1
|
Wang C, Guo K, Liu B, Gao Y, Yue Q, Xie H, Gao B. Multi-interface interaction mechanism of pulp reject-based flocculants for the removal of antibiotics and its combined pollutants. WATER RESEARCH 2024; 260:121966. [PMID: 38908312 DOI: 10.1016/j.watres.2024.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The efficient removal of antibiotics and its combined pollutants is essential for aquatic environment and human health. In this study, a lignin-based organic flocculant named PRL-VAc-DMC was synthesized using pulp reject as the raw material, with vinyl acetate (VAc) and methacryloxyethyltrimethyl ammonium chloride (DMC) as the grafting monomers. A series of modern characterization methods were used to confirm the successful preparation of PRL-VAc-DMC and elucidate its polymerization mechanism. It was found that the Ph-OH group and its contiguous carbon atoms of lignin served as the primary active sites to react with grafting monomers. Flocculation experiments revealed that PRL-VAc-DMC could react with tetracycline (TC) through π-π* interaction, hydrophobic interaction, hydrogen bonding, and electrostatic attraction. With the coexistence of humic acid (HA) and Kaolin, the aromatic ring, hydroxyl, and amide group of TC could react with the benzene ring, hydroxyl group, and carboxyl group of HA, forming TC@HA@Kaolin complexes with Kaolin particles acting as the hydrophilic shell. The increase in particle size, electronegativity, and hydrophily of TC@HA@Kaolin complexes facilitated their interaction with PRL-VAc-DMC through strong interfacial interactions. Consequently, the presence of HA and Kaolin promoted the removal of TC. The synergistic removal mechanism of TC, HA, and Kaolin by PRL-VAc-DMC was systematically analyzed from the perspective of muti-interface interactions. This paper is of great significance for the comprehensive utilization of pulp reject and provides new insights into the flocculation mechanism at the molecular scale.
Collapse
Affiliation(s)
- Chenxu Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Haijiao Xie
- Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| |
Collapse
|
2
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
3
|
Shah SWA, Xu Q, Ullah MW, Zahoor, Sethupathy S, Morales GM, Sun J, Zhu D. Lignin-based additive materials: A review of current status, challenges, and future perspectives. ADDITIVE MANUFACTURING 2023; 74:103711. [DOI: 10.1016/j.addma.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
4
|
Wu W, Zhao Y, Qi J, Li C, Fang J, Xu B, Lyu G, Li G, Li H. An amphiphilic flocculant with a lignin core for efficient separation of suspended solids. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
6
|
Salaghi A, Diaz-Baca JA, Fatehi P. Enhanced flocculation of aluminum oxide particles by lignin-based flocculants in dual polymer systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116999. [PMID: 36516704 DOI: 10.1016/j.jenvman.2022.116999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Lignin is an abundant phenolic polymer produced vastly in pulping processes that could be further valorized. In this work, anionic (AKLs) and cationic (CKLs) lignin-based polymers were made by polymerizing kraft lignin (KL) with acrylic acid (AA) or [2-(methacryloyloxy) ethyl] trimethyl-ammonium chloride (METAC), respectively. In the polymerization reactions, various molar ratios of AA or METAC to KL were applied to produce AKLs and CKLs with different characteristics. The produced AKLs and CKLs were used in single and dual systems to flocculate aluminum oxide in suspension. To assess the interaction of these lignin-based polymers with the aluminum oxide particles; the zeta potential, adsorption, and flocculation of the colloidal systems were evaluated comprehensively. The flocculation performance of the lignin-derived polymers was compared with that of the homopolymers of AA and METAC (PAA and PMETAC) and commercially used flocculants. In single polymer systems, among the anionic synthesized polymers and homopolymers, KL-A4 (an AKL) was the best flocculant for the aluminum oxide suspensions owing to its largest molecular weight (330 × 103 g/mol) and highest charge density (-4.2 mmol/g). Remarkably, when KL-A4 and KL-C4 (the CKL with the highest molecular weight and charge density) were used subsequently in a dual polymer system, a larger adsorbed mass and a more viscous adlayer were formed than those of single polymer systems on the surface of aluminum oxide particles. The synergy between KL-A4 and KL-C4 was even stronger than that between homopolymers, which led to more significant adsorption on the aluminum oxide surface and, consequently, more efficient flocculation, producing larger (22 μm) and stronger flocs, regardless of the agitation intensity used in the systems.
