1
|
Takahashi A, Fujii C, Takahashi Y, Kunisawa T, Nagayasu Y, Yoshimoto N, Yoshimoto M. Liposome-Papain Conjugates for Catalytic Digestion of Antibody Producing Fab Fragments. ACS APPLIED BIO MATERIALS 2024; 7:5566-5578. [PMID: 39010295 DOI: 10.1021/acsabm.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Papain is useful for the enzymatic digestion of various proteins to produce functional peptides or protein fragments. Immobilized papain being reactive toward proteins and easily removable from a reaction mixture is worth developed. In the present work, liposomes were applied as colloidal carriers of papain for the catalytic digestion of polyclonal immunoglobulin G (IgG). Papain was covalently conjugated at pH = 7.0 via tris-succinimidyl aminotriacetate (TSAT) to liposomes incorporated with 5 mol % poly(ethylene glycol)-tethered lipid with a reactive amino group. The papain-conjugated liposome (liposome-papain) catalyzed the hydrolysis of Nα-benzoyl-l-arginine 4-nitroanilide hydrochloride (BAPNA) at pH = 5.0-7.0. The activity of liposome-papain significantly increased with increasing temperature from 25 to 50 °C. The Michaelis constant Km was determined with respect to the liposome-papain- and free papain-catalyzed reactions with BAPNA at 37 °C as Km = 1.11 ± 0.13 and 11.6 ± 2.9 mM, respectively. Liposome-papain was applied to the catalytic digestion of 10 mg·mL-1 IgG at 37 °C for 24 h at pH = 5.0-7.0. The reaction mixture could be analyzed without pretreatment by using the affinity columns immobilized with the protein A or protein L ligand because colloidal liposome-papain quickly flowed through the chromatographic stationary phase, exhibiting little proteolytic effect on the proteinaceous ligands. The analysis clearly demonstrated the catalytic production of antigen-binding fragments (Fab) from IgG in an enzyme concentration- and pH-dependent manner. Liposome-papain with 15 or 50 mol % anionic lipids also catalyzed the formation of Fab from IgG. The above results demonstrated that liposome-papain was useful to digest IgG and to purify Fab formed with the affinity chromatography.
Collapse
Affiliation(s)
- Azusa Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Chisaki Fujii
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Yuya Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Tatsuki Kunisawa
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Yuto Nagayasu
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Noriko Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
2
|
Altern SH, Kocot AJ, LeBarre JP, Boi C, Phillips MW, Roush DJ, Menegatti S, Cramer SM. Mechanistic model-based characterization of size-exclusion-mixed-mode resins for removal of monoclonal antibody fragments. J Chromatogr A 2024; 1718:464717. [PMID: 38354506 DOI: 10.1016/j.chroma.2024.464717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
Although antibody fragments are a critical impurity to remove from process streams, few platformable purification techniques have been developed to this end. In this work, a novel size-exclusion-mixed-mode (SEMM) resin was characterized with respect to its efficacy in mAb fragment removal. Inverse size-exclusion chromatography showed that the silica-based resin had a narrow pore size distribution and a median pore radius of roughly 6.2 nm. Model-based characterization was carried out with Chromatography Analysis and Design Toolkit (CADET), using the general rate model and the multicomponent Langmuir isotherm. Model parameters were obtained from fitting breakthrough curves, performed at multiple residence times, for a mixture of mAb, aggregates, and an array of fragments (varying in size). Accurate fits were obtained to the frontal chromatographic data across a range of residence times. Model validation was then performed with a scaled-up column, altering residence time and feed composition from the calibration run. Accurate predictions were obtained, thereby illustrating the model's interpolative and extrapolative capabilities. Additionally, the SEMM resin achieved 90% mAb yield, 37% aggregate removal, 29% [Formula: see text] removal, 54% Fab/Fc removal, 100% Fc fragments removal, and a productivity of 72.3 g mAbL×h. Model predictions for these statistics were all within 5%. Simulated batch uptake experiments showed that resin penetration depth was directly related to protein size, with the exception of the aggregate species, and that separation was governed by differential pore diffusion rates. Additional simulations were performed to characterize the dependence of fragment removal on column dimension, load density, and feed composition. Fragment removal was found to be highly dependent on column load density, where optimal purification was achieved below 100 mg protein/mL column. Furthermore, fragment removal was dependent on column volume (constant load mass), but agnostic to whether column length or diameter was changed. Lastly, the dependence on feed composition was shown to be complex. While fragment removal was inversely related to fragment mass fraction in the feed, the extent depended on fragment size. Overall, the results from this study illustrated the efficacy of the SEMM resin in fragment and aggregate removal and elucidated relationships with key operational parameters through model-based characterization.
