1
|
Zhang Y, Wang J, Liu F, Wang L, Gao G. Preparation of cylindrical Chitosan/β-Cyclodextrin/MIL-68(Al) foam column for solid-phase extraction of sulfonamides in water, urine, and milk. J Chromatogr A 2024; 1730:465130. [PMID: 38955130 DOI: 10.1016/j.chroma.2024.465130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
This study describes the preparation of a cylindrical polymer foam column termed Chitosan/β-Cyclodextrin/MIL-68(Al) (CS/β-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/β-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and β-cyclodextrin (β-CD). The cylindrical CS/β-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/β-CD/MIL-68(Al) foam column. Moreover, the CS/β-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, β-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/β-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/β-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.
Collapse
Affiliation(s)
- Yong Zhang
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, University Science Park, Changqing District, Jinan, Shandong Province, PR China
| | - Fubin Liu
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China
| | - Litao Wang
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China.
| | - Guihua Gao
- School of Pharmacy, Jining Medical University, No. 669, Xueyuan Road, Donggang District, Rizhao, Shandong Province, 276826, PR China.
| |
Collapse
|
2
|
Khourshidi A, Ajam F, Rabieian M, Taghavijeloudar M. Efficient degradation of p-nitrophenol from water by enhancing dielectric barrier discharge (DBD) plasma through ozone circulation: Optimization, kinetics and mechanism. CHEMOSPHERE 2024; 362:142749. [PMID: 38969213 DOI: 10.1016/j.chemosphere.2024.142749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Non-thermal dielectric barrier discharge (DBD) plasma has received great attention for degradation of persistent organic pollutants such as p-nitrophenol (PNP). However, the feasibility of the DBD implementation is not clear due to its high energy consumption and relatively low degradation efficiency. In this research, a novel strategy was suggested based on re-circulation of the generated O3 in the DBD system to enhance the PNP degradation efficiency and energy yield. The potential mechanism and possible pathway of PNP degradation were studied by EPR, ESR, DFT and GS-MS analytical tests. According to the results, the PNP degradation efficiency and energy yield increased from 57.4% to 94.4% and from 0.52 to 1.18 g kW-1h-1, respectively through ozone circulation into the DBD reactor. This was due to the more release of long-lived and short-lived reactive species (ROS) in the DBD-O3 system by the O3 circulation. The variations in pH (4-10), initial concentration (50-90 mg L-1), and the presence of co-existing substances in the water matrix had minimal impact on the DBD-O3 system, in comparison to the conventional system. The biological toxicity evaluation revealed that the hybrid DBD-O3 system transform PNP to less toxic intermediates. This study proposes a promising strategy to improve the utilization of DBD for the degradation of PNP.
Collapse
Affiliation(s)
- Amirhossein Khourshidi
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Fatemeh Ajam
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Masoud Rabieian
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-7313, Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744, Seoul, South Korea.
| |
Collapse
|
3
|
Marghade D, Shelare S, Prakash C, Soudagar MEM, Yunus Khan TM, Kalam MA. Innovations in metal-organic frameworks (MOFs): Pioneering adsorption approaches for persistent organic pollutant (POP) removal. ENVIRONMENTAL RESEARCH 2024; 258:119404. [PMID: 38880323 DOI: 10.1016/j.envres.2024.119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Adsorption is a promising way to remove persistent organic pollutants (POPs), a major environmental issue. With their high porosity and vast surface areas, MOFs are suited for POP removal due to their excellent adsorption capabilities. This review addresses the intricate principles of MOF-mediated adsorption and helps to future attempts to mitigate organic water pollution. This review examines the complicated concepts of MOF-mediated adsorption, including MOF synthesis methodologies, adsorption mechanisms, and material tunability and adaptability. MOFs' ability to adsorb POPs via electrostatic forces, acid-base interactions, hydrogen bonds, and pi-pi interactions is elaborated. This review demonstrates its versatility in eliminating many types of contaminants. Functionalizing, adding metal nanoparticles, or changing MOFs after they are created can improve their performance and remove contaminants. This paper also discusses MOF-based pollutant removal issues and future prospects, including adsorption capacity, selectivity, scale-up for practical application, stability, and recovery. These obstacles can be overcome by rationally designing MOFs, developing composite materials, and improving material production and characterization. Overall, MOF technology research and innovation hold considerable promise for environmental pollution solutions and sustainable remediation. Desorption and regeneration in MOFs are also included in the review, along with methods for improving pollutant removal efficiency and sustainability. Case studies of effective MOF regeneration and scaling up for practical deployment are discussed, along with future ideas for addressing these hurdles.
Collapse
Affiliation(s)
- Deepali Marghade
- Department of Applied Chemistry, Priyadarshini College of Engineering, Nagpur, Maharashtra, India; University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Sagar Shelare
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Mechanical Engineering, Priyadarshini College of Engineering, Nagpur, Maharashtra, India.
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manzoore Elahi M Soudagar
- Faculty of Engineering, Lishui University, 323000, Lishui, Zhejiang, PR China; Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India.
| | - T M Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia.
| | - M A Kalam
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia.
| |
Collapse
|
4
|
Li J, Wen Y, Fang Z, Yang W, Song X. Application of cold-adapted microbial agents in soil contaminate remediation: biodegradation mechanisms, case studies, and safety assessments. RSC Adv 2024; 14:12720-12734. [PMID: 38645519 PMCID: PMC11027001 DOI: 10.1039/d4ra01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
The microbial agent technology has made significant progress in remediating nitro-aromatic compounds (NACs), such as p-nitrophenol, 2,4-dinitrophenol, and 2,4,6-Trinitrotoluene, in farmland soil over the past decade. However, there are still gaps in our understanding of the bioavailability and degradation mechanisms of these compounds in low-temperature environments. In this review, we provide a comprehensive summary of the strategies employed by cold-adapted microorganisms and elucidate the degradation pathways of NACs pollutants. To further analyze their metabolic mechanisms, we propose using mass balance to improve our understanding of biochemical processes and refine the degradation pathways through stoichiometry analysis. Additionally, we suggest employing 13C-metabolic flux analysis to track enzyme activity and intermediate products during bio-degradation processes with the aim of accelerating the remediation of nitro-aromatic compounds, particularly in cold regions. Through a comprehensive analysis of pollutant metabolic activities and a commitment to the 'One Health' approach, with an emphasis on selecting non-pathogenic strains, the environmental management strategies for soil remediation could be positioned to develop and implement safe and effective measure.
