1
|
Zhu L, He J, Zhang X, Yang B, Chen H, Chen L, Yao Y. Effect of particle size composition on the separation of waste printed circuit boards by vibrated gas–solid fluidized bed. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
He H, Yang B, Wu D, Gao X, Fei X. Applications of crushing and grinding-based treatments for typical metal-containing solid wastes: Detoxification and resource recovery potentials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120034. [PMID: 36030964 DOI: 10.1016/j.envpol.2022.120034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-containing solid wastes can induce serious environmental pollution if managed improperly, but contain considerable resources. The detoxification and resource recoveries of these wastes are of both environmental and economic significances, being indispensable for circular economy. In the past decades, attempts have been made worldwide to treat these wastes. Crushing and grinding-based treatments have been increasingly applied, the operating apparatus and parameters of which depend on the waste type and treatment purpose. Based on the relevant studies, the applications of crushing and grinding on four major types of solid wastes, namely spent lithium-ion batteries (LIBs) cathode, waste printed circuit boards (WPCBs), incineration bottom ash (IBA), and incineration fly ash (IFA) are here systematically reviewed. These types of solid wastes are generated in increasing amounts, and have the potentials to release various organic and inorganic pollutants. Despite of the widely different texture, composition, and other physicochemical properties of the solid wastes, crushing and grinding have been demonstrated to be universally applicable. For each of the four wastes, the technical route that involving crushing and grinding is described with the advantages highlighted. The crushing and grinding serve either mainstream or auxiliary role in the processing of the solid wastes. This review summarizes and highlights the developments and future directions of crushing and grinding-based treatments.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China
| | - Xiaofeng Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
3
|
Kumari R, Samadder SR. A critical review of the pre-processing and metals recovery methods from e-wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115887. [PMID: 35933880 DOI: 10.1016/j.jenvman.2022.115887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
E-wastes being potential sources of numerous valuable metals are promoted to undergo recycling and recovery under the umbrella of urban mining and circular economy. Thus, the present study provides a critical review of the technological details of different metal recycling processes, pre-treatment methods, and the advancements made in these techniques. Critical evaluation of different metal recovery techniques has also been presented based on the available life cycle assessment (LCA), techno-economic, and industrial-scale studies. The study revealed that the integrated metal recovery techniques serve better in terms of recovery efficiency and environmental performance than any single recovery technique. Also, scaling up of biometallurgical, electrochemical, and super critical fluid extraction methods needs to be promoted due to their better environmental performances.
Collapse
Affiliation(s)
- Rima Kumari
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Sukha Ranjan Samadder
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
4
|
Sun B, Schnoor JL, Zeng EY. Decadal Journey of E-Waste Recycling: What Has It Achieved? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12785-12792. [PMID: 36067032 DOI: 10.1021/acs.est.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
E-waste recycling has been a hot topic around the world. This Feature revisits the issues raised by our previous Feature 10 years ago, i.e., the environmental, economic, and social benefits of e-waste recycling, using China as an example. The decadal journey of e-waste recycling has witnessed a giant leap from haphazard disposal initially to regulated disassembly presently. Specific successful stories include cleaned environment and reduced human exposure, significant advantages of urban mining over mineral mining, additional employment opportunities, and improved legislation system related to e-waste recycling. Strict legislation systems related to e-waste management based on the principle of Extended Producer Responsibility are key to the sustainable development of the e-waste recycling sector in China. The experiences and lessons learned in China would provide valuable guidelines for other developing countries.
Collapse
Affiliation(s)
- Bingbing Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Fu W, Hodge H, Vaughan J. Process integration of sulphuric acid leach and particle size fractionation for cleaner copper concentrate production by enhancing the radionuclide mobility. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Huang K, Yuan W, Yang Y, Wang X, Xie J, Duan H, Li X, Wang L, Zhang C, Bai J, Wang J, Crittenden JC. Dissolution and separation of non-metallic powder from printed circuit boards by using chloride solvent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 123:60-68. [PMID: 33561771 DOI: 10.1016/j.wasman.2021.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Non-metallic components (NMC) in waste printed circuit boards (WPCBs) are made of the thermosetting epoxy resin and glass fiber, which has been a research concern in the waste recycling area. The recycling of thermosetting epoxy resin is a serious challenge due to their permanent cross-linked structure. An efficient approach to chemical recycling of epoxy resin for resource reutilization was developed in this research. ZnCl2/CH3COOH aqueous solution was selected as catalysts system to decompose epoxy resin under a mild reaction condition. The influence of reaction parameters such as reaction temperature, time, liquid-solid ratio and ZnCl2 amount on the decomposition efficiency of epoxy resin and reaction mechanism were investigated. The physical and chemical properties of NMC, reaction solvent and decomposed products were analyzed using scanning electron microscope(SEM), Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectrometry (GC-MS). Results showed that up to 81.85% of epoxy resin could be dissolved by using a temperature of 190 °C during 8 h with a mixture of acetic acid (15 wt%): ZnCl2 (5 g) 20 mL/g. Incompletely coordinated zinc ions enables the cleavage of CN, CBr and CO bonds in the thermosetting brominated epoxy resin, which was mainly converted to phenol, 2-Bromophenol and 2, 4-Dibromophenol with high resource value. And the functional groups of ethyl acetate and acetic acid maintained chemical structure before and after reaction. This research provided a practical approach to the dissolution and reutilization of NMC in WPCBs.