Collapse
Affiliation(s)
- Scott H Altern
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Andrew J Kocot
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Cristiana Boi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA; Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | - Michael W Phillips
- Downstream Research and Development, EMD Millipore Corporation, Burlington, MA, USA
| | - David J Roush
- Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, NC, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
3
|
Tatli O, Oz Y, Dingiloglu B, Yalcinkaya D, Basturk E, Korkmaz M, Akbulut L, Hatipoglu D, Kirmacoglu C, Akgun B, Turk K, Pinar O, Sariyar Akbulut B, Atabay Z, Tahir Turanli E, Kazan D, Dinler Doganay G. A two-step purification platform for efficient removal of Fab-related impurities: A case study for Ranibizumab. Heliyon 2023; 9:e21001. [PMID: 38027967 PMCID: PMC10651443 DOI: 10.1016/j.heliyon.2023.e21001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Antibodies (mAbs) and antibody fragments (Fabs) constitute one of the largest and most rapidly expanding groups of protein pharmaceuticals. In particular, antibody fragments have certain advantages over mAbs in some therapeutic settings. However, due to their greater chemical diversity, they are more challenging to purify for large-scale production using a standard purification platform. Besides, the removal of Fab-related byproducts poses a difficult purification challenge. Alternative Fab purification platforms could expedite their commercialization and reduce the cost and time invested. Accordingly, we employed a strong cation exchanger using a pH-based, highly linear gradient elution mode following Protein L affinity purification and developed a robust two-step purification platform for an antibody fragment. The optimized pH gradient elution conditions were determined on the basis of purity level, yield, and the abundance of Fab-related impurities, particularly free light chain. The purified Fab molecule Ranibizumab possessed a high degree of similarity to its originator Lucentis. The developed purification platform highly intensified the process and provided successful clearance of formulated Fab- and process-related impurities (∼98 %) with an overall process recovery of 50 % and, thus, might be a new option for Fab purification for both academic and industrial purposes.
Collapse
Affiliation(s)
- Ozge Tatli
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Yagmur Oz
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Baran Dingiloglu
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Duygu Yalcinkaya
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Ezgi Basturk
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Melis Korkmaz
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Latif Akbulut
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Derya Hatipoglu
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Cansin Kirmacoglu
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Buse Akgun
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Kubra Turk
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Orkun Pinar
- Department of Bioengineering, Faculty of Engineering, Marmara University, Turkey
| | | | | | - Eda Tahir Turanli
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
| | - Dilek Kazan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Turkey
| | - Gizem Dinler Doganay
- Molecular Biology-Genetics and Biotechnology, Graduate School, Istanbul Technical University, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Istanbul Technical University, Turkey
| |
Collapse
|
4
|
Arauzo-Aguilera K, Buscajoni L, Koch K, Thompson G, Robinson C, Berkemeyer M. Yields and product comparison between Escherichia coli BL21 and W3110 in industrially relevant conditions: anti-c-Met scFv as a case study. Microb Cell Fact 2023; 22:104. [PMID: 37208750 PMCID: PMC10197847 DOI: 10.1186/s12934-023-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
INTRODUCTION In the biopharmaceutical industry, Escherichia coli is one of the preferred expression hosts for large-scale production of therapeutic proteins. Although increasing the product yield is important, product quality is a major factor in this industry because greatest productivity does not always correspond with the highest quality of the produced protein. While some post-translational modifications, such as disulphide bonds, are required to achieve the biologically active conformation, others may have a negative impact on the product's activity, effectiveness, and/or safety. Therefore, they are classified as product associated impurities, and they represent a crucial quality parameter for regulatory authorities. RESULTS In this study, fermentation conditions of two widely employed industrial E. coli strains, BL21 and W3110 are compared for recombinant protein production of a single-chain variable fragment (scFv) in an industrial setting. We found that the BL21 strain produces more soluble scFv than the W3110 strain, even though W3110 produces more recombinant protein in total. A quality assessment on the scFv recovered from the supernatant was then performed. Unexpectedly, even when our scFv is correctly disulphide bonded and cleaved from its signal peptide in both strains, the protein shows charge heterogeneity with up to seven distinguishable variants on cation exchange chromatography. Biophysical characterization confirmed the presence of altered conformations of the two main charged variants. CONCLUSIONS The findings indicated that BL21 is more productive for this specific scFv than W3110. When assessing product quality, a distinctive profile of the protein was found which was independent of the E. coli strain. This suggests that alterations are present in the recovered product although the exact nature of them could not be determined. This similarity between the two strains' generated products also serves as a sign of their interchangeability. This study encourages the development of innovative, fast, and inexpensive techniques for the detection of heterogeneity while also provoking a debate about whether intact mass spectrometry-based analysis of the protein of interest is sufficient to detect heterogeneity in a product.
