IV) revealed a spontaneous process. Results from UV-vis spectroscopic titration and slope analyses demonstrated that U(VI) and Th(IV) each form a 1:1 complex with the two ligands both in the monophasic organic solution and the biphasic extraction system. The stability constants of the 1:1 complexes of Et-Tol-BPDA or Et-Tol-BPymDA with U(VI) were found to be larger than those with Th(IV), which coincide well with the high U(VI)/Th(IV) extraction selectivity. The solid-state structures of Et-Tol-BPDA, Et-Tol-BPymDA, and 1:1 complexes of the two ligands with U(VI) or Th(IV) were analyzed by X-ray diffraction technique. The results from this work implicate the potential of bipyridine- and bipyrimidine-derived diamide ligands for uranium/thorium separation.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuxiang Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yijie Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bowen Hu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Cai Y, Ansari SA, Yuan L, Feng W, Mohapatra PK. Unassisted and Efficient Actinide/Lanthanide Separation with Pillar[5]arene-Based Picolinamide Ligands in Ionic Liquids. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Seraj A. Ansari
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | | |
Collapse
|
4
|
Novel phenanthroline-derived pyrrolidone ligands for efficient uranium separation: Liquid-liquid extraction, spectroscopy, and molecular simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Khanramaki F, Torkaman R. Experimental study on the uranium(VI) extraction rate and droplet mass transfer coefficients from a sulfate leach liquor medium with Alamine 336 in a single drop column. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Lv SY, Li M, Wu XY, Zhang XW, Hua YL, Bi L, Fang Q, Cai T. A non-polluting method for rapidly purifying uranium-containing wastewater and efficiently recovering uranium through electrochemical mineralization and oxidative roasting. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125885. [PMID: 34492823 DOI: 10.1016/j.jhazmat.2021.125885] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
Iron-based materials have been widely used for treating uranium-containing wastewater. However, the iron-uranium solids originating by treating radioactive water through pollutant transfer methods has become a new uncontrolled source of persistent radioactive pollution. The safe disposal of such hazardous waste is not yet well-resolved. The electrochemical mineralization method was developed to rapidly purify uranium-containing wastewater through lattice doping in magnetite and recover uranium without generating any pollutants. An unexpected isolation of U3O8 from uranium-doped magnetite was discovered through in-situ XRD with a temperature variation from 300 °C to 700 °C. Through HRTEM and DFT calculation, it was confirmed that the destruction of the inverse spinel crystal structure during the gradual transformation of magnetite into γ-Fe2O3 and α-Fe2O3 promoted the migration, aggregation, and isolation of uranium atoms. Uniquely generated U3O8 and Fe2O3 were easily separated and over 80% uranium and 99.5% iron could be recovered. These results demonstrate a new strategy for uranium utilization and the environmentally friendly treatment of uranium-containing wastewater.
Collapse
Affiliation(s)
- Shao-Yan Lv
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Mi Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China.
| | - Xiao-Yan Wu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Wen Zhang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yi-Long Hua
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lei Bi
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tao Cai
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
7
|
Cai Y, Yan Q, Wang M, Chen J, Fu H, Ye J, Conradson SD, Yuan L, Xu C, Feng W. Endowing 2,6-bis-triazolyl-pyridine of poor extraction with superior efficiency for actinide/lanthanide separation at high acidity by anchoring to a macrocyclic scaffold. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125745. [PMID: 33866294 DOI: 10.1016/j.jhazmat.2021.125745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Exploring nitrogen-containing extractants for recovering hazardous minor actinides that are workable in solutions of high acidity has been a challenge in nuclear waste treatment. Herein, we report our findings that 2,6-bis-triazolyl-pyridine (PyTri), which is ineffective as a hydrophobic ligand for minor actinide separation, turns into an excellent extractant that exhibits unexpectedly high efficiency and selectivity (SFAm/Eu = 172, 1 M HNO3) when attaching to pillar[5]arene platform. Surprisingly, the distribution ratio of Am(III) (DAm) is 4300 times higher than that of the acyclic PyTri ligand. The solvent extraction performance of this pillar[5]arene-achored PyTri not only far exceeds the best known pillar[5]arene ligands reported to date, but also stays comparable to other reported outstanding extractants. Slope analysis indicates that each P[5]A-PyTri can bind two metal ions, which is further corroborated by spectroscopic characterizations. Thermodynamic studies imply that the extraction process is exothermic and spontaneous in nature. Complexation investigation via EXAFS technique and DFT calculations strongly suggest that each Eu(III) ion is coordinated to three PyTri arms through a nine-coordination mode. This work provides a N-donor extractant that can operate at high acidity for minor actinide partitioning and implicates a promising approach for transforming poor extractants into superior ones.
