1
|
Li M, Ke S, Yang X, Shen L, Yang MQ. S-scheme homojunction of 0D cubic/2D hexagonal ZnIn 2S 4 for efficient photocatalytic reduction of nitroarenes. J Colloid Interface Sci 2024; 674:547-559. [PMID: 38943915 DOI: 10.1016/j.jcis.2024.06.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The targeted conversion of toxic nitroarenes to corresponding aminoarenes presents significant promise in simultaneously addressing environmental pollution concerns and producing value-added fine chemicals. In this study, we synthesize a 0D/2D ZnIn2S4 homojunction (CH-ZnIn2S4) by in situ growth of cubic ZnIn2S4 (C-ZnIn2S4) quantum dots onto the surface of ultrathin hexagonal ZnIn2S4 (H-ZnIn2S4) nanosheets for photocatalytic reduction of nitroarenes to aminoarenes using water as a hydrogen donor. The optimal performance of photocatalytic nitro reduction over the 0D/2D CH-ZnIn2S4 homojunction reaches 96.1% within 20 min of visible light irradiation, which is 2.45 and 1.52 times than that of C-ZnIn2S4 (39.3%) and H-ZnIn2S4 (63.3%), respectively. The improved photocatalytic performance can be attributed to the formation of a step-type S-scheme homojunction, characterized by identity chemical composition and natural lattice matching. The configuration enables continuous band bending and a low energy barrier of charge transportation, benefiting the charge transfer across the interface while maximizing their redox capabilities. Furthermore, the 2D structure of H-ZnIn2S4 nanosheets offers abundant surface sites to immobilize the 0D C-ZnIn2S4 that provides ample exposed active sites with low overpotential for HER, thereby ensuring high hydrogenation reduction activity of nitroarenes. The study is expected to inspire further interest in the reasonable design of homojunction structures for efficient and sustainable photocatalytic redox reactions.
Collapse
Affiliation(s)
- Mengqing Li
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China
| | - Suzai Ke
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China
| | - Xuhui Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China
| | - Lijuan Shen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| |
Collapse
|
2
|
Ramli NN, Othman AR, Kurniawan SB, Abdullah SRS, Hasan HA. Metabolic pathway of Cr(VI) reduction by bacteria: A review. Microbiol Res 2023; 268:127288. [PMID: 36571921 DOI: 10.1016/j.micres.2022.127288] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Zhang H, Luo YH, Chen FY, Geng WY, Lu XX, Zhang DE. Enhancing the spatial separation of photogenerated charges on Fe-based MOFs via structural regulation for highly-efficient photocatalytic Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129875. [PMID: 36067554 DOI: 10.1016/j.jhazmat.2022.129875] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Although iron-based metal-organic frameworks (Fe-MOFs) have displayed the photocatalytic activity, there is still abundant room for improving their photocatalytic performance through tuning the structures. In this work, four novel iron-based metal-organic frameworks (Fe-MOFs) were successfully synthesized via ligand modulation for better photocatalytic Cr(VI) reduction, in which MTBDC-TPT-Fe had the highest catalytic activity (MTBDC = 2,5-bis(methylthio)terephthalic acid, TPT = 2,4,6-tri(4-pyridyl)- 1,3,5-triazine). The boosted photocatalytic reduction may be mainly ascribed to the enhanced electron push-pull effect between iron-oxygen clusters and organic ligands. The introduction of -SCH3 groups can enhance the light absorption and donate electrons to iron center under visible-light irradiation, meanwhile the separation and transfer of photogenerated charge carriers can be enhanced resulting from the electron-pulling effect when introducing TPT. Moreover, enhanced specific surface areas and positive skeleton charge due to the introduction of TPT may improve active sites exposure and Cr(VI) adsorption, thereby enhancing photocatalytic Cr(VI) reduction activity without the presence of any assisted scavengers. In addition, the photocatalytic mechanism (i.e. active species) were also studied and presented. This work confirmed an effective structure-performance regulation strategy on Fe-MOFs for photocatalytic Cr(VI) reduction.
Collapse
Affiliation(s)
- Hao Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China.
| | - Yu-Hui Luo
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China.
| | - Feng-Yu Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China.
| | - Wu-Yue Geng
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China.
| | - Xin-Xin Lu
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, PR China.
| | - Dong-En Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, PR China.