Collapse
Affiliation(s)
- Jiaxin Li
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University Shenyang 110044 China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources China
| | - Zheng Fang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Wenqi Yang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University Shenyang 110044 China +86(24)62269636
| |
Collapse
|
5
|
Maru K, Kalla S, Jangir R. Efficient Dye Extraction from Wastewater Using Indium-MOF-Immobilized Polyvinylidene Fluoride Membranes with Selective Filtration for Enhanced Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8144-8161. [PMID: 38584360 DOI: 10.1021/acs.langmuir.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Industrial activities have led to releasing harmful substances into the environment, necessitating the elimination of these toxic compounds from wastewater. Organic dyes, commonly found in industrial effluents, pose a threat to ecosystems and human health. Conventional treatment methods often suffer from limitations such as high cost and poor efficiency. Metal-organic frameworks (MOFs) have emerged as promising materials for selective separation, including membrane filtration (MF). Mixed-matrix membranes (MMMs) combining MOFs with polymers offer improved filtration properties. In this study, MMMs were fabricated by incorporating synthesized In-MOF with a polyvinylidene fluoride (PVDF) polymer (In-MOF@PVDF MMMs) using the nonsolvent-induced phase separation process. The MMMs were evaluated for the MF of various organic dyes, achieving notable removal efficiencies. The membrane containing 20% In-MOF (M4) demonstrated exceptional performance, removing 99% of the methylene blue (MB) dye. Additionally, membrane M4 effectively filtered Azure A (AZA), Azure B (AZB), and toluidine blue O (TOLO) with a removal efficiency of 99%. However, for Rhodamine B (RHB) and methyl orange (MO), the removal efficiencies were slightly lower at 74 and 39%, respectively. Further, these membranes are utilized in selective dye filtration in the MB+/RHB+ and MB+/MO- systems, where the selectivity was found for MB. The isothermal and DFT studies revealed the membrane's behavior with dye mixtures, while water stability and regeneration studies confirmed its durability. Thus, these findings highlight the potential of In-MOF@PVDF MMMs for effective and selective dye removal in wastewater treatment applications.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, Gujarat 395 007, India
| | - Sarita Kalla
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, Gujarat 395 007, India
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, Gujarat 395 007, India
| |
Collapse
|
6
|
Liu H, Xie J, Hu Z, Zhao J, Wang R, Qi Y, Sun S. Self-cleaning and photodegradle PVDF separation membranes modified with self-assembled TiO 2-g-CS/CNTs particle. Carbohydr Polym 2024; 323:121467. [PMID: 37940261 DOI: 10.1016/j.carbpol.2023.121467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
This work obtained separation membranes with UV-cleaning performance by adding TiO2-g-CS/CNTs photocatalyst to the PVDF. The positively charged chitosan (CS) and negatively charged carboxylic carbon nanotube (CNTs-COOH) can be self-assembled into the bilayer structure on the surface of TiO2 particles through electrostatic attraction. The presence of many hydrophilic groups in CS and CNTs-COOH significantly improves the hydrophilicity of TiO2-g-CS/CNTs-PVDF membrane, and helps TiO2 to be uniformly dispersed on the upper surface. TiO2-g-CS/CNTs promote the change of pore structure and expand the flux of the modified membrane to 4.5 times that of pure PVDF. Zeta potential demonstrates that the TiO2-g-CS particles successfully attracted CNTs in the PVDF matrix, and the membrane surface was still positively charged. Thus, the combined effect of the positively charged TiO2-g-CS and the highly adsorbed CNTs enhanced the retention of the contaminants. More importantly, there is a charge transfer between the grafted CS and TiO2 interface to obtain a broader light absorption band. The excitation carriers provided by CNTs significantly contribute to the photocatalytic performance after transfer between TiO2 and CS; thus, TiO2-g-CS/CNTs-PVDF produces higher photocatalytic activity for dye molecules (degradation rate > 97 %).
Collapse
Affiliation(s)
- Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Junhao Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziyi Hu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
7
|
Zhang H, Zhang S, Li Y, Li L, Hou X. Biochar/sodium alginate mixed matrix membrane as adsorbent for in-syringe solid-phase extraction towards trace nitroimidazoles in water samples prior to ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. J Sep Sci 2023; 46:e2300316. [PMID: 37688330 DOI: 10.1002/jssc.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
In the present work, the herb (Poria cocos (Schw.) Wolf) residue, as an environmentally friendly and renewable biomass source, was converted into novel biochar. Biochar/sodium alginate mixed matrix membrane was fabricated. On this basis, a biochar/sodium alginate mixed matrix membrane-based in-syringe solid-phase extraction was developed combined with ultra-high performance liquid chromatography-tandem mass spectrometry to determine nitroimidazoles in water samples. The factors including times of exaction, type, and volume of elution solvent, and sample solution pH were thoroughly optimized. Then the correlation coefficient was 0.9995-0.9997. The limit of detection of four analytes was between 0.006 and 0.014 ng/mL, and the recovery was between 79.02% and 99.1%. Consequently, the established method would provide a new perspective on monitoring nitroimidazoles in water samples.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
8
|
Costa CM, Cardoso VF, Martins P, Correia DM, Gonçalves R, Costa P, Correia V, Ribeiro C, Fernandes MM, Martins PM, Lanceros-Méndez S. Smart and Multifunctional Materials Based on Electroactive Poly(vinylidene fluoride): Recent Advances and Opportunities in Sensors, Actuators, Energy, Environmental, and Biomedical Applications. Chem Rev 2023; 123:11392-11487. [PMID: 37729110 PMCID: PMC10571047 DOI: 10.1021/acs.chemrev.3c00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/22/2023]
Abstract
From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.
Collapse
Affiliation(s)
- Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Vanessa F. Cardoso
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro Martins
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | | | - Renato Gonçalves
- Center of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute
for Polymers and Composites IPC, University
of Minho, 4804-533 Guimarães, Portugal
| | - Vitor Correia
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- CMEMS-UMinho, University of
Minho, DEI, Campus de
Azurém, 4800-058 Guimarães, Portugal
- LABBELS-Associate
Laboratory, Campus de
Gualtar, 4800-058 Braga, Guimarães, Portugal
| | - Pedro M. Martins
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Centre
of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials,
Basque Center for Materials, Applications
and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
9
|
Hu D, Sun Z, Han Y, Meng H, Zhang X. Interface synthesis of Cu-BTC/PVDF hybrid membranes and their selective adsorption activity toward Congo red. Dalton Trans 2023; 52:11441-11450. [PMID: 37547961 DOI: 10.1039/d3dt02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Considering the surface affinity of MOFs and separation advantages of polymer membranes, herein, a one-step interface synthesis strategy is used in the construction of Cu-BTC/PVDF hybrid membranes, in which Cu2+ ions and 1,3,5-benzenetricarboxylic acid (H3BTC) were dissolved in ionized water and n-octanol separately, and polyvinylidene fluoride (PVDF) films were laid at the interface of two immiscible solvents. As a result, Cu-BTC was generated and readily self-assembled inside the PVDF films. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method were used to characterize Cu-BTC/PVDF hybrid membranes, and Congo red (CR) was selected as the target dye to evaluate the surface adsorption activity of the hybrid membranes. Batch adsorption tests under various conditions were conducted to optimize the adsorption capacity, adsorption kinetics, isotherms and thermodynamics, which were analyzed to further explore the adsorption behavior. Based on this, the adsorption mechanism was discussed. It is worth noting that because of the π-π stacking interaction and hydrogen bonding, an extraordinary adsorption capacity of CR was achieved, and the good separation advantage and the cyclic adsorption performances endow the resulting Cu-BTC/PVDF hybrid membranes with promising applications in the removal of organic dyes from practical wastewater.