Collapse
Affiliation(s)
- Ayyoub Salaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Jonathan A Diaz-Baca
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
7
|
Liu Q, Tan Z, Zheng D, Qiu X. pH-responsive magnetic Fe 3O 4/carboxymethyl chitosan/aminated lignosulfonate nanoparticles with uniform size for targeted drug loading. Int J Biol Macromol 2023; 225:1182-1192. [PMID: 36423809 DOI: 10.1016/j.ijbiomac.2022.11.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
In order to improve the effect of anti-tumor drugs, a magnetic delivery system for targeted drug was reported. Firstly, aminated lignosulfonate (ALS) and carboxymethyl chitosan (CMCS) were used to fabricate nano Fe3O4 to obtain pH-responsive magnetic Fe3O 4 /CMCS/ALS nanoparticles. Then the nanoparticles were loaded with doxorubicin hydrochloride (DOX), realizing the targeted delivery and controlled release of anti-tumor drugs. It was found that the amount of crosslinking agent and emulsifier were the key factors affecting the morphology and size of the magnetic nanoparticles. Under optimized conditions, the particle size was about 79.9-169.9 nm, exhibiting excellent pH responsiveness. When the drug-to-material ratio was 11:10, the DOX loading rate and the encapsulation rate of the nanoparticles was 48.68 % and 86.23 %. While the Fe3O4 /CMCS/ALS-DOX particles could release 63.14 %, 56.71 %, and 14.28 % of DOX at pH 4.0, 5.3, and 7.4, respectively. The results showed that the Fe3O4 /CMCS/ALS particles exhibited excellent drug loading and release behavior based on the pH responsiveness, which could be described by Langmuir adsorption model and Fick's law of diffusion respectively. MTT assay and Live/dead staining experiments also showed that the drug-loaded particles had obvious growth inhibition on cancer cells.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenrong Tan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dafeng Zheng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Xiong T, Jia L, Li Q, Zhang Y, Zhu W. Highly efficient adsorptive extraction of uranium from wastewater by novel kaolin aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156916. [PMID: 35753449 DOI: 10.1016/j.scitotenv.2022.156916] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
An environment-friendly, low-cost and efficient kaolin aerogel adsorbent (named as KLA) was synthesized via a freeze-drying-calcination method to solve the defect of low uranium removal rate for kaolin (KL). The removal rate of uranium on KLA reached 90.6 %, which was much higher than that of KL (69.2 %) (C0 = 10 mg L-1, t = 24 h, pH = 5.0, T = 298 K and m/V = 1.0 g L-1). The uranium removal behavior on KLA was satisfied with Pseudo-second-order and Langmuir model, which meant that the uranium ions were immobilized on the surface of KLA via chemical reaction. Meanwhile, high temperature was in favor of the removal of uranium on KLA, indicating that the removal process was a spontaneous endothermic reaction. Compared with KL, KLA also presented better cycle ability and its removal rate of uranium was up to 80.5 % after three cycles, which was still higher than that of KL at the first cycle (74.5 %). On basis of the results of SEM, XRD, FT-IR and XPS, it could be concluded that uranium ions were adsorbed by KLA via complexation. Hence, KLA could be regarded as a feasible candidate for the removal of uranium from aqueous solution.