Collapse
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Mengxin Wang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Haiying Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiawei Ye
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Chengdu 610101, China
| | - Steven D Conradson
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
A review of the alpha radiolysis of extractants for actinide lanthanide separation in spent nuclear fuel reprocessing. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Radiation stability is one of the key properties to enable the efficient use of extractants in spent nuclear fuel with high radioactivity. The last several decades have witnessed a rapid progress in the radiation chemistry of extractants. A variety of studies and reviews pertinent to the radiation stability of extractants have been published. However, a thorough summary for the alpha radiolysis results of extractants is not available. In this review, we survey the development of alpha radiolysis of extractants for actinide lanthanide separation and compare their radiolysis behaviors induced by alpha particles and gamma rays. The discussion of alpha radiolysis of extractants is divided into three parts according to the functional groups of extractants (i.e., phosphine oxide, amide and bis-triazinyl bipyridines). Given the importance of radiation source to carry out alpha irradiation experiment, we first give a brief introduction to three practicable alpha radiation sources including alpha emitting isotopes, helium ion beam and reactor. We hope this review will provide useful information and unleash a broad palette of opportunities for researchers interested in radiation chemistry.
Collapse
|
9
|
Anion assisted extraction of U(VI) in alkylammonium ionic liquid: Experimental and DFT studies. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Cai Y, Ansari SA, Fu K, Zhu B, Ma H, Chen L, Conradson SD, Qin S, Fu H, Mohapatra PK, Yuan L, Feng W. Highly efficient actinide(III)/lanthanide(III) separation by novel pillar[5]arene-based picolinamide ligands: A study on synthesis, solvent extraction and complexation. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124214. [PMID: 33129604 DOI: 10.1016/j.jhazmat.2020.124214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Selective extraction of highly radiotoxic actinides(III) is an important and challenging task in nuclear wastewater treatment. Many proposed ligands containing S or P atoms have drawbacks including high reagent consumption and possible secondary pollution after incineration. The present work reports five novel pillar[5]arene-based extractants that are anchored with picolinamide substituents of different electronic nature by varying spacer. These ligands reveal highly efficient separation of actinides(III) over lanthanides(III). Specifically, almost all of these ligands could extract Am(III) over Eu(III) selectively at around pH 3.0 (SFAm/Eu>11) with fast extraction kinetics. Variation of the pyridine nitrogen basicity via changing para-substitution leads to an increase in the distribution ratios by a factor of over 300 times for Am(III) with an electron-withdrawing group compared to those with an electron donating group. Investigation of complexation mechanism by slope analysis, NMR, IR, EXAFS, and DFT techniques indicates that each ligand binds two metal ions by pyridine nitrogen and amide oxygen. Finally, these ligands do not show obvious decrease in both extraction and separation ability after being exposed to 250 kGy absorbed gamma radiation. These results demonstrate the potential application of pillar[5]arene-picolinamides for actinide(III) separation.