Collapse
Affiliation(s)
- Defeng Hu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Zhongqiao Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Hao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
10
|
Li B, Xiang G, Huang G, Jiang X, He L. Self-exothermic reaction assisted green synthesis of carbon dots for the detection of para-nitrophenol and β-glucosidase activity. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
11
|
Enache AC, Grecu I, Samoila P, Cojocaru C, Harabagiu V. Magnetic Ionotropic Hydrogels Based on Carboxymethyl Cellulose for Aqueous Pollution Mitigation. Gels 2023; 9:gels9050358. [PMID: 37232950 DOI: 10.3390/gels9050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
In this work, stabilized ionotropic hydrogels were designed using sodium carboxymethyl cellulose (CMC) and assessed as inexpensive sorbents for hazardous chemicals (e.g., Methylene Blue, MB) from contaminated wastewaters. In order to increase the adsorption capacity of the hydrogelated matrix and facilitate its magnetic separation from aqueous solutions, sodium dodecyl sulfate (SDS) and manganese ferrite (MnFe2O4) were introduced into the polymer framework. The morphological, structural, elemental, and magnetic properties of the adsorbents (in the form of beads) were assessed using scanning electron microscopy (SEM), energy-dispersive X-ray analysis, Fourier-transform infrared spectroscopy (FTIR), and a vibrating-sample magnetometer (VSM). The magnetic beads with the best adsorption performance were subjected to kinetic and isotherm studies. The PFO model best describes the adsorption kinetics. A homogeneous monolayer adsorption system was predicted by the Langmuir isotherm model, registering a maximum adsorption capacity of 234 mg/g at 300 K. The calculated thermodynamic parameter values indicated that the investigated adsorption processes were both spontaneous (ΔG < 0) and exothermic (ΔH < 0). The used sorbent can be recovered after immersion in acetone (93% desorption efficiency) and re-used for MB adsorption. In addition, the molecular docking simulations disclosed aspects of the mechanism of intermolecular interaction between CMC and MB by detailing the contributions of the van der Waals (physical) and Coulomb (electrostatic) forces.
Collapse
Affiliation(s)
- Andra-Cristina Enache
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ionela Grecu
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Cojocaru
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Valeria Harabagiu
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
12
|
Abdelhameed RM, El-Shahat M, Abdel-Gawad H, Hegazi B. Efficient phenolic compounds adsorption by immobilization of copper-based metal-organic framework anchored polyacrylonitrile/chitosan beads. Int J Biol Macromol 2023; 240:124498. [PMID: 37076079 DOI: 10.1016/j.ijbiomac.2023.124498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
The application of newly formulated beads from copper-benzenetricarboxylate (Cu-BTC), polyacrylonitrile (PAN), and chitosan (C), Cu-BTC@C-PAN, C-PAN, and PAN, for the removal of phenolic chemicals from water, is described in the current paper. Phenolic compounds (4-chlorophenol (4-CP) and 4-nitrophenol (4-NP)) were adsorbed using beads and the adsorption optimization looked at the effects of several experimental factors. The Langmuir and Freundlich models were used to explain the adsorption isotherms in the system. A pseudo-first and second-order equation is performed for describing the kinetics of adsorption. The obtained data fit (R2 = 0.999) supports the suitability of the Langmuir model and pseudo-second-order kinetic equation for the adsorption mechanism. Cu-BTC@C-PAN, C-PAN, and PAN beads' morphology and structure were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transforms infrared spectroscopy (FT-IR). According to the findings, Cu-BTC@C-PAN has very high adsorption capacities of 277.02, and 324.74 mg g-1, for 4-CP and 4-NP, respectively. The Cu-BTC@C-PAN beads showed 2.55 times higher adsorption capacity than PAN in the case of 4-NP, but in the case of 4-CP, it was higher by 2.64 times.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Bahira Hegazi
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
13
|
Moussadik A, Lazar NE, Mazkad D, Siro Brigiano F, Baert K, Hauffman T, Benzaouak A, Abrouki Y, Kacimi M, Tielens F, Halim M, El Hamidi A. Investigation of electronic and photocatalytic properties of AgTi2(PO4)3 NASICON-type phosphate: Combining experimental data and DFT calculations. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
15
|
Hua T, Li D, Li X, Lin J, Niu J, Cheng J, Zhou X, Hu Y. Synthesis of mesoporous-structured MIL-68(Al)/MCM-41-NH 2 for methyl orange adsorption: Optimization and Selectivity. ENVIRONMENTAL RESEARCH 2022; 215:114433. [PMID: 36167114 DOI: 10.1016/j.envres.2022.114433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Here, we report a novel amino-modified mesoporous-structured aluminum-based metal-organic framework adsorbent, MIL-68(Al)/MCM-41-NH2, for dye sewage treatment. The introduction of molecular sieves overcomes the inherent defects of microporous MOFs in contaminant transfer and provides more active sites to enhance adsorption efficiency. Compared with using organic amino ligands directly, this strategy is ten times cheaper. The composite was well characterized and analyzed in terms of morphology, structure and chemical composition. Batch experiments were carried out to study the influences of essential factors on the process, such as pH and temperature. In addition, their interactions and the optimum conditions were examined using response surface methodology (RSM). The adsorption kinetics, isotherms and thermodynamics were systematically elucidated. In detail, the adsorption process conforms to pseudo-second-order kinetics and follows the Sips and Freundlich isothermal models. Moreover, the maximum adsorption capacity Qs of methyl orange (MO) was 477 mg g-1. It could be concluded that the process was spontaneous, exothermic, and entropy-reducing. Several binary dye systems have been designed for selective adsorption research. Our material has an affinity for anionic pigments. The adsorption mechanisms were discussed in depth. The electrostatic interaction might be the dominant effect. Meanwhile, hydrogen bonding, π-π stacking, and pore filling might be important driving forces. The excellent thermal stability and recyclability of the adsorbent are readily noticed. After five reuse cycles, the composite still possesses a removal efficiency of 90% for MO. Overall, the efficient and low-cost composite can be regarded as a promising adsorbent for the selective adsorption of anionic dyes from wastewater.