Collapse
Affiliation(s)
| | - Luisa Buscajoni
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Karin Koch
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Gary Thompson
- Wellcome Trust Biological NMR Facility, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Colin Robinson
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Matthias Berkemeyer
- Biopharma Austria, Process Science, Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| |
Collapse
|
5
|
Guo Y, Chen X, Yu X, Wan J, Cao X. Prediction and validation of monoclonal antibodies separation in aqueous two-phase system using molecular dynamic simulation. J Chromatogr A 2023; 1694:463921. [PMID: 36940643 DOI: 10.1016/j.chroma.2023.463921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
In order to predict how mAbs partition in 20% ethylene oxide/80% propylene oxide (v/v) random copolymer (EO20PO80)/water aqueous two-phase system (ATPS), a molecular dynamic simulation model was developed using Gromacs and then validated by experiments. The ATPS was applied with seven kinds of salt, including buffer salt and strong dissociation salt that were commonly employed in the purification of protein. Na2SO4 was shown to have the best effects on lowering EO20PO80 content in the aqueous phase and enhancing recovery. The content of EO20PO80 in the sample solution was decreased to 0.62%±0.25% and the recovery of rituximab increased to 97.88%±0.95% by adding 300 mM Na2SO4 into back extraction ATPS. The viability determined by ELISA was 95.57% at the same time. A strategy for constructing a prediction model for the distribution of mAbs in ATPS was proposed in consideration of this finding. Partition of trastuzumab in ATPS was predicted by the model created using this method and the prediction result was further validated by experiments. The recovery of trastuzumab reached 95.63%±2.86% under the ideal extraction conditions suggested by the prediction model.
Collapse
Affiliation(s)
- Yibo Guo
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xue Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, P.R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China.
| |
Collapse
|
6
|
Challenges in Expression and Purification of Functional Fab Fragments in E. coli: Current Strategies and Perspectives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial host systems remain the most efficient and cost-effective chassis for biotherapeutics production. Escherichia coli is often the preferred host due to ease of cloning, scale-up, high product yields, and most importantly, cost-effective cultivation. E. coli often experience difficulties in producing biologically active therapeutics such as Fab fragments, which require protein folding and subsequent three-dimensional structure development. This paper outlines the recent improvements in upstream and downstream unit operations for producing Fab fragments in E. coli. Monoclonal antibody fragments (Fab) are a rising class of biotherapeutics and their production has been optimised using coexpression of molecular chaperones such as DsbC or DnaK–DnaJ–GrpE, as well as strain engineering for post-translational modifications such as disulphide bridging. Different media systems such as EnBase and combining nitrogen source supplementation with low-temperature cultivation have resulted in improvement in cell integrity, protein expression, and protein refolding. The recovery of native proteins from insoluble inclusion bodies can be improved by adjusting refolding conditions, as well as by incorporating multimodal and affinity chromatography for achieving high product yields in purification. Recent developments summarised in this review may tune the E. coli expression system to produce more complex and glycosylated proteins for therapeutic use in the near future.