Collapse
Affiliation(s)
- Kaiyou Huang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Yuhan Yang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xiaoyan Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Junying Xie
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Huabo Duan
- College of Civil Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaodan Li
- China Northeast Municipal Engineering Design and Research Institute Co. Ltd, Changchun 130021, China
| | - Lincai Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chenglong Zhang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jianfeng Bai
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jingwei Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems and the Department of Civil and Environmental Engineering, Atlanta 30332, United States
| |
Collapse
|
7
|
Zhu L, Zhang M, He J, Liu C, Yao Y, Xu J, Liu B, Yin S, Xu X. Recovery of metal fractions from waste printed circuit boards via the vibrated gas-solid fluidized bed. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Zhu XN, Nie CC, Ni Y, Zhang T, Li B, Wang DZ, Qu SJ, Qiao FM, Lyu XJ, Qiu J, Li L, Ren YG, Wu P. Advanced utilization of copper in waste printed circuit boards: Synthesis of nano-copper assisted by physical enrichment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123294. [PMID: 32629354 DOI: 10.1016/j.jhazmat.2020.123294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The copper in the waste printed circuit boards (WPCBs) is cleanly recycled by physical methods and presented in the form of nano copper particles by hydrometallurgical, which provides environmental approach to the advanced utilization of metal copper. Copper in WPCBs was first pre-concentrated by gradient enrichment process including gravity separation, mechanical grinding and flotation. The leaching method was then used to dissolve copper from the flotation concentrate in ammoniacal/ammonium salt solutions. Subsequently, reduction treatment was conducted to synthesize nano-copper from leaching solution. The enrichment results of the clean physical separation process show that the grade of copper increased from 16.22% to -38.05% by gravity separation, and the grade of copper further increased to 72.62 % by flotation after dissociation, which avoids overgrinding of low value components. Copper nanoparticles can be prepared effectively, and the recovery of copper in the leaching process reaches 99 %. The particle size of copper nanoparticles obtained by ascorbic acid reduction is tens of nanometers, and the surface of copper nanoparticles is smooth and nearly spherical. The present study proposes an environmentally friendly process of preparing nano-copper from the copper in WPCBs.
Collapse
Affiliation(s)
- Xiang-Nan Zhu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Chun-Chen Nie
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yang Ni
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Tao Zhang
- Research Institute of Tsinghua University in Shenzhen, Shen Zhen 518057, China
| | - Biao Li
- Mining and Minerals Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - De-Zhang Wang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shi-Juan Qu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Fa-Ming Qiao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xian-Jun Lyu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jun Qiu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Lin Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yang-Guang Ren
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Peng Wu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
9
|
Lv B, Deng X, Chen J, Fang C, Zhu X. Effects of sound fields on hydrodynamic and dry beneficiation of fine coal in a fluidized bed. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
|
11
|
Wang Q, Zhang B, Yu S, Xiong J, Yao Z, Hu B, Yan J. Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers. ACS OMEGA 2020; 5:17850-17856. [PMID: 32743155 PMCID: PMC7391248 DOI: 10.1021/acsomega.0c01884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/06/2020] [Indexed: 05/15/2023]
Abstract
The waste from end-of-life electrical and electronic equipment has become the fastest growing waste problem in the world. The difficult-to-treat waste-printed circuit boards (WPCBs), which are nearly 3-6 wt % of the total electronic waste, generate great environmental concern nowadays. For WPCB treatment and recycling, the mechanical-physical method has turned out to be more technologically and economically feasible. In this work, the mechanical-physical treatment and recycling technologies for WPCBs were investigated, and future research was directed as well. Removing electric and electronic components (EECs) from WPCBs is critical for their crushing and metal recovery; however, environmentally friendly and high-efficiency removal techniques need be developed. Concentrated metals rich in Cu, Al, Au, Pb, and Sn recovered from WPCBs need be further refined to add to their economic values. The low value-added nonmetallic fraction of waste-printed circuit boards (NMF-WPCBs) accounts for approximately 60 wt % of the WPCBs. From the perspective of environmental management, a zero-waste approach to recycling them should be developed to gain values. Preparing polymer composites and geopolymers offers many advantages and has potential applications in various fields, especially as construction and building materials. However, the mechanical and thermal properties of NMF-WPCBs composites should be further improved for preparing polymer composites. Surface modification or filler blending could be applied to improve the interfacial comparability between NMF-WPCBs and the polymer matrix. The NMF-WPCBs shows potential in preparing cement mortar and geological polymers, but the environmental safety resulting from metals needs to be taken into account. This study will provide a significant reference for the industrial recycling of NMF-WPCBs.