Collapse
Affiliation(s)
- Tao Hua
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Dongmei Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoman Li
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jialiang Lin
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jiliang Niu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Xinhui Zhou
- South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Yongyou Hu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
16
|
Somnath, Ahmad M, Siddiqui KA. Synthesis of a Mixed-Ligand H-Bonded Cu Coordination Polymer: Exploring the pH-Dependent High Photocatalytic Degradation of Rhodamine 6G, Methyl Violet, Crystal Violet, and Rose Bengal Dyes under Room Illumination. ACS OMEGA 2022; 7:41120-41136. [PMID: 36406574 PMCID: PMC9670721 DOI: 10.1021/acsomega.2c04669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 03/21/2024]
Abstract
A new mixed-ligand H-bonded coordination polymer {[Cu2(Or)2(Bimb)3]·4H2O} n (KA@CP-S) has been prepared hydrothermally using basic copper carbonate with 1,4-bis[(1H-imidazol-1-yl)methyl]benzene (Bimb) and potassium orotate (OrK) ligands. According to topological studies, KA@CP-S has a new topology with a three-connected uninodal net with point symbol (PS) {82·12}2{8}3. The KA@CP-S was employed as a catalyst for screening of a series of harmful cationic, anionic, and neutral organic dyes in contaminated water. The photocatalytic degradation study shows that it exhibits good catalytic efficiency for cationic dyes like Crystal Violet (CV, 75.8%), Methyl Violet (MV, 76.8%), and Rhodamine 6G (Rh6G, 86.5%) and Rose Bengal (RB, 76.1%), which is an anionic dye, while for a neutral dye, its catalytic efficiency is only 72% (Neutral Red) at ambient temperature. The effect of pH on photocatalytic degradation was also analyzed. The degradation experiment reveals that the detection limits of KA@CP-S for mostly catalyzed colorant concentrations in contaminated water are 0.60 ppm (CV), 0.20 ppm (RB), 0.33 ppm (MV), and 0.20 ppm (Rh6G) at pH 12, 4, and 10. The degradation of dyes follows pseudo-first-order kinetics. The excellent catalytic property and regeneration ability of KA@CP-S make it a potential and efficient future remedial material for the detection and separation of toxic dyes from wastewater contaminated by industrial effluents.
Collapse
Affiliation(s)
- Somnath
- Department
of Chemistry, National Institute of Technology
Raipur, Great Eastern Road, Raipur492010, Chhattisgarh, India
| | - Musheer Ahmad
- Department
of Applied Chemistry, Faculty of Engineering and Technology, Zakir
Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Kafeel Ahmad Siddiqui
- Department
of Chemistry, National Institute of Technology
Raipur, Great Eastern Road, Raipur492010, Chhattisgarh, India
| |
Collapse
|
17
|
An Evolving MOF Thin-Film Nanocomposite Tubular Ceramic Membrane for Desalination Pretreatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Darabdhara J, Ahmaruzzaman M. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. CHEMOSPHERE 2022; 304:135261. [PMID: 35697109 DOI: 10.1016/j.chemosphere.2022.135261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
With the growth of globalization which has been the primary cause of water pollution, it is utmost necessary for us living being to have access to clean water for the purpose of drinking, washing and various other useful applications. With the purpose of future security and to restore our ecological balance, it is essential to give much significance towards the removal of unwanted toxic contaminants from our water resources. In this regard adsorptive removal of toxic pollutants from wastewater with porous adsorbent is regarded as one of the most promising way for water decontamination process. Metal organic frameworks (MOFs) comprising of uniformly arranged pores, abundant active sites and containing an easily tunable structure has aroused as a promising material for adsorbent to remove the unwanted contaminants from water sources. The adsorption of pollutants by the different MOFs surface are driven by various interactions including π-π, acid-base, electrostatic and H-bonding etc. On the other hand, the removal of various contaminants by MOFs is influenced by various factors including pH, temperature and initial concentration. In this review we will specifically discuss the adsorptive removal of different organic and inorganic pollutants present in our water systems with the use of MOFs as adsorbent along with the various factors and interaction mechanism manipulating the adsorption behaviour.
Collapse
Affiliation(s)
- Jnyanashree Darabdhara
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
19
|
Goren A, Recepoğlu YK, Edebali̇ Ö, Sahin C, Genisoglu M, Okten HE. Electrochemical Degradation of Methylene Blue by a Flexible Graphite Electrode: Techno-Economic Evaluation. ACS OMEGA 2022; 7:32640-32652. [PMID: 36119975 PMCID: PMC9476165 DOI: 10.1021/acsomega.2c04304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, electrochemical removal of methylene blue (MB) from water using commercially available and low-cost flexible graphite was investigated. The operating conditions such as initial dye concentration, initial solution pH, electrolyte dose, electrical potential, and operating time were investigated. The Box-Behnken experimental design (BBD) was used to optimize the system's performance with the minimum number of tests possible, as well as to examine the independent variables' impact on the removal efficiency, energy consumption, operating cost, and effluent MB concentration. The electrical potential and electrolyte dosage both improved the MB removal efficiency, since increased electrical potential facilitated production of oxidizing agents and increase in electrolyte dosage translated into an increase in electrical current transfer. As expected, MB removal efficiency increased with longer operational periods. The combined effects of operating time-electrical potential and electrical potential-electrolyte concentration improved the MB removal efficiency. The maximum removal efficiency (99.9%) and lowest operating cost (0.012 $/m3) were obtained for initial pH 4, initial MB concentration 26.5 mg/L, electrolyte concentration 0.6 g/L, electrical potential 3 V, and operating time 30 min. The reaction kinetics was maximum for pH 5, and as the pH increased the reaction rates decreased. Consequent techno-economic assessment showed that electrochemical removal of MB using low-cost and versatile flexible graphite had a competitive advantage.
Collapse
Affiliation(s)
- Aysegul
Yagmur Goren
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Yaşar Kemal Recepoğlu
- Department
of Chemical Engineering, Izmir Institute
of Technology, İ zmir 35430, Turkey
| | - Özge Edebali̇
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Cagri Sahin
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Mesut Genisoglu
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
| | - Hatice Eser Okten
- Department
of Environmental Engineering, Izmir Institute
of Technology, İzmir 35430, Turkey
- Environmental
Development Application and Research Centre, İzmir Institute of Technology, İzmir 35430, Turkey
| |
Collapse
|
20
|
Wu Y, Chen M, Lee HJ, A. Ganzoury M, Zhang N, de Lannoy CF. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T ENGINEERING 2022; 2:1574-1598. [PMID: 36120114 PMCID: PMC9469769 DOI: 10.1021/acsestengg.2c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of organic micropollutants (OMPs) and their persistence in water supplies have raised serious concerns for drinking water safety and public health. Conventional water treatment technologies, including adsorption and biological treatment, are known to be insufficient in treating OMPs and have demonstrated poor selectivity toward a wide range of OMPs. Pressure-driven membrane filtration has the potential to remove many OMPs detected in water with high selectivity as a membrane's molecular weight cutoff (MWCO), surface charge, and hydrophilicity can be easily tailored to a targeted OMP's size, charge and octanol-water partition coefficient (Kow). Over the past 10 years, polymeric (nano)composite microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes have been extensively synthesized and studied for their ability to remove OMPs. This review discusses the fate and transport of emerging OMPs in water, an assessment of conventional membrane-based technologies (NF, reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and UF membrane-based hybrid processes) for their removal, and a comparison to the state-of-the-art nanoenabled membranes with enhanced selectivity toward specific OMPs in water. Nanoenabled membranes for OMP treatment are further discussed with respect to their permeabilities, enhanced properties, limitations, and future improvements.