Collapse
Affiliation(s)
- Ting Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qichen Li
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
9
|
Wang L, Li D, Li X, Liang H, Yue W, Wang L, Pan Y, Huang Y. Recirculation of activated sludge for coagulant synthesis under hydrothermal conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66519-66535. [PMID: 35503154 DOI: 10.1007/s11356-022-20490-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
A hypothesis was proposed that the activated sludge was converted into hydrochar full of phenolic hydroxyl and then was made into coagulant by graft copolymerization. The results show that under the addition of HCl, the content of phenolic hydroxyl on the surface of hydrochar (SBC) under hydrothermal conditions increased sharply, up to 1.586 mmol/g, showing that HCl dosage of 0.10 g/g dry sludge and holding time of 4 h was recommended. Under graft copolymerization with the addition of DMC, the coagulant was synthesized. Based on the analysis by FTIR, XPS, zeta potential, etc., the possible synthesis route of coagulant from SBC was that phenolic hydroxyl on SBC was activated by the initiator and then the polymerization between SBC and DMC was triggered. The optimal grafting conditions are gotten. It was named as SBCHCl0.10 g, 4 h-g-DMC0.7. The removal by SBCHCl0.10 g, 4 h-g-DMC0.7 on COD and turbidity in domestic wastewater is up to 69% and 93%, respectively. The component of COD indicated that almost all particulate COD and most of colloidal COD are removed. On the contrary, the removal on dissolved COD can be neglected. Most of NH3-N and P is kept in the wastewater. This is in favor of subsequent reuse and biological treatment.
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China.
| | - Xueying Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Hui Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Wei Yue
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Lingzhi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.1 Kerui Road, Hi-tech Development District, No.99 Xuefu Road, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
A scalable and simple lignin-based polymer for ultra-efficient flocculation and sterilization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Molaei N, Shoaib M, Forster J, Khan S, Wani OB, Bobicki ER. Surface interaction between phyllosilicate particles and sustainable polymers in flotation and flocculation. RSC Adv 2022; 12:3708-3715. [PMID: 35425401 PMCID: PMC8979336 DOI: 10.1039/d1ra07928j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Non-renewable chemical reagents are commonly used as dispersants or flocculants of phyllosilicate clay particles in several industrial fields such as water/wastewater treatment, food production, papermaking, and mineral processing. However, environmentally benign reagents are highly desired due to the non-biodegradability and negative impacts of synthetic reagents on aquatic life. In this work, the dispersion and flocculation behavior of sustainable polymers (anionic and cationic biopolymers) sourced from proteins and polysaccharides were studied in serpentine phyllosilicate suspensions using the following bench-scale tests: zeta potential, microflotation, settling and turbidity, and isotherm adsorption using total organic carbon. The anionic polysaccharide-based biopolymer pectin acted as a switchable biopolymer for serpentine. That is, it could switch from being an efficient flocculant at pH 7 to an effective dispersant at pH 10. Biopolymers with different backbones have the potential to disperse the phyllosilicate particles in flotation or release the water trapped within tailing particles in flocculation and could decrease environmental problems of conventional reagents.![]()
Collapse
Affiliation(s)
- Nahid Molaei
- Department of Materials Science and Engineering, University of Toronto Toronto ON Canada
| | - Mohammad Shoaib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON Canada
| | - John Forster
- Department of Materials Science and Engineering, University of Toronto Toronto ON Canada
| | - Shaihroz Khan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON Canada
| | - Omar Bashir Wani
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON Canada
| | - Erin R Bobicki
- Department of Materials Science and Engineering, University of Toronto Toronto ON Canada .,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON Canada
| |
Collapse
|
12
|
Hydrodynamic alignment and self-assembly of cationic lignin polymers made of architecturally altered monomers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Sabaghi S, Alipoormazandarani N, Gao W, Fatehi P. Dual lignin-derived polymeric systems for hazardous ion removals. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125970. [PMID: 33975163 DOI: 10.1016/j.jhazmat.2021.125970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The functionalization of lignin derivatives for ion removals is a promising method to expedite their use in treating industrial wastewater. In this work, kraft lignin (KL) was polymerized with [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM) or acrylic acid (AA) in an acidic aqueous suspension system to produce cationic and anionic water-soluble lignin polymers with high molecular weights. Then, the interaction of soluble ions and KL-METAM and KL-AA was investigated using a Quartz crystal microbalance (QCM) and a vertical scan analyzer (VSA). The QCM, X-ray photoelectron spectroscopy (XPS) and contact angle measurement results showed that the adsorption efficiency of KL-AA was better than KL-METAM for ions due to the stronger electrostatic interaction, cationic π-interaction, and chelation between ions and KL-AA. Based on adsorption, sedimentation, and aggregate size analyses, the dual polymer systems of KL-AA/KL-METAM were more effective than KL-METAM/KL-AA in removing ions. Among Zn2+, Cu2+, and K+; Zn2+ interacted more effectively with polymers in all scenarios because it has higher reactivity for interacting with other elements. As the efficiency of ion removals was more remarkable than past reported findings, the system of KL-AA/KL-METAM may be a promising alternative for the removal of dissolved ions from solutions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Niloofar Alipoormazandarani
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Weijue Gao
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1.