Collapse
Affiliation(s)
- Qin Wang
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Baogui Zhang
- Beijing
Institute of Space Mechanics & Electricity, Beijing 100094, China
| | - Shaoqi Yu
- College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingjing Xiong
- College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhitong Yao
- College
of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- E-mail: (Z. Yao)
| | - Baoan Hu
- CCCC
(Tianjin) Eco-Environmental Protection Design & Research Institute
Co., Ltd., Tianjin 300461, China
| | - Jianhua Yan
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- E-mail: (J. Yan)
| |
Collapse
|
12
|
Oluokun OO, Otunniyi IO. Chemical conditioning for wet magnetic separation of printed circuit board dust using octyl phenol ethoxylate. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Zhu XN, Zhang LY, Dong SL, Kou WJ, Nie CC, Lyu XJ, Qiu J, Li L, Liu ZX, Wu P. Mechanical activation to enhance the natural floatability of waste printed circuit boards. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 109:222-230. [PMID: 32416564 DOI: 10.1016/j.wasman.2020.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The metal in the waste printed circuit boards (WPCBs) is an excellent secondary metal resource. WPCBs were ground to dissociate, and impurities in the dissociated product were removed by gradient flotation to recover valuable metals in this study. The effects of crushing methods on size composition and dissociation state of the crushed products were studied. Then the gradient flotation experiment was designed to verify the natural floatability of ground materials. Grinding test shows that impact crushing has greater grinding fineness (-0.074 mm) than shear crushing, which is 42.14% and 26.18% respectively with 5 min grinding. The flotation test results illustrate that the natural floatability of impurities increases with the grinding fineness, that is, the yield of floats increases without flotation reagents. For impact crushing and shear crushing, the floats yields are 38.48% and 31.75% respectively, accompanied by 70.53% and 65.46% impurity removal for ground materials with 5 min grinding. Subsequently, 21.61% and 26.35% of impurities can be further removed with the aid of collector. Finally, the recovery of Cu in concentrate reaches 67.84% and 65.75%, respectively. FT-IR proves that the excellent floatability of particles is caused by the significant hydrophobic group. Mechanical grinding has been proved to have double effects of improving dissociation and natural floatability.
Collapse
Affiliation(s)
- Xiang-Nan Zhu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Li-Ye Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Shu-Ling Dong
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Wen-Jia Kou
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Chun-Chen Nie
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xian-Jun Lyu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jun Qiu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Lin Li
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Zhen-Xue Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Peng Wu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
14
|
Gu W, Bai J, Lu L, Zhuang X, Zhao J, Yuan W, Zhang C, Wang J. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 98:21-28. [PMID: 31421486 DOI: 10.1016/j.wasman.2019.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 05/15/2023]
Abstract
The low bioleaching efficiency of Acidithiobacillus ferrooxidans results in its sparse industrial application for metal extraction from waste printed circuit boards (WPCBs). To improve the bioleaching efficiency of Acidithiobacillus ferrooxidans, we propose the use of mechanical activation to dispose WPCBs prior to performing bioleaching. Response surface methodology (RSM), scanning electron microscope- energy dispersive spectrometer (SEM-EDS), and laser particle size analyzer (LPSA) were used to optimize and analyze the mechanical activation process, respectively. The optimal conditions for mechanical activation was a milling time of 2 h, milling speed of 340 r min-1, and ball material ratio (w/w) of 10/1; the bioleaching rates of Cu, Ni, and Zn were 94.33%, 90.69%, and 90.78%, respectively. The bioleaching rates of Cu, Ni, and Zn were 74.75%, 70.46%, and 71.05%, respectively, without mechanical activation pretreatment. SEM-EDS and LPSA analyses indicated that mechanical activation could lead to a smaller particle size and expose wrapped metals, thus improving the bioleaching efficiency oyf tyhe metals inside the WPCBs. The electrode potential of the metals was likely changed by the mechanical activation, resulting in an improvement of their bioleaching efficiency. Additionally, the bioleaching rates of Pb, Cr, and Cd after mechanical activation pretreatment were 10.29%, 74.89%, and 54.12%, respectively. Contrastingly, the bioleaching rates of Pb, Cr, and Cd without mechanical activation pretreatment were 5.18%, 59.97%, and 37.12%, respectively. Thereinto, the precipitation of PbSO4 may result in a decrease of leached Pb. We propose a mechanical activation process for improving the bioleaching efficiency of metals from WPCBs.
Collapse
Affiliation(s)
- Weihua Gu
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jianfeng Bai
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Liang Lu
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xuning Zhuang
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jing Zhao
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Wenyi Yuan
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chenglong Zhang
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jingwei Wang
- WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China; Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai 201209, China; Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|