Collapse
Affiliation(s)
- Yichen Wu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ming Chen
- School
of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hye-Jin Lee
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- Department
of Chemical and Biological Engineering, and Institute of Chemical
Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Mohamed A. Ganzoury
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | |
Collapse
|
21
|
Zhao Y, Wang L, Zhu L, Gao F, Xu X, Yang J. Removal of p-Nitrophenol from simulated sewage using steel slag: Capability and mechanism. ENVIRONMENTAL RESEARCH 2022; 212:113450. [PMID: 35598802 DOI: 10.1016/j.envres.2022.113450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The steel slag was investigated for the removal of p-nitrophenol (4-NP) from simulated sewage by batch adsorption and fixed-bed column absorption experiments. The results showed that the maximum adsorption capacity was 109.66 mg/g at 298 K, pH of 7, initial concentration 100 mg/L, and dose 0.8 g/L. The adsorption process fitted the Langmuir isothermal adsorption model and followed pseudo-second-order kinetic models, the activation energy of adsorption (Ea) was 10.78 kJ/mol, which indicated that the adsorption was single-molecule layer physical adsorption. The regeneration efficiency was still maintained at 84.20% after five adsorption-desorption cycles. The column adsorption experiments showed that the adsorption capacity of the Thomas model reached 13.69 mg/g and the semi-penetrating time of the Yoon-Nelson model was 205 min at 298 K. Fe3O4 was identified as the main adsorption site by adsorption energy calculation, XRD and XPS analysis. The FT-IR, Zeta potential, and ionic strength analysis indicated that the adsorption mechanism was hydrogen bonding interaction and electrostatic interaction. This work proved that steel slag could be utilized as a potential adsorbent for phenol-containing wastewater treatment.
Collapse
Affiliation(s)
- Yibo Zhao
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Lin Wang
- Shanghai Baosteel New Building Materials Technology Co., LTD, Mohe Road 301, Shanghai, 201900, PR China
| | - Linchao Zhu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Fei Gao
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Xinru Xu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China
| | - Jingyi Yang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China.
| |
Collapse
|
22
|
Zhang Y, Yuan ZL, Deng XY, Wei HD, Wang WL, Xu Z, Feng Y, Shi X. Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chem 2022; 386:132753. [PMID: 35367801 DOI: 10.1016/j.foodchem.2022.132753] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The residues of bisphenol A (BPA) in milk packaging may transfer to milk, adversely affecting the human endocrine system. Consequently, to analyse or monitor BPA, it is imperative to develop rapid and effective approaches to BPA extraction from milk and milk packing as BPA is usually present in trace levels. Herein, we developed a rapid, simple, and low-cost dispersive-membrane-solid-phase-extraction (DME) for BPA with MIL-101(Cr) mixed-matrix-membrane (MMM). The MMM had large surface area (1322.09 m2/g) and pore volume (0.65 cm3/g), possessed great extraction efficiency of BPA, and kept more than 90% extraction efficiency after 20 times of reuse. Using the developed MIL-101(Cr)-MMM-based DME coupled with HPLC-fluorescence detector, we received an adequate linearity in the range of 0.1 ∼ 50 μg/L BPA and a limit of detection as low as 16 ng/L under optimized conditions. The recoveries of BPA in milk and milk bottles were from 74.2% to 110.6%, with RSDs less than 9.4%.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhi-Liang Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao-Dong Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Xu
- Huangpu Customs Technology Center, Guangzhou 510770, China
| | - Yongwei Feng
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China.
| | - Xueli Shi
- Shijiazhuang City Maternal and Child Health Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
23
|
Chai Y, Zhang Y, Wang L, Du Y, Wang B, Li N, Chen M, Ou L. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Facile fabrication of amino-functionalized MIL-68(Al) metal-organic framework for effective adsorption of arsenate (As(V)). Sci Rep 2022; 12:11865. [PMID: 35831402 PMCID: PMC9279506 DOI: 10.1038/s41598-022-16038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/04/2022] [Indexed: 12/07/2022] Open
Abstract
An amino-functionalized MIL-68(Al) metal–organic framework (amino-MIL-68(Al) MOF) was synthesized by solvothermal method and then characterized by FESEM, XRD, FTIR, EDX-mapping, and BET-BJH techniques. In order to predict arsenate (As(V)) removal, a robust quadratic model (R2 > 0.99, F-value = 2389.17 and p value < 0.0001) was developed by the central composite design (CCD) method and then the genetic algorithm (GA) was utilized to optimize the system response and four independent variables. The results showed that As(V) adsorption on MOF was affected by solution pH, adsorbent dose, As(V) concentration and reaction time, respectively. Predicted and experimental As(V) removal efficiencies under optimal conditions were 99.45 and 99.87%, respectively. The fitting of experimental data showed that As(V) adsorption on MOF is well described by the nonlinear form of the Langmuir isotherm and pseudo-second-order kinetic. At optimum pH 3, the maximum As(V) adsorption capacity was 74.29 mg/g. Thermodynamic studies in the temperature range of 25 to 50 °C showed that As(V) adsorption is a spontaneous endothermic process. The reusability of MOF in ten adsorption/regeneration cycles was studied and the results showed high reusability of this adsorbent. The highest interventional effect in inhibiting As(V) adsorption was related to phosphate anion. The results of this study showed that amino-MIL-68(Al) can be used as an effective MOF with a high surface area (> 1000 m2/g) and high reusability for As(V)-contaminated water.
Collapse
|
25
|
Quan X, Xu X, Yan B. Facile fabrication of Tb 3+-functionalized COF mixed-matrix membrane as a highly sensitive platform for the sequential detection of oxolinic acid and nitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127869. [PMID: 34844797 DOI: 10.1016/j.jhazmat.2021.127869] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
A novel Tb3+-functionalized covalent organic framework-based polymer mixed-matrix membrane (Tb3+@COF MMM) has been successfully fabricated by incorporating the highly stable Tb3+@PI-COF as filler into polyvinylidene fluoride (PVDF) solution. Compared with pure COF membrane, MMM exhibits its good flexibility, processability and high detection sensitivity. The obtained Tb3+@COF-MMM (M) can be employed as a highly sensitive sensing platform for the sequential detection of oxolinic acid (OA) and nitrobenzene (NB) based on a "off-on-off" process. M has performed its great selectivity, high sensitivity, and low detection limit for detecting OA with "turn-on" mechanism. Moreover, owing to the good chemical stability and anti-interference of M sensor, it is prospective to efficiently detect residues of OA in serum or river water. After the detection of M-15 toward OA, the obtained fluorescent M-15/OA exhibits the rapid quenching, facile manipulation, cycling utility and low detection limits for sensing NB solution and vapor. This work has proposed a typical case of developing flexible Ln3+-functionalized COF-based polymer mixed-matrix membrane as a highly sensitive sensing platform for detecting OA and NB, simultaneously revealed the applied potentiality of M for monitoring animal health and environmental pollution.