| |
Collapse
|
14
|
Zhang J, Zhao X, Kong Q, Wang X, Lou T. Preparation of chitosan/DADMAC/lignin terpolymer and its application of dye wastewater flocculation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03863-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Mao S, Xu X, Zhang L, Bai B, Hu N, Wang H. Methylated mud snail protein as a bio-flocculant for high turbidity wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:737-751. [PMID: 34388131 DOI: 10.2166/wst.2021.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The authors reported a potential candidate methylated mud snail protein (MeMsp) as an effective and eco-friendly flocculant to treat the high turbidity wastewater. MeMsp was obtained by extraction of mud snail protein (Msp) through isoelectric precipitation (PSC-IP) and then methylated via the esterification with side-chain carboxyl. Structural characterization of FT-IR, zeta potential and elemental analysis were carried out and further confirmed the successful of the methylation. Flocculation experiments with kaolin suspension simulated wastewater indicated that MeMsp-24 displayed more excellent flocculation efficiency at a low dosage. At the optimum dosage 27 mg/L, the maximum clarification efficiency of MeMsp-24 was 97.46% under pH 7.0. Furthermore, MeMsp-24 exhibited a wide flocculation window in the pH range 1.0-9.0, and faster sedimentation velocity and larger flocs size. In addition, MeMsp-24 exhibited 92.12% clarification efficiency in treating railway tunnel construction effluent. The flocculation kinetic and mechanism analysis revealed that the most effective particle collision occurred at the optimal dosage, with charge neutralization and adhesion playing irreplaceable roles in different environments, respectively. Therefore, through extraction and methylation modification, MeMsp could be a promising eco-friendly flocculant for high turbidity wastewater treatment.
Collapse
Affiliation(s)
- Shaohui Mao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an 710054, Shaanxi, China
| | - Xiaohui Xu
- Department of Chemical and Biological Engineering Princeton University, Princeton, New Jersey 08544, USA
| | - Linjiang Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an 710054, Shaanxi, China
| | - Bo Bai
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, School of Water and Environment, Chang'an University, No. 126, Yanta Road, Xi'an 710054, Shaanxi, China; Department of Chemical and Biological Engineering Princeton University, Princeton, New Jersey 08544, USA; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| |
Collapse
|
16
|
Blockx J, Verfaillie A, Deschaume O, Bartic C, Muylaert K, Thielemans W. Glycine betaine grafted nanocellulose as an effective and bio-based cationic nanocellulose flocculant for wastewater treatment and microalgal harvesting. NANOSCALE ADVANCES 2021; 3:4133-4144. [PMID: 36132828 PMCID: PMC9417620 DOI: 10.1039/d1na00102g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/11/2021] [Indexed: 06/02/2023]
Abstract
Flocculation is a widely used technology in industry including for wastewater treatment and microalgae harvesting. To increase the sustainability of wastewater treatment, and to avoid contamination of the harvested microalgal biomass, there is a need for bio-based flocculants to replace synthetic polymer flocculants or metal salt coagulants. We developed the first cellulose nanocrystalline flocculant with a grafted cationic point charge, i.e. glycine betaine (i.e. N,N,N-trimethylglycine) grafted cellulose nanocrystals (CNCs) effective for the flocculation of kaolin (a model system for wastewater treatment), the freshwater microalgae Chlorella vulgaris, and the marine microalgae Nannochloropsis oculata. We successfully grafted glycine betaine onto CNCs using a one-pot reaction using a tosyl chloride activated esterification reaction with a degree of substitution ranging from 0.078 ± 0.003 to 0.152 ± 0.002. The degree of substitution is controlled by the reaction conditions. Flocculation of kaolin (0.5 g L-1) required a dose of 2 mg L-1, a comparable dose to commercial polyacrylamide-based flocculants. Flocculation was also successful for freshwater as well as marine microalgae (biomass concentration about 300 mg L-1 dry matter), although the flocculation efficiency of the latter remained below 80%. The dose to induce flocculation (DS = 0.152 ± 0.002) was 20 mg L-1 for the freshwater Chlorella vulgaris and 46 mg L-1 for the marine Nannochloropsis oculata, comparable to other bio-based flocculants such as chitosan or TanFloc.