Collapse
|
7
|
Nascimento A, São Pedro MN, Pinto IF, Aires-Barros MR, Azevedo AM. Microfluidics as a high-throughput solution for chromatographic process development - The complexity of multimodal chromatography used as a proof of concept. J Chromatogr A 2021; 1658:462618. [PMID: 34666268 DOI: 10.1016/j.chroma.2021.462618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
High-throughput technologies are fundamental to expedite the implementation of novel purification platforms. The possibility of performing process development within short periods of time while saving consumables and biological material are prime features for any high-throughput screening device. In this work, a microfluidic device is evaluated as high-throughput solution for a complete study of chromatographic operation conditions on ten different multimodal resins. The potential of this class of purification solutions is generally hindered by its complexity. Taking this into consideration, the microfluidic platform was herein applied and assessed as a tool for high-throughput applications. The commercially available multimodal ligands were studied for the binding of three antibody-based biomolecules (polyclonal mixture of whole antibodies, Fab and Fc fragments) at different pH and salt conditions, in a total of 450 experiments. The results obtained with the microfluidic device were comparable to a standard 96-well filtering microplate high-throughput tool. Additionally, five of the ten multimodal ligands tested were packed into a bench-scale column to perform a final validation of the microfluidic results obtained. All the data acquired in this work using different screening protocols corroborate each other, showing that microfluidic chromatography is a valuable tool for the fast implementation of a new purification step, particularly, if the goal is to narrow the downstream possibilities by being a first point of decision.
Collapse
Affiliation(s)
- André Nascimento
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana N São Pedro
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês F Pinto
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Maria Raquel Aires-Barros
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
|
9
|
da Costa CBP, Martins FJ, da Cunha LER, Ratcliffe NA, Cisne de Paula R, Castro HC. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. Int Immunopharmacol 2021; 90:107220. [PMID: 33302034 PMCID: PMC7678452 DOI: 10.1016/j.intimp.2020.107220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Since the very beginning of the COVID-19 pandemic, different treatment strategies have been explored. These mainly involve the development of antimicrobial, antiviral, and/or anti-inflammatory agents as well as vaccine production. However, other potential options should be more avidly investigated since vaccine production on a worldwide level, and the anti-vaccination movement, also known as anti-vax or vaccine hesitancy by many communities, are still real obstacles without a ready solution. This review presents recent findings on the potential therapeutic advantages of heterologous serotherapy for the treatment of COVID-19. We present not only the effective use in animal models of hyperimmune sera against this coronavirus but also strategies, and protocols for the production of anti-SARS-CoV-2 sera. Promising antigens are also indicated such as the receptor-binding domain (RBD) in SARS-CoV-2 S protein, which is already in phase 2/3 clinical trial, and the trimeric protein S, which was shown to be up to 150 times more potent than the serum from convalescent donors. Due to the high death rate, the treatment for those currently infected with coronavirus cannot be ignored. Therefore, the potential use of anti-SARS-CoV-2 hyperimmune sera should be carefully but urgently evaluated in phase 2/3 clinical studies.
Collapse
Affiliation(s)
- Camila B P da Costa
- Instituto Vital Brazil, Niterói, RJ 24230-410, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | - Francislene J Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil
| | | | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
| | - Rafael Cisne de Paula
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil.
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, RJ 24210-130, Brazil; Programa de Pós-Graduação em Patologia, HUAP, UFF, RJ 24210-130, Brazil.
| |
Collapse
|
10
|
Tandale JB, Badgujar SB, Tandale BU, Angre U, Daftary SB, Lala S, Gaur VP. An improved protocol for large scale production of high purity 'Fc' fragment of human immunoglobulin G (IgG-Fc). J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122400. [PMID: 33126073 DOI: 10.1016/j.jchromb.2020.122400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/30/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023]
Abstract
We describe a simplified approach for purification and characterization of human 'IgG-Fc' fragment used widely as immunochemical tool and for therapeutic purposes. The 'Fc' fragment was purified from human IgG in a 3-stage column chromatography. The purified 'Fc' fragment appeared as a dimer glycoprotein with an apparent molecular mass of 52,981 Dalton (Ultraflex MALDI TOF/TOF). The Size-exclusion HPLC profile of the purified 'Fc' fragment of human IgG matched that of a commercially procured reference 'Fc' fragment material. The purity of the 'Fc' fragments was >99% by SDS-PAGE and size-exclusion HPLC. The results of Western blotting, immunoelectrophoresis, and mass spectrometry analysis indicate a high purity of the 'Fc' fragment. Peptide mass fingerprint analysis of the purified 'Fc' protein yielded peptides that partially match the known database sequences of FCG3B_HUMAN (Uniprot ID: O75015). This method of purification of the 'Fc' fragment is suitable for achieving high purity level of 'Fc' fragment protein. With this purification approach, the cost of the purified 'Fc' fragment of human IgG is significantly reduced as compared with the current market price of IgG-Fc fragment protein in international market. The purified 'IgG-Fc' fragment protein was found to be negative for major viral markers.