| |
Collapse
|
4
|
Xia W, Zhao F, Fang P, An M, Zhu J, Cheng K, Xia M. Magnetic Fe3O4@C nanoparticles separated from cold rolling mill sludge for 4-nitrophenol reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Lv Z, Liu S, Liu Y, Liu P, Fang M, Tan X, Xu W, Kong M, Wang X. Construction of Ni-based N-doped mesoporous carbon sphere for efficiently catalytic dichromate reduction with HCOOH at room temperature. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Antony AM, Kandathil V, Kempasiddaiah M, Shwetharani R, Balakrishna RG, El-Bahy SM, Hessien MM, Mersal GA, Ibrahim MM, Patil SA. Graphitic carbon nitride supported palladium nanocatalyst as an efficient and sustainable catalyst for treating environmental contaminants and hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Bashir MS, Ramzan N, Najam T, Abbas G, Gu X, Arif M, Qasim M, Bashir H, Shah SSA, Sillanpää M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154475. [PMID: 35278543 DOI: 10.1016/j.scitotenv.2022.154475] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The ever increasing concentration of toxic and carcinogenic hexavalent chromium (Cr (VI)) in various environmental mediums including water-bodies due to anthropogenic activities with rapid civilization and industrialization have become the major issue throughout the globe during last few decades. Therefore, developing new strategies for the treatment of Cr(VI) contaminated wastewaters are in great demand and have become a topical issue in academia and industry. To date, various techniques have been used for the remediation of Cr(VI) contaminated wastewaters including solvent extraction, adsorption, catalytic reduction, membrane filtration, biological treatment, coagulation, ion exchange and photo-catalytic reduction. Among these methods, the transformation of highly toxic Cr(VI) to benign Cr(III) catalyzed by metallic nanoparticles (M-NPs) with reductant has gained increasing attention in the past few years, and is considered to be an effective approach due to the superior catalytic performance of M-NPs. Thus, it is a timely topic to review this emerging technique for Cr(VI) reduction. Herein, recent development in synthesis of M-NPs based non-supported, supported, mono-, bi- and ternary M-NPs catalysts, their characterization and performance for the reduction of Cr(VI) to Cr(III) are reviewed. The role of supporting host to stabilize the M-NPs and leading to enhance the reduction of Cr(VI) are discussed. The Cr(VI) reduction mechanism, kinetics, and factors affecting the kinetics are overviewed to collect the wealthy kinetics data. Finally, the challenges and perspective in Cr(VI) reduction catalyzed by M-NPs are proposed. We believe that this review will assist the researchers who are working to develop novel M-NPs catalysts for the reduction of Cr(VI).
Collapse
Affiliation(s)
- Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Naveed Ramzan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Tayyaba Najam
- Institute for Advanced Study and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Xiangling Gu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Muhammad Arif
- Department of Chemical Engineering, University of Engineering & Information Technology Abu Dhabi Road, Rahim Yar Khan, 64200 Pakistan
| | - Muhammad Qasim
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Humaira Bashir
- Department of Botany, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan
| | - Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China.
| |
Collapse
|
8
|
Platinum and palladium complexes with tetrazole ligands: Synthesis, structure and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Bashir MS. Benign fabrication process of hierarchal porous polyurea microspheres with tunable pores and porosity: Their Pd immobilization and use for hexavalent chromium reduction. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Lighvan ZM, Khonakdar HA, Heydari A, Šlouf M, Akbari A. A versatile β-cyclodextrin and N-heterocyclic palladium complex bi-functionalized iron oxide nanoadsorbent for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55419-55432. [PMID: 34137007 DOI: 10.1007/s11356-021-14814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
By industrialization, management of water resources is known as one of the most challenging issues for human society due to the presence of various contaminants such as oil, azo dyes, and micropollutants in water. The treatment of wastewaters containing more than one type of pollutants via a single-step process cannot be performed by a simple adsorption process. In this study, by combining the advantages of superparamagnetic iron oxide, carboxymethyl-β-cyclodextrin polymer, and N-heterocyclic palladium complex, a versatile bi-functionalized iron oxide nanoadsorbent [Fe3O4@CM-β-CDP@Tet-Pd] was fabricated for the capture of toxic dyes in wastewater. The structure of nanoadsorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibrating sample magnetometer analysis. Afterward, the catalytic activity of the synthesized nanoadsorbent was examined in the aqueous solution of sodium borohydride as the reducing agent for rhodamine B, methylene blue, 4-nitrophenol, Metanil yellow, and Eosin Y. The UV-vis spectroscopy was used to monitor the catalytic activity of the [Fe3O4@CM-β-CDP@Tet-Pd] in an aqueous medium. The nanoadsorbent was successfully recovered and re-used six times, without remarkable loss in its catalytic activity. These results showed that the combination of iron oxide nanoparticles with carboxymethyl-β-cyclodextrin polymer provides a promising well-performed and easily recyclable nanoadsorbent for dye uptake and wastewater treatment.
Collapse
Affiliation(s)
- Zohreh Mehri Lighvan
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia.
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
- Leibniz-Institut für Polymerforschung Dresden e. V, Hohe Straße 6, 01069, Dresden, Germany.