Collapse
Affiliation(s)
- Jonas Blockx
- Sustainable Materials Laboratory, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk Etienne Sabbelaan 53 box 7659 8500 Kortrijk Belgium
- Laboratory for Aquatic Biology, KU Leuven, Campus Kulak Kortrijk Etienne Sabbelaan 53 box 7659 8500 Kortrijk Belgium
| | - An Verfaillie
- Sustainable Materials Laboratory, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk Etienne Sabbelaan 53 box 7659 8500 Kortrijk Belgium
- Laboratory for Aquatic Biology, KU Leuven, Campus Kulak Kortrijk Etienne Sabbelaan 53 box 7659 8500 Kortrijk Belgium
| | - Olivier Deschaume
- Soft Matter and Biophysics Unit, Department of Physics and Astronomy, KU Leuven Celestijnenlaan 200 D 3001 Leuven Belgium
| | - Carmen Bartic
- Soft Matter and Biophysics Unit, Department of Physics and Astronomy, KU Leuven Celestijnenlaan 200 D 3001 Leuven Belgium
| | - Koenraad Muylaert
- Laboratory for Aquatic Biology, KU Leuven, Campus Kulak Kortrijk Etienne Sabbelaan 53 box 7659 8500 Kortrijk Belgium
| | - Wim Thielemans
- Sustainable Materials Laboratory, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk Etienne Sabbelaan 53 box 7659 8500 Kortrijk Belgium
| |
Collapse
|
17
|
Zhang J, Guan G, Lou T, Wang X. Preparation and Flocculation Property of Cationic Chitosan‐DADMAC‐β‐Cyclodextrin Copolymer. STARCH-STARKE 2021. [DOI: 10.1002/star.202100047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jia Zhang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Guohao Guan
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tao Lou
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Xuejun Wang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| |
Collapse
|
18
|
Hermosillo-Ochoa E, Picos-Corrales LA, Licea-Claverie A. Eco-friendly flocculants from chitosan grafted with PNVCL and PAAc: Hybrid materials with enhanced removal properties for water remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Abstract
A critical review on the synthesis, characterization, and modeling of polymer grafting is presented. Although the motivation stemmed from grafting synthetic polymers onto lignocellulosic biopolymers, a comprehensive overview is also provided on the chemical grafting, characterization, and processing of grafted materials of different types, including synthetic backbones. Although polymer grafting has been studied for many decades—and so has the modeling of polymer branching and crosslinking for that matter, thereby reaching a good level of understanding in order to describe existing branching/crosslinking systems—polymer grafting has remained behind in modeling efforts. Areas of opportunity for further study are suggested within this review.
Collapse
|
20
|
Abstract
This review examines recent strategies, challenges, and future opportunities in preparing high-performance polymeric materials from lignin and its derivable compounds.