Collapse
Affiliation(s)
- Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Seraj A Ansari
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Kuirong Fu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Beichen Zhu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haoyang Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lixi Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Steven D Conradson
- Department of Complex Matter, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Song Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haiying Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
11
|
Liquid-liquid extraction of europium(III) in an alkyl ammonium based ionic liquid containing diglycolamic acid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Recent developments for the investigation of chiral properties and applications of pillar[5]arenes in analytical chemistry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Feng S, Shen X. Supramolecular assembly of ionic liquid induced by UO2
2+: a strategy for selective extraction-precipitation. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2020-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this work, a novel task specific ionic liquid (TSIL) [tributyl(hexyl)phosphonium]2[diglycolic acetate] ([P6,4,4,4]2[DGA]) was prepared and used to construct a vesicle system. The addition of UO2
2+, La3+ or Th4+ exhibited different effects on the system. It was found that small amount of UO2
2+ could induce large-sized aggregation of vesicles and make the precipitation happen, while La3+ and Th4+ did not have such capacity. The whole process was characterized by dynamic light scattering and freeze-fracture transmission electron microscopy. An extraction-precipitation strategy was then developed for the selective recovery of UO2
2+. Different factors were further studied to optimize the separation efficiency of the extraction-precipitation process.
Collapse
Affiliation(s)
- Shancheng Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory , Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871 , PR China
| | - Xinghai Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Fundamental Science on Radiochemistry and Radiation Chemistry Laboratory , Center for Applied Physics and Technology, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871 , PR China
| |
Collapse
|
14
|
Wang Y, Wu G, Xu H, Ma H, Yuan L, Feng W. Radiolytic stability of pillar[5]arene-based diglycolamides. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2020-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Radiolytic stability of pillar[5]arene-based diglycolamides (P5DGAs) against gamma irradiation up to 1000 kGy adsorbed dose was studied. The results reveal the increase of radiation damage degree on P5DGAs with dose. The radiolysis products of P5DGAs including the gaseous and solid products were fully characterized by 1H NMR, HR-ESI-MS, GC, and HPLC techniques. It was found that the main radiolytic gas products of P5DGAs under argon are H2, N2, CO and gaseous hydrocarbons. The solid degradation products contain phenolic hydroxyl groups and secondary amine groups. In addition, solvent extraction toward Eu(III) was performed with P5DGAs, in which about 50% decrease on extraction efficiency was observed for irradiated P5DGAs with dose of 1000 kGy in comparison with the non-irradiated one. A radiolytic degradation pathway was also proposed based on the above results. This is the first time to investigate the radiolytic stability of neat P5DGAs and P5DGAs in molecular diluent in detail and provides useful information for further application of P5DGAs in practical applications for spent fuel reprocessing.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Radiation Physics and Technology of Ministry of Education Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Geyang Wu
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy , Chengdu 610101 , China
| | - Hongjun Xu
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy , Chengdu 610101 , China
| | - Haoyang Ma
- Key Laboratory for Radiation Physics and Technology of Ministry of Education Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Lihua Yuan
- Key Laboratory for Radiation Physics and Technology of Ministry of Education Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Wen Feng
- Key Laboratory for Radiation Physics and Technology of Ministry of Education Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| |
Collapse
|
15
|
Rout A, Venkatesan K. Synergic extraction of europium(III) in hydrophobic ammonium ionic liquid containing neutral and acidic extractants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Yuan X, Cai Y, Chen L, Lu S, Xiao X, Yuan L, Feng W. Phosphine oxides functionalized pillar[5]arenes for uranyl extraction: Solvent effect and thermodynamics. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Gan Q, Cai Y, Fu K, Yuan L, Feng W. Effect of ionic liquid on the extraction of uranium with pillar[5]arene-based phosphine oxide from nitric acid solutions. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The extraction of U(VI) from aqueous nitric acid solutions with pillar[5]arene-based phosphine oxide (L) and [C8mim][NTf2] ionic liquid dissolved in 1,2-dichloroethane was explored. A great positive impact in this system was observed. The effect of IL concentration in the organic phase and HNO3 concentration in the aqueous phase is considered. The distribution ratios of U(VI) were significantly enhanced upon adding a small amount of ionic liquid as compared with organic diluent. The extraction system was also examined for its ability towards extraction of lanthanides and Th4+. The results revealed higher separation factors towards UO2
2+ over Th4+ in the presence of ionic liquid compared with organic diluent. Other factors such as C8mim+ and NTf2
− have also been considered. This extraction system has shorter equilibrium time as compared with in IL diluent. Stripping experiments showed almost quantitative back extraction of UO2
2+ within two stages. With high selectivity towards UO2
2+ and efficient back extraction, this new POP5A-ionic liquid-organic diluent system shows promise for future application of uranium recovery.