Collapse
Affiliation(s)
- Xueping Quan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xin Xu
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
26
|
Synthesis of metal anthranilate complexes: catalytic and antipathogenic studies. BMC Chem 2022; 16:21. [PMID: 35346333 PMCID: PMC8958793 DOI: 10.1186/s13065-022-00817-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background Anthranilic acid is an active compound with diverse biological activities such as anti-inflammatory, antineoplastic, anti-malarial and α-glucosidase inhibitory properties. It can also chelate transition metals to form complexes with applications as antipathogens, photoluminescent materials, corrosion inhibitors, and catalysts. Results Anthranilic acid complexes (1–10) of Zn(II), Bi(III), Ag(I), Fe(II), Co(II), Cu(II), Mn(II), Al, Ni(II), and Cr(III) were synthesized and characterized using thermogravimetric (TGA), elemental analysis, FT-IR, UV–vis spectrometry, mass spectrometry and magnetic susceptibility. The morphology and size of metal complex (1–10) particles were determined by scanning electron microscope (SEM) and the surface area was determined by BET analysis. TGA and CHN analysis data indicated that the stoichiometries of complexes were 1:2 metal/ligand except for Ag(I), Al and Bi. Furthermore, DFT study was performed to optimize the structure of selected complexes. The complexes (1–10) were evaluated for their catalytic activity in the reduction of 4-nitrophenol (4-NP), antibacterial activity against S. aureus, P. aeroginosa and E. coli as well as their antifungal activity against F. solani and A. niger. The complexes were also tested against the second-stage juveniles (J2) root-knot nematodes. Conclusion Co(II) complex 5 and Cu(II) complex 6 showed high catalytic activity for the reduction of 4-NP to 4-aminophenol (4-AP). Ag(I) complex 3 showed the best activity against the pathogens that were tested namely clinically important bacteria S. aureus, P. aeroginosa and E. coli, commercially important fungi F. solani and A. niger and J2 root-knot nematodes M. javanica.
Collapse
|
27
|
Synthesis of ZIF-67 derived Co-based catalytic membrane for highly efficient reduction of p-nitrophenol. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Recent advances in adsorptive removal and catalytic reduction of hexavalent chromium by metal–organic frameworks composites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Napolitano-Tabares PI, Gutiérrez-Serpa A, Jiménez-Abizanda AI, Jiménez-Moreno F, Pasán J, Pino V. Hybrid Materials Formed with Green Metal-Organic Frameworks and Polystyrene as Sorbents in Dispersive Micro-Solid-Phase Extraction for Determining Personal Care Products in Micellar Cosmetics. Molecules 2022; 27:813. [PMID: 35164078 PMCID: PMC8838677 DOI: 10.3390/molecules27030813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated μ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 μg·L-1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 μg·L-1 and 650 μg·L-1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.
Collapse
Affiliation(s)
- Patricia I. Napolitano-Tabares
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Adrián Gutiérrez-Serpa
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| | - Ana I. Jiménez-Abizanda
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Francisco Jiménez-Moreno
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| |
Collapse
|
30
|
Yang JM. Functionally modified metal–organic frameworks for the removal of toxic dyes from wastewater. CrystEngComm 2022. [DOI: 10.1039/d1ce01385h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review highlights recent advancement in functional modified (FM) MOFs as superior adsorbents for the removal of dyes, classifying them by various modification strategies. The adsorption interactions affected by the FM approach are summarized.
Collapse
Affiliation(s)
- Ji-Min Yang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, P.R. China
| |
Collapse
|
31
|
Liu D, Yin J, Tang H, Wang H, Liu S, Huang T, Fang S, Zhu K, Xie Z. Fabrication of ZIF-67@PVDF ultrafiltration membrane with improved antifouling and separation performance for dye wastewater treatment via sulfate radical enhancement. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Li J, Jiang Y, Sun Y, Wang X, Ma P, Song D, Fei Q. Extraction of parabens by melamine sponge with determination by high-performance liquid chromatography. J Sep Sci 2021; 45:697-705. [PMID: 34817924 DOI: 10.1002/jssc.202100817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 01/18/2023]
Abstract
In the present study, we propose a novel method for the extraction of parabens in personal care products. A new, simple adsorptive material was obtained by combining metal-organic frameworks and melamine sponges using the adhesive property of polyvinylidene fluoride. This new material, metal-organic frameworks/melamine sponges, was found to be particularly suitable for solid-phase extraction. The structural characteristics of metal-organic frameworks/melamine sponges were first analyzed by scanning electron microscopy. Subsequently, solid-phase extraction was performed on sample solutions, and the extracted substances were then analyzed by high-performance liquid chromatography. Following optimization of important experimental conditions, excellent recovery rates were obtained. Our novel method was then applied to the extraction of four parabens (methylparahydroxybenzoates, ethylparahydroxybenzoates, propylparahydroxybenzoates, and butylparahydroxybenzoates) from real samples. The results yielded LODs of 0.26-0.41 ng/mL. The inter- and intra-day recoveries were 104.0-109.7% and 91.2-98.1%, respectively (relative standard deviation, <13.8%).
Collapse
Affiliation(s)
- Jingkang Li
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Ying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Daqian Song
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| | - Qiang Fei
- Department of Analytical Chemistry, College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, P. R. China
| |
Collapse
|
33
|
Song Y, Yang M, Zhang X. High efficient removal of synthetic cationic and anionic dyes from water by using functional Al-BTB as adsorbent. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1993919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yang Song
- Faculty of Chemistry, Northeastern University, Shenyang, China
| | - Mei Yang
- Faculty of Chemistry, Northeastern University, Shenyang, China
| | - Xia Zhang
- Faculty of Chemistry, Northeastern University, Shenyang, China
| |
Collapse
|
34
|
M Saber SE, Abdullah LC, Jamil SNAM, Choong TSY, Ting TM. Trimethylamine functionalized radiation-induced grafted polyamide 6 fibers for p-nitrophenol adsorption. Sci Rep 2021; 11:19573. [PMID: 34599205 PMCID: PMC8486744 DOI: 10.1038/s41598-021-97397-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The method of pre-irradiation grafting was used with the aid of electron beam (EB) accelerator to accomplish the grafting of polyamide 6 fibers (PA6) with glycidyl methacrylate (GMA). The extent to which GMA was grafted on PA6 was found to be markedly influenced by the absorbed dose of radiation and the reaction time of grafting. Trimethylamine (TMA) was afterwards employed for the functionalization of GMA-grafted fibers (PA6-g-GMA). A range of analyses (e.g., FTIR, FESEM, XRD, BET, and pHpzc) were carried out to determine the physiochemical and morphological properties of the fibrous adsorbent. p-Nitrophenol (PNP) adsorption from aqueous solution was conducted with the resulting TMA-(PA6-g-GMA) adsorbent. The adsorption behaviour of PNP on the fibrous adsorbent was clarified by investigating the adsorption kinetics and isotherm. According to the results, the adsorption of PNP on TMA-(PA6-g-GMA) reflected the pseudo-second order model. Meanwhile, the isotherm analysis revealed that the best description of the equilibrium data was provided by Redlich-Peterson model, followed closely by Langmuir isotherm model. The achieved adsorption capacity was highest at 176.036 mg/g. Moreover, the adsorption was indicated by the thermodynamic analysis to be spontaneous and exothermic. Regeneration and recycling of the adsorbent was possible for a minimum of five cycles with no reduction in adsorption capacity. It was concluded that the fibrous adsorbent could have applications for the removal of PNP at industrial pilot scale.
