1
|
Wu J, Lv Z, Zheng Z, Fu Y, Li J. A transformation and auxiliary extraction of Cr during electrokinetic removal of Cr-contaminated multilayer composite soil chamber. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:450. [PMID: 39316230 DOI: 10.1007/s10653-024-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Multilayer composite soil chamber was proposed to extract the Cr of contaminated site soil and insight into transformation of Cr fractionation associated with valence states. The variations of current, soil pH and moisture content were explored, as well as the migration of Cr fractionation and redistribution of Cr. Results indicated that duration of half peak current could be used to adjust treatment time and it varied among different composite ways. Moreover, extraction efficiency of Cr in soil near cathode was relatively higher and reached 60% when citric acid was used. Citric acid could promote the transformation between different Cr fractionations or different valence states. It could also improve the desorption of Cr, and could prevent excessive fluctuations of moisture content at the same time. Cr redistributed acrossed the soil chamber after extraction. When deionized water was used, Cr(VI) significantly migrated toward anode mainly in the form of exchangeable fractionation (EXC) while Fe-Mn oxides fractionation (Fe-Mn) which may be in the form of cationic Cr(III) hydroxides migrated toward cathode. When using citric acid, fractionations that were difficult to migrate of Cr, especially for Fe-Mn in site soils could be activated and became EXC and carbonate fractionation (CAR), then migrated to the anode or cathode. The migration of exchangeable Cr(III) was dramatically enhanced. But the use of citric acid could cause Cr(VI) transformation to Cr(III) near anode. In addition, during the migration process, EXC could go back to Fe-Mn again or transform to residue fractionation (RES).
Collapse
Affiliation(s)
- Junnian Wu
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.
| | - Ziwei Lv
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Zongqian Zheng
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yupeng Fu
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Jiang Li
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
2
|
Wu J, Wang C, Lin Z, Li N, Fu Y, Li J, Chen C, Li Y. Highly alkaline electrokinetic extraction: Characteristics of chromium mobilization, conversion and transport in high alkalinity soil. CHEMOSPHERE 2024; 361:142531. [PMID: 38838864 DOI: 10.1016/j.chemosphere.2024.142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
In site chromium (Cr) contaminated soil characterized by high alkalinity and carbonate content, protons are not effectively targeted for Cr(III) mobilization but rather accelerate the reduction of easily transportable Cr(VI) within the acidification electrokinetic (EK) system. As an alternative, the highly alkaline extraction conditions (HAECs) maintained by anolyte regulation are explored owing to the ability to desorb strong binding Cr(VI) and form anionic Cr(III)-hydroxides (Cr(OH)4-, Cr(OH)52-). The results demonstrate that HAECs were more efficient in mobilizing ions in severe alkalinity and electrical conductivity soil compared to organic acid acidifying extraction conditions (OAECs). Simultaneously, a limited amount of soluble Cr(III) was produced; however, its transportation was hindered and more noticeable in the case of Cr(VI), displaying a distinct retention phase within the intermediate soil chamber. The antagonistic interplay between electromigration and electroosmotic flow was considered the main responsible factor. The conversion intensity of Cr(VI) to Cr(III) was inhibited at HAECs. The promising mobilization and low conversion intensity contributed to total Cr removal. At HAECs, enhanced electromigration and electroosmotic flow combined with a favorable oxidation environment may facilitate in situ delivery of oxidants, offering practical implications for the EK detoxification of high alkalinity site soil contaminated with Cr. The practicability of HAECs is likely to be enhanced when the cost-benefit balance of providing a simultaneous energy supply during site treatment is resolved.
Collapse
Affiliation(s)
- Junnian Wu
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Changze Wang
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zihuang Lin
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Naichen Li
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yupeng Fu
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiang Li
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chang Chen
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yinliu Li
- Gansu Provincial Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Yu Q, Zheng Y, Li D. Permeable reactive composite approaching cathode enhanced Cr removal in soil using the byproduct of electrokinetic technology: emphasized energy utilization efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98139-98155. [PMID: 37608168 DOI: 10.1007/s11356-023-28993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023]
Abstract
Cost-effective techniques with significant removal rates and low energy consumption are urgently required for in-situ Cr-contaminated soil remediation to reduce potential environmental toxicity to the ecosystem and human bodies. Electrokinetic technology is a valuable and promising soil remediation technology; however, the acidic and alkaline fronts evolution induced by the electrokinetic byproducts (H+, OH-) has significant hindering characteristics for ion removal. To effectively utilize the byproducts for enhancing Cr elimination, this paper proposed the permeable reactive composite approaching cathode with rhamnolipid-modified biochar as reactive material. Power utilization efficiency (η) was presented to comprehensively evaluate the target species elimination effect, considering removal rate and energy consumption. Results suggested that biosurfactant rhamnolipid stimulated Cr removal in acid and base fronts. Acid front induced rhamnolipid protonation reducing anolyte Cr(VI) to Cr(III), and base front induced rhamnolipid deprotonation complexing with Cr(III) and expediting Cr(VI) dissolution by electrostatic repulsion. Permeable reactive composite approaching cathode induced the maximum removal rate of Cr(VI) and Cr(III) in each section by impelling the alkaline front. Approaching cathode caused increased resistance and energy consumption in the near-anode regions, ultimately decreasing energy utilization efficiency. Optimized moving frequency and applied potential magnitude could adjust power consumption distribution in a single soil layer to obtain better electrokinetic removal performance of contaminates. This work provided essential scientific and practical importance for in-situ electrokinetic remediation of Cr(VI) and Cr(III), considering elimination efficiency and energy consumption in the future.