Collapse
Affiliation(s)
- Jatin B Tandale
- Laboratory of Native Antigens, Research and Development Division, Advy Chemical Private Limited, Thane 400604, Maharashtra, India
| | - Shamkant B Badgujar
- Laboratory of Native Antigens, Research and Development Division, Advy Chemical Private Limited, Thane 400604, Maharashtra, India.
| | - Babasaheb U Tandale
- Laboratory of Native Antigens, Research and Development Division, Advy Chemical Private Limited, Thane 400604, Maharashtra, India
| | - Unmesh Angre
- Laboratory of Native Antigens, Research and Development Division, Advy Chemical Private Limited, Thane 400604, Maharashtra, India
| | - Siddharth B Daftary
- Laboratory of Native Antigens, Research and Development Division, Advy Chemical Private Limited, Thane 400604, Maharashtra, India
| | - Sanjeev Lala
- Laboratory of Native Antigens, Research and Development Division, Advy Chemical Private Limited, Thane 400604, Maharashtra, India
| | - Vinod P Gaur
- Northwest Lipid Metabolism and Diabetes Research Laboratories (NWRL), Department of Medicine, University of Washington, 401 Queen Anne Ave North, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Schimek C, Kubek M, Scheich D, Fink M, Brocard C, Striedner G, Cserjan-Puschmann M, Hahn R. Three-dimensional chromatography for purification and characterization of antibody fragments and related impurities from Escherichia coli crude extracts. J Chromatogr A 2020; 1638:461702. [PMID: 33229006 DOI: 10.1016/j.chroma.2020.461702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Antibody fragments (Fab) are often produced by recombinant methods in Escherichia coli as no glycosylation is needed. Besides the correctly expressed Fab molecule, a multitude of host cell impurities and product related impurities are present in the crude sample. The identification and characterization of the product-related impurities, such as modified Fab-molecules or free light chain, are of utmost importance. The objective of this work was to design a purification strategy to isolate and characterize Fab and related impurities. A three-dimensional chromatography method was established, consisting of two affinity steps (Protein G and Protein L) and subsequent cation exchange chromatography, followed by mass spectrometry analysis of the purified samples. The procedure was automated by collecting the eluted target species in loops and directly loading the samples onto the high-resolution cation exchange chromatography column. As an example, four different Fab molecules are characterized. All four samples contained mainly the correct Fab, while only one showed extensive N-terminal pyroglutamate formation of the Fab. In another case, we found a light chain variant with uncleaved amino acids from the lead molecule, which was not used for the formation of whole Fab as only correct Fab was found in that sample. Impurities with lower molecular weights, which were bound on the Protein L column, were observed in all samples, and identified as fragments of the light chain. In conclusion, we have devised a platform for characterizing Fab and Fab-related impurities, which significantly facilitated strain selection and optimization of cultivation conditions.