Collapse
Affiliation(s)
- Quan Gan
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Yimin Cai
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Kuirong Fu
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Lihua Yuan
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| | - Wen Feng
- Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University , Chengdu 610064 , China
| |
Collapse
|
19
|
Geng J, Wang Y, Yang B, Yuan L, Feng W. Radiation stability of alkylated pillar[5]arenes. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Biswas R, Banerjee T, Ghosh P, Ali SM. Stripping and recycling of metal ions in aqueous nitric acid solutions: Experimental and molecular dynamics insights. AIChE J 2019. [DOI: 10.1002/aic.16686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rima Biswas
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam India
| | - Tamal Banerjee
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam India
| | - Pallab Ghosh
- Department of Chemical EngineeringIndian Institute of Technology Guwahati Guwahati Assam India
| | - Sheikh Musharaf Ali
- Chemical Engineering DivisionBhabha Atomic Research Center Mumbai Maharashtra India
| |
Collapse
|
21
|
Yan ZY, Huang QG, Wang L, Zhang F. Synthesis of tailored bis-succinamides and comparison of their extractability for U(VI), Th(IV) and Eu(III). Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Role of biomolecules in selective extraction of U(VI) using an aqueous biphasic system. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06494-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Abstract
Abstract
The radiation stability of three phosphine oxide functionalized pillar[5]arenes (POP5A) was studied by an electron accelerator with dose up to 5 MGy in air at room temperature. The structures of both irradiated and unirradiated pillar[5]arenes samples were comparatively characterized by Micro-FTIR, NMR, UV-vis, ESI-HRMS and HPLC techniques. The results revealed different degrees of radiation damage at different doses for POP5A, and the degradation products are mainly composed of organic species containing hydroxyl groups and carbonyl groups. The possible radiolytic degradation pathway was proposed. In addition, extraction of uranyl ion with irradiated POP5A samples was examined. The distribution ratio of uranyl ion was found to increase at low radiation dose and decrease until 3000 kGy. This is the first time that the irradiation stability of pillar[5]arenes derivative extractants has been studied in detail and it provides reliable data support for further application of pillar[5]arenes extractants in practical applications.
Collapse
|
24
|
Chandrasekar A, Suresh A, Joshi M, Sundararajan M, Ghanty TK, Sivaraman N. Highly selective separations of U(VI) from a Th(IV) matrix by branched butyl phosphates: Insights from solvent extraction, chromatography and quantum chemical calculations. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Chen L, Cai Y, Feng W, Yuan L. Pillararenes as macrocyclic hosts: a rising star in metal ion separation. Chem Commun (Camb) 2019; 55:7883-7898. [PMID: 31236553 DOI: 10.1039/c9cc03292d] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillararenes are macrocyclic oligomers of alkoxybenzene akin to calixarenes but tethered at the 2,5-positions via methylene bridges. Benefiting from their unique pillar-shaped architecture favorable for diverse functionalization and versatile host-guest properties, pillararenes decorated with chelating groups worked excellently as supporting platforms to construct extractants or adsorbents for metal ion separation. This feature article provides a detailed summary of pillararenes in Ln/An separation by liquid-liquid extraction and heavy metal separation by solid-liquid extraction. The preorganization effect of the rigid pillararene framework has a profound impact on the extraction of metal ions, and a unique extraction mechanism is observed when employing ionic liquids as solvents. The rich host-guest chemistry of pillararenes enables construction of a wide variety of supramolecular materials as metal ion adsorbents. We also discuss the differences between pillararenes and several well-known macrocycles, with a focus on the metal-ligand coordination and its influencing factors. We hope this review will provide useful information and unleash new opportunities in this field.