Collapse
Affiliation(s)
- Garrett F. Bass
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
| | - Thomas H. Epps
- Department of Chemical and Biomolecular Engineering
- University of Delaware
- Newark
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
21
|
Gharehkhani S, Gao W, Fatehi P. In-Situ Rheological Studies of Cationic Lignin Polymerization in an Acidic Aqueous System. Polymers (Basel) 2020; 12:E2982. [PMID: 33327509 PMCID: PMC7764959 DOI: 10.3390/polym12122982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/31/2023] Open
Abstract
The chemistry of lignin polymerization was studied in the past. Insights into the rheological behavior of the lignin polymerization system would provide crucial information required for tailoring lignin polymers with desired properties. The in-situ rheological attributes of lignin polymerization with a cationic monomer, [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC), were studied in detail in this work. The influences of process conditions, e.g., temperature, component concentrations, and shear rates, on the viscosity variations of the reaction systems during the polymerization were studied in detail. Temperature, METAC/lignin molar ratio, and shear rate increases led to the enhanced viscosity of the reaction medium and lignin polymer with a higher degree of polymerization. The extended reaction time enhanced the viscosity attributing to the larger molecular weight of the lignin polymer. Additionally, the size of particles in the reaction system dropped as reaction time was extended. The lignin polymer with a larger molecular weight and Rg behaved mainly as a viscose (tan δ > 1 or G″ > G') material, while the lignin polymer generated with smaller molecular weight and shorter Rg demonstrated strong elastic characteristics with a tan (δ) lower than unity over the frequency range of 0.1-10 rad/s.
Collapse
Affiliation(s)
| | | | - Pedram Fatehi
- Green Processes Research Centre and Biorefining Research Institute, Lakehead University, Thunder Bay, ON P7B5E1, Canada; (S.G.); (W.G.)
| |
Collapse
|
22
|
Chen N, Liu W, Huang J, Qiu X. Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. Int J Biol Macromol 2020; 146:9-17. [DOI: 10.1016/j.ijbiomac.2019.12.245] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022]
|
23
|
Wang Z, Ganewatta MS, Tang C. Sustainable polymers from biomass: Bridging chemistry with materials and processing. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101197] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Sabaghi S, Fatehi P. Phenomenological Changes in Lignin Following Polymerization and Its Effects on Flocculating Clay Particles. Biomacromolecules 2019; 20:3940-3951. [PMID: 31498610 DOI: 10.1021/acs.biomac.9b01016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic kraft lignin (CKL) macromolecules were produced via polymerizing kraft lignin (KL) with [2-(acryloyloxy)ethyl]trimethylammonium chloride (ATAC) or [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM). Despite slightly different charge densities (2.3-2.5 mmol/g) of CKL, lignin-METAM (KL-METAM) had a significantly larger molecular weight and radius of gyration. A correlation was observed between the structure of CKLs and their impacts on the surface hydrophilicity of kaolin particles. In interacting with kaolin particles, KL-METAM generated larger and stronger flocs with looser structures than did KL-ATAC. Compared to ATAC, METAM had one additional methyl substituent on its structure, which provided fundamental evidence on how a small group (i.e., a methyl group) on the structure of a cationic monomer can have a substantial influence on its polymerization with lignin and subsequently on the efficiency of the induced macromolecule as a flocculant in a kaolin suspension system.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department , Lakehead University , 955 Oliver Road , Thunder Bay , ON , Canada P7B 5E1
| |
Collapse
|
25
|
Hou T, Du H, Yang Z, Tian Z, Shen S, Shi Y, Yang W, Zhang L. Flocculation of different types of combined contaminants of antibiotics and heavy metals by thermo-responsive flocculants with various architectures. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Ganewatta MS, Lokupitiya HN, Tang C. Lignin Biopolymers in the Age of Controlled Polymerization. Polymers (Basel) 2019; 11:E1176. [PMID: 31336845 PMCID: PMC6680560 DOI: 10.3390/polym11071176] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/17/2022] Open
Abstract
Polymers made from natural biomass are gaining interest due to the rising environmental concerns and depletion of petrochemical resources. Lignin isolated from lignocellulosic biomass is the second most abundant natural polymer next to cellulose. The paper pulp process produces industrial lignin as a byproduct that is mostly used for energy and has less significant utility in materials applications. High abundance, rich chemical functionalities, CO2 neutrality, reinforcing properties, antioxidant and UV blocking abilities, as well as environmental friendliness, make lignin an interesting substrate for materials and chemical development. However, poor processability, low reactivity, and intrinsic structural heterogeneity limit lignins' polymeric applications in high-performance advanced materials. With the advent of controlled polymerization methods such as ATRP, RAFT, and ADMET, there has been a great interest in academia and industry to make value-added polymeric materials from lignin. This review focuses on recent investigations that utilize controlled polymerization methods to generate novel lignin-based polymeric materials. Polymers developed from lignin-based monomers, various polymer grafting technologies, copolymer properties, and their applications are discussed.
