1
|
Wang J, Qin S, Lin J, Wang Q, Li W, Gao Y. Phycobiliproteins from microalgae: research progress in sustainable production and extraction processes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:170. [PMID: 37941077 PMCID: PMC10634026 DOI: 10.1186/s13068-023-02387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/27/2023] [Indexed: 11/10/2023]
Abstract
Phycobiliproteins (PBPs), one of the functional proteins from algae, are natural pigment-protein complex containing various amino acids and phycobilins. It has various activities, such as anti-inflammatory and antioxidant properties. And are potential for applications in food, cosmetics, and biomedicine. Improving their metabolic yield is of great interest. Microalgaes are one of the important sources of PBPs, with high growth rate and have the potential for large-scale production. The key to large-scale PBPs production depends on accumulation and recovery of massive productive alga in the upstream stage and the efficiency of microalgae cells breakup and extract PBPs in the downstream stage. Therefore, we reviewed the status quo in the research and development of PBPs production, summarized the advances in each stage and the feasibility of scaled-up production, and demonstrated challenges and future directions in this field.
Collapse
Affiliation(s)
- Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qi Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Singh HM, Sharma M, Tyagi VV, Goria K, Buddhi D, Sharma A, Bruno F, Sheoran S, Kothari R. Potential of biogenic and non-biogenic waste materials as flocculant for algal biomass harvesting: Mechanism, parameters, challenges and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 337:117591. [PMID: 36996549 DOI: 10.1016/j.jenvman.2023.117591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
In this review article, waste materials (biogenic/non-biogenic) are focused as the flocculants for harvesting of algal biomass. Chemical flocculants are widely utilized for the effective harvesting of algal biomass at a commercial scale while the high cost is a major drawback. The waste materials-based flocculants (WMBF) are started to utilize as one of the cost-effective performance for dual benefits of waste minimization and reuse for sustainable recovery of biomass. The novelty of the article is articulated with the objective that presents an insight of WMBF, classification of WMBF, preparation methods of WMBF, mechanisms of flocculation, factors affecting flocculation-mechanism, challenges and future recommendations that are required for harvesting of algae. The WMBF are shown similar flocculation mechanisms and flocculation efficiencies as chemical flocculants. Thus, the utilization of waste material for the flocculation process of algal cells minimizes the waste load into the environment and transforms the waste materials into valuable resources.
Collapse
Affiliation(s)
- Har Mohan Singh
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - Mriduta Sharma
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India.
| | - Kajol Goria
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India
| | - D Buddhi
- Uttaranchal Institute of Technology, Uttaranchal University, Uttarakhand, 248007, Dehradun, India
| | - Atul Sharma
- Non-Conventional Energy Laboratory, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, UP, India
| | - Frank Bruno
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Australia
| | - Shane Sheoran
- Future Industries Institute, Mawson Lakes Campus, University of South Australia, Australia
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India.
| |
Collapse
|
3
|
Pahija E, Lee PY, Hui CW, Sin G. Modelling of Harvesting Techniques for the Evaluation of the Density of Microalgae. Appl Biochem Biotechnol 2022; 194:5992-6006. [PMID: 35867278 DOI: 10.1007/s12010-022-04070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
A better estimation of the density of cells has great relevance in the design of harvesting units. In the case of microalgae, the density is a function of the internal composition, which in turn is affected by external environmental conditions. The density of microalgae is often regarded as a constant or a generic value is retrieved from literature. This study proposes a procedure to evaluate the density of Chlorococcum sp. with simple sedimentation and centrifugation experiments coupled with the population balance equation (PBE), which is solved numerically. The density of cells is not constant; instead, it is a function of the size of particles, which in turn changes with the cells' phase of their life cycle. The calculated cellular density ranged between 1000 and 1100 kg m-3 in function of the cell size in both the sedimentation and centrifugation tests. The method can be extended to other microalgae species as well as to other types of cells.
Collapse
Affiliation(s)
- Ergys Pahija
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal, Québec, H3C 3A7, Canada.
| | - Pui Ying Lee
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Hong Kong
| | - Chi-Wai Hui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Hong Kong
| | - Gürkan Sin
- Process and Systems Engineering Research Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
4
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Singh HM, Tyagi VV, Kothari R, Azam R, Khare P, Sari A. Novel approach for harvesting of microalgal biomass using electric geyser waste material deposit as flocculant in coupling with poultry excreta leachate. BIORESOURCE TECHNOLOGY 2021; 341:125646. [PMID: 34418844 DOI: 10.1016/j.biortech.2021.125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to study the flocculation efficiency of algal biomass (Chlorella pyrenoidosa) in coupling with waste materials i.e. poultry excreta leachate by using other waste material which was obtained from deposition of scaling in electric geyser. Utilization of electric geyser waste material deposit (EGWMD) for flocculation is a novel approach because of various elements which are replica of chemical flocculants responsible for flocculation mechanism in culture medium. Flocculation process was optimized by response surface methodology and 98.21% flocculation efficiency was achieved with designed process parameters as temperature 32.5 °C, flocculant dose 275 mgL-1, pH 5 and time 30 min. The reusability of spent medium was also analyzed at 70.2% and 32.5% flocculation efficiency with two successive steps. The cellular morphology of pre-harvested and post-harvested Chlorella pyrenoidosa was also observed. EGWMD is abundant and freely available that has no application till now and can alternate of chemical flocculants.