Collapse
Affiliation(s)
- Shihab Ezzuldin M Saber
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.
- North Refineries Company, Baiji, Salahuddin, Ministry of Oil, Iraq.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Thomas S Y Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Teo Ming Ting
- Radiation Technology Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
35
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Liu Y, Wang N, Sun Z, Han Y, Xu J, Xu Y, Wu J, Meng H, Zhang X. Selective adsorption of malachite green (MG) and fuchsin acid (FA) by ZIF-67 hybridized polyvinylidene fluoride (PVDF) membranes. Dalton Trans 2021; 50:8927-8937. [PMID: 34109335 DOI: 10.1039/d1dt01000j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MOF/polymer hybrid membranes integrate the surface activity of MOFs and the advantages of PVDF membranes, and can be used as adsorption membranes in the efficient removal of target organics. In this work, a new hybrid membrane of ZIF-67/PVDF with varying ZIF-67 dosages has been fabricated through a facile mechanical blending followed by a lyotropic phase transition. Methods including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), FT-IR analyses and surface hydrophobicity/hydrophilicity measurements are applied to characterize the structure, physicochemical properties and membrane performances. Two synthetic triarylmethane dyes, cationic malachite green (MG) and anionic fuchsin acid (FA), are chosen as the main adsorption targets to evaluate the adsorption capacities of the resulting ZIF-67/PVDF hybrid membranes. Interestingly, all of the ZIF-67/PVDF hybrid membranes exhibit distinctly favorable efficiencies and selectivities toward MG and FA compared to pristine PVDF, which proves the positive roles of ZIF-67 in the adsorption ability of the hybrid membranes. The adsorption conditions are optimized and the adsorption kinetics and thermodynamics are analysed to study the adsorption mechanism. The reusability and the structural stability of the hybrid membranes undergoing cyclic adsorption processes are also discussed. To the best of our knowledge, this is the first time that good adsorption capacities for MG and FA for these MOF/PVDF membranes have been reported. This work highlights the prospective applications of MOF/PVDF hybrid membranes in the rapid and effective removal of target organics in the treatment of waste water.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Na Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Zhongqiao Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yide Han
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Junli Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Junbiao Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Hao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xia Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
37
|
Wan M, Xiang F, Liu Z, Guan D, Shao Y, Zheng L, Jin M, She Y, Cao L, Jin F, Chen R, Wang S, Wu Y, Abd El-Aty AM, Wang J. Novel Fe 3O 4@metal-organic framework@polymer core-shell-shell nanospheres for fast extraction and specific preconcentration of nine organophosphorus pesticides from complex matrices. Food Chem 2021; 365:130485. [PMID: 34364008 DOI: 10.1016/j.foodchem.2021.130485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Herein, a novel core-shell-shell magnetic nanosphere denoted as Fe3O4@ZIF-8@polymer was fabricated by sequential in situ self-assembly and precipitation polymerization for effective magnetic solid-phase extraction of nine organophosphorus pesticides (OPPs) from river water, pear, and cabbage samples. The integrated Fe3O4@ZIF-8@polymer featured convenient magnetic separation property and excellent multi-target binding ability. More importantly, the functional polymer coating greatly improved the extraction performance of Fe3O4@ZIF-8 for OPPs, thus facilitating the simultaneous determination of trace OPP residues in real samples. The developed MPSE-LC-MS/MS method exhibited good linearity (R2 ≥ 0.9991) over the concentration range of 0.2-200 µg L-1, low limits of detection of 0.0002-0.005 μg L-1 for river water and 0.006-0.185 μg kg-1 for pear and cabbage, satisfactory precision with relative standard deviations ≤ 9.7% and accuracy with recoveries of 69.5-94.3%. These results highlight that the combination of polymers with MOFs has great potential to fabricate excellent adsorbents for high-throughput analysis of various contaminants in complex matrices.
Collapse
Affiliation(s)
- Mengfei Wan
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China; College of Grain, Henan University of Technology, Zhengzhou 450001, PR China
| | - Fachun Xiang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Zhongdong Liu
- College of Grain, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Denggao Guan
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yong Shao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Liping Cao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing 100054, PR China
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China.
| | - Yijun Wu
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, PR China
| |
Collapse
|
38
|
Le T, Chen X, Dong H, Tarpeh W, Perea-Cachero A, Coronas J, Martin SM, Mohammad M, Razmjou A, Esfahani AR, Koutahzadeh N, Cheng P, Kidambi PR, Esfahani MR. An Evolving Insight into Metal Organic Framework-Functionalized Membranes for Water and Wastewater Treatment and Resource Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - William Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-6104, United States
| | - Adelaida Perea-Cachero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50018, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Stephen M. Martin
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Munirah Mohammad
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirsalar R. Esfahani
- Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Negin Koutahzadeh
- Environmental Health & Safety, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Piran R. Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
39
|
Jiang Y, Zhang B, Li J, Sun Y, Wang X, Ma P, Song D. One-step fabrication of hydrophilic MIL-68(Al)/Chitosan-coated melamine sponge for vortex-assisted solid-phase extraction of parabens in water samples. Talanta 2021; 224:121799. [DOI: 10.1016/j.talanta.2020.121799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022]
|
40
|
Ezzuldin M Saber S, Md Jamil SNA, Abdullah LC, Choong TSY, Ming Ting T. Insights into the p-nitrophenol adsorption by amidoxime-modified poly(acrylonitrile- co-acrylic acid): characterization, kinetics, isotherm, thermodynamic, regeneration and mechanism study. RSC Adv 2021; 11:8150-8162. [PMID: 35423311 PMCID: PMC8695099 DOI: 10.1039/d0ra10910j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/29/2021] [Indexed: 11/21/2022] Open
Abstract
This study performs an appraisal of the adsorptive capacity of amidoxime-modified poly(acrylonitrile-co-acrylic acid) or abbreviated as (AO-modified poly(AN-co-AA)) for the p-nitrophenol (PNP) adsorption, from aquatic environments via batch system. The AO-modified poly(AN-co-AA) polymer was developed with redox polymerization, and then altered by using hydroxylamine hydrochloride (HH). Tools used to describe the physicochemical and morphological characteristics of the AO-modified poly(AN-co-AA) were Fourier transform infrared (FTIR) spectroscopy, CHN elemental analysis, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The adsorption kinetics were examined by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion kinetic models. Meanwhile, the isotherms were investigated by Langmuir, Freundlich, Temkin and Redlich-Peterson models. It was found that the adsorption was best fitted with pseudo-second order, and agreed with both Langmuir and Freundlich isotherm models. It was described best with the Freundlich isotherm due to highest R 2 (0.999). The maximum adsorption capacity was 143.06 mg g-1 at 298 K, and thermodynamic functions showed that the adsorption process was exothermic. Also, following five regeneration cycles, the adsorbent recorded 71.7% regeneration efficiency. The finding in this study indicates that the AO-modified poly(AN-co-AA) is an effective adsorbent to remove PNP from an aqueous solution.