Collapse
Affiliation(s)
- Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
- Ingevity Corporation, 5255 Virginia Avenue, North Charleston, SC 29406, USA.
| | - Hasala N Lokupitiya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
27
|
A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Preparation and flocculation properties of biodegradable konjac glucomannan-grafted poly(trimethyl allyl ammonium chloride). Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02836-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Meng Y, Lu J, Cheng Y, Li Q, Wang H. Lignin-based hydrogels: A review of preparation, properties, and application. Int J Biol Macromol 2019; 135:1006-1019. [PMID: 31154040 DOI: 10.1016/j.ijbiomac.2019.05.198] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
Abstract
Lignin as the second most abundant and the only polyaromatics-contained bio-polymer in plant has been most studied for various applications. In the past decade, the utilization of lignin for value-added materials has been extensively sought after since lignin valorization represents one of the main challenging issues of the paper industry and lignocellulosic biorefinery. Among these researches, making lignin into hydrogels has great potential for upgrading lignin into functional materials. In this review, lignin hydrogel is wrapped up with preparation strategies, properties and applications. The major cross-linking strategies to synthesize lignin-based hydrogels were reviewed first, including monomers copolymerization, crosslinking of monomers with reactive polymer precursors and polymer-polymer crosslinking. Two most important properties of mechanical and porous structures of lignin hydrogel were then discussed. More importantly, we extensively reviewed current applications of lignin hydrogel, including absorption, controlled release, smart materials for stimuli sensitive, biosensors and electrodes. These applications have paved avenues for lignin valorization. Overall, this paper covers recent advancements regarding lignin-based hydrogel and represents a timely review of this promising material.
Collapse
Affiliation(s)
- Yi Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Qiang Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840, USA.
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
30
|
Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int J Biol Macromol 2018; 126:376-384. [PMID: 30593808 DOI: 10.1016/j.ijbiomac.2018.12.234] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022]
Abstract
Isolation of earth abundant biopolymer, Lignin, from Dendrocalamus sinicus and their structural properties were investigated to achieve its large-scale practical applications in value-added products. Two lignin fractions (MWL, DSL) were isolated with successive treatments of dioxane and dimethylsulfoxide (DMSO) from dewaxed and ball milled bamboo (D. sinicus) sample. The two-step treatments yielded 52.1% lignin based on the total lignin content in the dewaxed bamboo sample. Spectroscopy analyses indicated that the isolated bamboo lignin was a typical grass lignin, consisting of p-hydroxyphenyl, guaiacyl, and syringyl units. The major interunit linkages presented in the obtained bamboo lignin were β-O-4' aryl ether linkages, together with lower amounts of β-β', β-5', and β-1' linkages. The tricin was detected to be linked to lignin polymer through the β-O-4' linkage in the bamboo. In addition, phenyl glycoside and benzyl ether lignin-carbohydrate complexes (LCC) linkages were clearly detected in bamboo (D. sinicus), whereas the γ-ester LCC linkages were ambiguous due to the overlapping NMR signals with other substructures. The detailed structural properties of the obtained lignin fraction together with the light-weight will benefit efficient utilization of natural polymers as a possibly large-scale bio-based precursor for making polymeric materials, biochemicals, functional carbon and biofuels, and multifunctional polymer nanocomposites.
Collapse
|