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague, Czech Republic
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran
| |
Collapse
|
11
|
Nasrollahzadeh M, Nezafat Z, Bidgoli NSS, Shafiei N. Use of tetrazoles in catalysis and energetic applications: Recent developments. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Bashir MS, Jiang X, Yang X, Kong XZ. Porous Polyurea Supported Pd Catalyst: Easy Preparation, Full Characterization, and High Activity and Reusability in Reduction of Hexavalent Chromium in Aqueous System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xingjie Yang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
13
|
Jiang X, Lv W, Guo J, Li Y, Liu H, Han Y, Xu J, Wang L. Flower-like CaMoO4: Eu3+/AgBr composites for nitroaromatic compounds sensing and its catalytic activity. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Kempasiddaiah M, Kandathil V, Dateer RB, Baidya M, Patil SA, Patil SA. Efficient and recyclable palladium enriched magnetic nanocatalyst for reduction of toxic environmental pollutants. J Environ Sci (China) 2021; 101:189-204. [PMID: 33334515 DOI: 10.1016/j.jes.2020.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 06/12/2023]
Abstract
In this paper, highly stable, powerful, and recyclable magnetic nanoparticles tethered N-heterocyclic carbene-palladium(II) ((CH3)3-NHC-Pd@Fe3O4) as magnetic nanocatalyst was successfully synthesized from a simplistic multistep synthesis under aerobic conditions through easily available low-cost chemicals. Newly synthesized (CH3)3-NHC-Pd@Fe3O4 magnetic nanocatalyst was characterized from various analytical tools and catalytic potential of the (CH3)3-NHC-Pd@Fe3O4 magnetic nanocatalyst was studied for the catalytic reduction of toxic 4-nitrophenol (4-NP), hexavalent chromium (Cr(VI)), Methylene Blue (MB) and Methyl Orange (MO) at room temperature in aqueous media. UV-Visible spectroscopy was employed to monitor the reduction reactions. New (CH3)3-NHC-Pd@Fe3O4 magnetic nanocatalyst exhibited excellent catalytic activity for the reduction of toxic environmental pollutants. Moreover, (CH3)3-NHC-Pd@Fe3O4 magnetic nanocatalyst could be easily and rapidly separated from the reaction mixture with the help of an external magnet and recycled minimum five times in reduction of 4-NP, MB, MO and four times in Cr(VI) without significant loss of catalytic potential and remains stable even after reuse.
Collapse
Affiliation(s)
- Manjunatha Kempasiddaiah
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Vishal Kandathil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
| |
Collapse
|
15
|
Baran T, Menteş A. Production of palladium nanocatalyst supported on modified gum arabic and investigation of its potential against treatment of environmental contaminants. Int J Biol Macromol 2020; 161:1559-1567. [DOI: 10.1016/j.ijbiomac.2020.07.321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
|
16
|
Dorosti M, Baghdadi M, Nasimi S. A continuous electroreduction cell composed of palladium nanocatalyst immobilized on discarded cigarette filters as an active bed for Cr(VI) removal from groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110409. [PMID: 32250883 DOI: 10.1016/j.jenvman.2020.110409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
In this research, a unique continuous electrochemical cell was designed and applied for the disinfection of groundwater and simultaneous Cr(VI) reduction and Cr(III) precipitation. Discarded cigarette filters (DCFs) were utilized as an efficient bed for palladium nanoparticles (PdNPs) immobilization located between porous anode and cathode made of graphite felt. The characterization of the bed was performed using FE-SEM, EDS, BET, and FT-IR analysis. The results confirmed the distribution of palladium nanoparticles on the surface of DCFs. The proposed design for electrochemical cell obviated the need to divide the anolyte and catholyte because the anode was located at the outlet of the cell, thereby avoiding the reaction between hydrogen radicals produced on the surface of PdNPs and oxygen and chlorine produced in the anode. The hydrogen gas produced in the cathode was converted to hydrogen radicals, acting as the most prominent species for the reduction. Hydroxide ions produced in the cathode increased the pH of the solution between electrodes, resulting in the precipitation of Cr (III) with an efficiency of 96%. Furthermore, free chlorine at the concentration of 1 mg L-1 was generated through chloride ion oxidation in the anode, which can be effective for disinfection. The effect of initial Cr (VI) concentration (C0), flow rate (Q), and current (I) was investigated, and the maximum removal efficiency (99.7%) was observed at the flow rate of 5 mL min-1 and current of 0.05 A, respectively. No interference ensued from the various coexisting ions in groundwater. The findings of this study suggested that the proposed electrochemical cell is capable of in-situ total chromium removal and free chlorine production in groundwater simultaneously.
Collapse
Affiliation(s)
- Mostafa Dorosti
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Majid Baghdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Sorour Nasimi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
Wang YX, Ma S, Huang MN, Yang H, Xu ZL, Xu Z. Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115700] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Nasrollahzadeh M, Sajjadi M, Shokouhimehr M, Varma RS. Recent developments in palladium (nano)catalysts supported on polymers for selective and sustainable oxidation processes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Nasrollahzadeh M, Maryami M, Sajjadi M, Mehdipour E. Synthesis, characterization and catalytic performance of Pd(II) complex immobilized on Fe
3
O
4
@SiO
2
nanoparticles for the ligand‐free cyanation of aryl halides using K
4
Fe(CN)
6. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Mahboobe Maryami
- Department of Chemistry, Faculty of ScienceLorestan University Khorramabad 68137‐17133 Iran
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of ScienceUniversity of Qom Qom 37185‐359 Iran
| | - Ebrahim Mehdipour
- Department of Chemistry, Faculty of ScienceLorestan University Khorramabad 68137‐17133 Iran
| |
Collapse
|