Collapse
Affiliation(s)
- Clemens Schimek
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Matthias Kubek
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - David Scheich
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Mathias Fink
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Cécile Brocard
- Biopharma Austria Process Science, Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120 Wien
| | - Gerald Striedner
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
12
|
Experimental designs for optimizing the purification of immunoglobulin G by mixed-mode chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121719. [DOI: 10.1016/j.jchromb.2019.121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 11/22/2022]
|
13
|
Nascimento A, Mullerpatan A, Azevedo AM, Karande P, Cramer S. Development of phage biopanning strategies to identify affinity peptide ligands for kappa light chain Fab fragments. Biotechnol Prog 2019; 35:e2884. [DOI: 10.1002/btpr.2884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/30/2019] [Accepted: 06/17/2019] [Indexed: 01/28/2023]
Affiliation(s)
- André Nascimento
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa Lisbon Portugal
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Akshat Mullerpatan
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Ana Margarida Azevedo
- iBB – Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de Lisboa Lisbon Portugal
| | - Pankaj Karande
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| | - Steven Cramer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic Institute Troy New York
| |
Collapse
|
14
|
Ulmer N, Ristanovic D, Morbidelli M. Process for Continuous Fab Production by Digestion of IgG. Biotechnol J 2019; 14:e1800677. [PMID: 31169346 DOI: 10.1002/biot.201800677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/21/2019] [Indexed: 11/10/2022]
Abstract
Intensified processing and end-to-end integrated continuous manufacturing are increasingly being considered in bioprocessing as an alternative to the current batch-based technologies. Similar approaches can also be used at later stages of the production chain, such as in the post-translational modifications that are often considered for therapeutic proteins. In this work, a process to intensify the enzymatic digestion of immunoglobulin G (IgG) and the purification of the resulting Fab fragment is developed. The process consists of the integration of a continuous packed-bed reactor into a multicolumn chromatographic process. The integration is realized through the development of a novel multicolumn countercurrent solvent gradient purification (MCSGP) process, which, by adding a third column to the classical two-column MCSGP process, allows for continuous loading and then straight-through processing of the mixture leaving the reactor.
Collapse
Affiliation(s)
- Nicole Ulmer
- Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Dragana Ristanovic
- Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
15
|
Bates A, Power CA. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies (Basel) 2019; 8:E28. [PMID: 31544834 PMCID: PMC6640713 DOI: 10.3390/antib8020028] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Since the licensing of the first monoclonal antibody therapy in 1986, monoclonal antibodies have become the largest class of biopharmaceuticals with over 80 antibodies currently approved for a variety of disease indications. The development of smaller, antigen binding antibody fragments, derived from conventional antibodies or produced recombinantly, has been growing at a fast pace. Antibody fragments can be used on their own or linked to other molecules to generate numerous possibilities for bispecific, multi-specific, multimeric, or multifunctional molecules, and to achieve a variety of biological effects. They offer several advantages over full-length monoclonal antibodies, particularly a lower cost of goods, and because of their small size they can penetrate tissues, access challenging epitopes, and have potentially reduced immunogenicity. In this review, we will discuss the structure, production, and mechanism of action of EMA/FDA-approved fragments and of those in clinical and pre-clinical development. We will also discuss current topics of interest surrounding the potential use of antibody fragments for intracellular targeting and blood-brain barrier (BBB) penetration.
Collapse
Affiliation(s)
- Adam Bates
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| | - Christine A Power
- Biopharm Molecular Discovery, GlaxoSmithKline, Hertfordshire SG1 2NY, UK.
| |
Collapse
|
16
|
Adamíková J, Antošová M, Polakovič M. Chromatographic purification of recombinant human erythropoietin. Biotechnol Lett 2019; 41:483-493. [PMID: 30810853 DOI: 10.1007/s10529-019-02656-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Recombinant human erythropoietin is a valuable therapeutic protein used in the treatment of several serious diseases. It exists in different isoforms and is produced by genetically modified mammalian cells such as Chinese hamster ovary or human embryonic kidney cells. As for other biopharmaceutical drugs, a key factor for its successful industrial production is to achieve a high degree of purity and to decrease the content of critical impurities to trace amounts. This goal is achieved in the separation sequence which substantial part is formed by chromatographic steps. Therefore, downstream processing forms an essential part of production costs. This review presents the overview of published separation sequences and, analyzes the use of different types of chromatographic media such as affinity, ion-exchange, reversed-phase, hydrophobic interaction, multimodal, and size-exclusion chromatography adsorbents. Their application is discussed with regard to their place in the purification stages generally denoted as capture, intermediate purification and polishing.
Collapse
Affiliation(s)
- Jana Adamíková
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Monika Antošová
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Milan Polakovič
- Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology, Institute of Chemical and Environmental Engineering, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| |
Collapse
|