Collapse
Affiliation(s)
- Har Mohan Singh
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - V V Tyagi
- School of Energy Management, Shri Mata Vaishno Devi University, Katra, J&K, 182320, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Rifat Azam
- Department of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P., 226025, India
| | - Puja Khare
- Crop Production and Protection Division, CIMAP, Lucknow, U.P., 226015, India
| | - Ahmet Sari
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey; King Fahd University of Petroleum and Minerals, Centers of Research Excellence, Renewable Energy Research Institute, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Xu K, Zou X, Chang W, Qu Y, Li Y. Microalgae harvesting technique using ballasted flotation: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Zou X, Xu K, Xue Y, Qu Y, Li Y. Removal of harmful algal blooms in freshwater by buoyant-bead flotation using chitosan-coated fly ash cenospheres. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29239-29247. [PMID: 32440871 DOI: 10.1007/s11356-020-09293-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Harmful algal blooms (HABs) are a growing problem worldwide, damaging human and ecosystem health. In this study, a novel buoyant-bead flotation (BBF) method using chitosan-coated fly ash cenospheres (CFACs) was developed to remove HABs in freshwater. To achieve a high removal efficiency of harmful algae (Chlorella vulgaris, Scenedesmus quadricauda, and Microcystis aeruginosa), this study investigated the effects of chitosan/fly ash ratios in CFAC composite, CFAC concentration, flotation time, and pH values on the microalgae removal. The optimized ratio of CFACs is 0.1:12, and the optimized CFAC concentration is 0.3-0.7 g L-1. However, the lower or higher ratios (0.1:4, 0.1:8, 0.1:16) result in microalgae reaching a zero-point charge too late or early, which failed to effectively remove HABs with an appropriate coal fly ash dosage. An optimized removal efficiency of 98.50% for Microcystis aeruginosa was reached at pH of 6.0. The optimized efficiency of Scenedesmus quadricauda and Chlorella vulgaris was 99.37% and 91.63%, respectively, at pH of 8.0. At neutral pH conditions, the surface charge of microalgae cells and CFACs are different, promoting aggregate formation. When CFACs were used to remove microalgae, aggregate size significantly influenced removal efficiency. Meanwhile, at the optimized pH and concentration, the removal efficiency of all three algal species exceeded 90.00% in 5 min. The study highlights an efficient and inexpensive method for removing HABs and obtains the optimized operational conditions.
Collapse
Affiliation(s)
- Xiaotong Zou
- School of Water and Environment, Chang'an University, Yanta Road #126, Yanta District, Xi'an, 710054, People's Republic of China
| | - Kaiwei Xu
- School of Water and Environment, Chang'an University, Yanta Road #126, Yanta District, Xi'an, 710054, People's Republic of China
| | - Yating Xue
- School of Water and Environment, Chang'an University, Yanta Road #126, Yanta District, Xi'an, 710054, People's Republic of China
| | - Yanhui Qu
- School of Water and Environment, Chang'an University, Yanta Road #126, Yanta District, Xi'an, 710054, People's Republic of China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Yanta Road #126, Yanta District, Xi'an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Xi'an, 710054, People's Republic of China.
- Shaanxi Key Laboratory of Land Consolidation, Xi'an, 710075, People's Republic of China.
| |
Collapse
|
8
|
Zou X, Xu K, Xue Y, Qu Y, Li Y. Interactions of Chlorella vulgaris and fly ash cenospheres in heat-aided ballasted flotation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Roy M, Mohanty K. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101683] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Zou X, Xu K, Wen H, Xue Y, Qu Y, Li Y. Efficient microalgae harvesting using a thermal flotation method with response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:426-436. [PMID: 31596254 DOI: 10.2166/wst.2019.287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermal pre-flocculation to enable dispersed air flotation is an economical and ecofriendly technology for harvesting microalgae from water. However, the underlying mechanism and optimal conditions for this method remain unclear. In this study, Chlorella vulgaris (C. vulgaris) and Scenedesmus obliquus (S. obliquus) were harvested using a thermal flotation process. The surface structure and characteristics (morphology, electricity, and hydrophobicity) of the microalgae were analyzed using FT-IR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), zeta potential, and a hydrophobic test. Further, response surface methodology (RSM) was used to optimize the flotation process. The hydrophobicity of S. obliquus exceeded that of C. vulgaris; as such, under the thermal pre-flocculation, S. obliquus (88.16%) was harvested more efficiently than C. vulgaris (47.16%). Thermal pre-flocculation denatured the lipids, carbohydrate, and proteins of microalgal cell surfaces. This resulted in a decrease in the electrostatic repulsion between the cells and air bubbles. The highest harvesting efficiency was 91.96% at 70 °C, 1,412 rpm, and 13.36 min. The results of this study demonstrate the potential for economic and ecofriendly harvesting of microalgae for biofuels and other bioproducts industries.
Collapse
Affiliation(s)
- Xiaotong Zou
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China E-mail:
| | - Kaiwei Xu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China E-mail:
| | - Hao Wen
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China E-mail:
| | - Yating Xue
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China E-mail:
| | - Yanhui Qu
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China E-mail:
| | - Yanpeng Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China E-mail: ; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Xi'an 710054, China and Shaanxi Key Laboratory of Land Consolidation, Xi'an 710075, China
| |
Collapse
|
11
|
Wen H, Zou X, Xu K, Shen Z, Ren X, Li Y. Buoy-bead flotation application for the harvesting of microalgae and mechanistic analysis of significant factors. Bioprocess Biosyst Eng 2018; 42:391-400. [DOI: 10.1007/s00449-018-2043-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
|