Collapse
Affiliation(s)
- Lixi Chen
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | | | |
Collapse
|
26
|
Werner EJ, Biros SM. Supramolecular ligands for the extraction of lanthanide and actinide ions. Org Chem Front 2019. [DOI: 10.1039/c9qo00242a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A selection of supramolecular ligands designed to extract f-elements.
Collapse
Affiliation(s)
- Eric J. Werner
- Department of Chemistry
- Biochemistry and Physics
- The University of Tampa
- Tampa
- USA
| | - Shannon M. Biros
- Department of Chemistry
- Grand Valley State University
- Allendale
- USA
| |
Collapse
|
27
|
Chen Q, Ma X, Zhang X, Liu Y, Yu M. Extraction of rare earth ions from phosphate leach solution using emulsion liquid membrane in concentrated nitric acid medium. J RARE EARTH 2018. [DOI: 10.1016/j.jre.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Ansari SA, Mohapatra PK, Chen L, Yuan L, Feng W. Complexation of Actinides with Phosphine Oxide Functionalized Pillar[5]arenes: Extraction and Spectroscopic Studies. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Seraj A. Ansari
- Radiochemistry Division; Bhabha Atomic Research Centre; -400085 Trombay, Mumbai India
| | - Prasanta K. Mohapatra
- Radiochemistry Division; Bhabha Atomic Research Centre; -400085 Trombay, Mumbai India
| | - Lixi Chen
- Institute of Nuclear Science and Technology; Key Laboratory for Radiation Physics and Technology of the Ministry of Education; Sichuan University; 610064 Chengdu China
| | - Lihua Yuan
- Institute of Nuclear Science and Technology; Key Laboratory for Radiation Physics and Technology of the Ministry of Education; Sichuan University; 610064 Chengdu China
| | - Wen Feng
- Institute of Nuclear Science and Technology; Key Laboratory for Radiation Physics and Technology of the Ministry of Education; Sichuan University; 610064 Chengdu China
| |
Collapse
|
29
|
Shen C, Gong Z, Gao L, Gu M, Huan L, Wang S, Xie J. Theoretical study on host-guest interaction between pillar[4]arene and molecules or ions. J Mol Model 2018; 24:199. [PMID: 29987452 DOI: 10.1007/s00894-018-3736-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
In order to systematically explore the general rule of the host-guest chemistry for pillararenes, this work investigates the weak interactions between pillar[4]arene and some typical guests (anions, cations, and dumbbell-shaped molecules) by using density functional theory (DFT) calculations at the ωB97XD/6-311G(d,p) level. The strong molecular recognition ability of pillar[4]arene has been discussed based on the geometry structure, electronic structure, and thermodynamic properties of the host-guest complexes. The results show that the equivalent lower and upper rims of the pillar[4]arene can be combined with both anion and cation, and its cavity can accommodate the alkyl part of the dumbbell-shaped molecule. The main host-guest interactions between pillar[4]arene and guests are hydrogen bond, cation-π, anion-π, and hydrophobic interaction by visualization of weak interactions using the Multiwfn program. Pillar[4]arene will form a more stable host-guest complex with the guest, which possesses conjugate structure and weak steric repulsion. This work intends to provide a theoretical basis for enriching the host-guest chemistry, understanding the supramolecular morphology, and expanding the applications of the pillararenes.
Collapse
Affiliation(s)
- Chao Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China
| | - Zhenyu Gong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China
| | - Lei Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China
| | - Minglong Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China
| | - Long Huan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China
| | - Sicong Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China.
| |
Collapse
|