Collapse
Affiliation(s)
- Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Resources and Safety Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Coupling electrokinetic with a cork-based permeable reactive barrier to prevent groundwater pollution: A case study on hexavalent chromium-contaminated soil. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Wu J, Wei B, Lv Z, Fu Y. To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Zheng Y, Li H, Yu Q, Yu L, Jiao B, Li D. Application of UV radiation for in-situ Cr(VI) reduction from contaminated soil with electrokinetic remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125806. [PMID: 33873035 DOI: 10.1016/j.jhazmat.2021.125806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Restoring hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) from contaminated soil is a cost-effective alternative for attenuating Cr(VI) toxicity to the ecosystem. A new electrokinetic remediation (EKR) system with UV light was explored to overcome an energy barrier to catalyze Cr(VI) reduction from the surface soil near the anodic reservoir. Natural organic matters and minerals from the contaminated soil acted as electron donors and catalysts for Cr(VI) photo-reduction and no additional chemical reagent. There was almost no residual Cr(VI) in anolyte after UV/EKR compared with the conventional EKR. The reduction improved the efficiency of EKR in the soil near the anodic reservoir by dropped the Cr(VI) negative mass flux caused by electroosmosis advection and concentration diffusion. The pathways of Cr(VI) photo-reduction are possibly dominated by ligand-to-metal charge transfer, i.e., photocatalytic cyclic reduction by Fe(III)/Fe(II) complexes on the surface of the minerals and in soil pore fluid and the photo-induced decomposition of chromate ester. It is concluded that UV/EKR is a clean, efficient, and low-cost method for remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Huilin Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
7
|
Chen G, Han K, Liu C, Yan B. Quantitative research on heavy metal removal of flue gas desulfurization-derived wastewater sludge by electrokinetic treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125561. [PMID: 34030412 DOI: 10.1016/j.jhazmat.2021.125561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Flue gas desulfurization-derived wastewater sludge (FGD-WWS) has been produced increasingly in China and India etc., and its content of heavy metals (HMs) including Cd, Cr, Cu, Hg, Ni and Zn seriously exceeds the limits allowed. Developing the suitable disposal of FGD-WWS is therefore significantly important and necessary. The novel process of electrokinetic treatment combined with chemical pretreatment of HMs in FGD-WWS were proposed here to improve the removal efficiency. Results indicate that the effects of different pretreatment agents (citric acid (CA), ammonia, tetrasodium of N, N-bis (carboxymethyl) glutamic acid (GLDA), and rhamnolipid) on the ET of HMs were different. To investigate the mechanism of combined process, the transformation potential (TP), exchange potential (EP) and removal potential (RP) were calculated. Correlation analysis shows the correlation between TP and RP was higher than that between EP and RP, indicating that the removal efficiency is mainly affected by the fraction transformation of HMs. Electric field, pH and pretreatment agents are main factors causing fraction transformation and affecting TP. Focusing on fraction transformation is an efficient way to improve further the removal efficiency. The work is promisingly valuable for developing the technology of treating FGD-WWS.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Lhasa 850012, China; School of Science, Tibet University, Lhasa 850012, China; Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China
| | - Kexuan Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China.
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Key Lab of Biomass/waste Utilization, Tianjin 300072, China; Tianjin Engineering Research Center for Organic Wastes Safe Disposal and Energy Utilization, Tianjin 300072, China
| |
Collapse
|
8
|
Gao M, Zeng F, Tang F, Wang K, Xu X, Tian G. An increasing Cr recovery from soil with catholyte-enhanced electrokinetic remediation: Effects on voltage redistribution throughout soil sections. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Wu J, Li Q, Lv Z. Regulating and intervening act of Cr chemical speciation effect on the electrokinetic removal in Cr contaminated soil in arid area. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Zheng Y, Yan Y, Yu L, Li H, Jiao B, Shiau Y, Li D. Synergism of citric acid and zero-valent iron on Cr(VI) removal from real contaminated soil by electrokinetic remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5572-5583. [PMID: 31853846 DOI: 10.1007/s11356-019-06820-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
This study focused on enhanced electrokinetic remediation of Cr(VI) in real contaminated soil. The citric acid (CA) as the electrolyte and Fe(II) released from zero-valent iron (ZVI) under anoxic conditions functioned as the main reducer. They were used for overcoming the high insoluble Cr(VI) fraction in real contaminated soil and high Cr(VI) residue in acidic soil near the anode simultaneously. The synergism of CA and ZVI is that CA helps the release of Cr(VI) to react with the generated Fe(II) and alleviates the hindrance of Fe and Cr co-precipitates in electromigration of Cr; meanwhile, the end product Fe(III) from ZVI catalyzed the Cr(VI) reduction by CA. The removal of Cr(III) and Cr(VI) was significantly improved in real contaminated soil. The optimum result (82.86%) was obtained at a voltage gradient of 2.5 V/cm after 12-day remediation with a 10 g ZVI dose when the catholyte and anolyte were 0.2 mol/L and 0.1 mol/L CA, respectively. This configuration has a significant improvement in overcoming the current obstacles for Cr(VI) electrokinetic remediation from real contaminated soil and prospects for large-scale practical applications.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Yujie Yan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Lin Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Huilin Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- City College of Science and Technology, Chongqing University, Chongqing, 400044, China.
| | - YanChyuan Shiau
- Department of Construction Management, Chung Hua University, No. 707, Wufu Rd., Sec. 2, Hsinchu, 30012, Taiwan.
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|