Collapse
Affiliation(s)
- Shihab Ezzuldin M Saber
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- North Refineries Company, Ministry of Oil of Iraq Baiji Salahuddin Iraq
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia UPM Serdang 43400 Malaysia
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia UPM Serdang 43400 Malaysia
| | - Teo Ming Ting
- Radiation Technology Division, Malaysian Nuclear Agency 43000 Kajang Selangor Malaysia
| |
Collapse
|
41
|
Jiang Y, Li X, Piao H, Qin Z, Li J, Sun Y, Wang X, Ma P, Song D. A semi-automatic solid phase extraction system based on MIL-101(Cr) foam-filled syringe for detection of triazines in vegetable oils. J Sep Sci 2021; 44:1089-1097. [PMID: 33410576 DOI: 10.1002/jssc.202001098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
In this study, several metal-organic framework-melamine foam columns were first developed and used as a laboratory-made semi-automatic solid phase extraction packed in syringe adsorber for the extraction of six triazine herbicides from vegetable oil samples coupled to high-performance liquid chromatography-tandem mass spectrometry. The metal-organic framework-foam columns were prepared using a simple approach by embedding the solid particles in melamine foam using polyvinylidene difluoride physical encapsulation. The method was applicable to a wide variety of metal-organic framework materials, and the incorporated materials retained their unique properties. Key factors that affect the extraction efficiency, including the MIL-101(Cr) amount, sample flow rate, type and volume of the eluting solvent, and flow rate of eluting solvent, were investigated. Under optimum conditions, the proposed method exhibited low limits of detection (0.017-0.096 ng/mL, S/N = 3) for six triazines. The relative standard deviations calculated for all herbicides ranged from 0.2 to 14.9%. This study demonstrated that the MIL-101(Cr)-foam column can be used as a high-quality adsorption material for the detection of triazines in vegetable oils.
Collapse
Affiliation(s)
- Yanxiao Jiang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xu Li
- Department of Ophthalmology, The Second Hospital, Jilin University, Changchun, P. R. China
| | - Huilan Piao
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Zucheng Qin
- Hunan Warrant Pharmaceutical Company Ltd., Changsha, P. R. China
| | - Jingkang Li
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Ying Sun
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Xinghua Wang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Pinyi Ma
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
42
|
Wang X, Liu Y, Wang Q, Bu T, Sun X, Jia P, Wang L. Nitrogen, silicon co-doped carbon dots as the fluorescence nanoprobe for trace p-nitrophenol detection based on inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118876. [PMID: 32920501 DOI: 10.1016/j.saa.2020.118876] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
P-nitrophenol (PNP) has been widely applied to industry processing for many purposes, but the persistence and toxicity of residuum may pose risks to human health. To analyze PNP in industrial and agricultural wastewater, a versatile fluorescent probe sensing platform was proposed. In this work, we devised a fluorescence approach that utilized nitrogen, silicon co-doped carbon dots (N,Si-CDs) to monitor PNP originating from the inner filter effect (IFE). The N,Si-CDs were generated in a one-step hydrothermal synthesis, and which possessed outstanding fluorescence signal and water-dispersity. Emission at 441 nm was monitored with excitation at 360 nm using a common spectrofluorometer. The method achieved an exceptionally low limit of detection (LOD) of 0.011 μM. Furthermore, this method not only eliminates the interference from metal ions and acid ions, but also provides a potential application prospect for N,Si-CDs in the field of water monitoring. Analysis of tap and lake water led to 93.30-106.30% recoveries and <1% relative standard deviation at 2.5-25 μM PNP concentrations.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
43
|
Thamer BM, Aldalbahi A, Moydeen A M, Rahaman M, El-Newehy MH. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers (Basel) 2020; 13:E20. [PMID: 33374681 PMCID: PMC7793529 DOI: 10.3390/polym13010020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Electrospun polymer nanofibers (EPNFs) as one-dimensional nanostructures are characterized by a high surface area-to-volume ratio, high porosity, large number of adsorption sites and high adsorption capacity. These properties nominate them to be used as an effective adsorbent for the removal of water pollutants such as heavy metals, dyes and other pollutants. Organic dyes are considered one of the most hazardous water pollutants due to their toxic effects even at very low concentrations. To overcome this problem, the adsorption technique has proven its high effectiveness towards the removal of such pollutants from aqueous systems. The use of the adsorption technique depends mainly on the properties, efficacy, cost and reusability of the adsorbent. So, the use of EPNFs as adsorbents for dye removal has received increasing attention due to their unique properties, adsorption efficiency and reusability. Moreover, the adsorption efficiency and stability of EPNFs in aqueous media can be improved via their surface modification. This review provides a relevant literature survey over the last two decades on the fabrication and surface modification of EPNFs by an electrospinning technique and their use of adsorbents for the removal of various toxic dyes from contaminated water. Factors affecting the adsorption capacity of EPNFs, the best adsorption conditions and adsorption mechanism of dyes onto the surface of various types of modified EPNFs are also discussed. Finally, the adsorption capacity, isotherm and kinetic models for describing the adsorption of dyes using modified and composite EPNFs are discussed.
Collapse
Affiliation(s)
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.M.T.); (M.M.A.); (M.R.); (M.H.E.-N.)
| | | | | | | |
Collapse
|
44
|
Gharehbakhsh H, Panahi HA, Toosi MR, Hassani AH, Moniri E. Application of polyamide thin-film composite layered on polysulfone-GO/TiO 2 mixed matrix membranes for removal of nitrotoluene derivatives from petrochemical wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42481-42494. [PMID: 32710356 DOI: 10.1007/s11356-020-10210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Release of harmful organic intermediates or byproducts during the manufacture of petrochemical compounds is a serious problem in petrochemical plants. In this work, polysulfone membranes blended with GO/TiO2 nanocomposite were synthesized by phase inversion method and coated with a polyamide layer formed by interfacial polymerization to prepare a thin-film composite (TFC) sample. Analysis and characterization of the sample were carried out by XRD, FE-SEM, BET, FTIR/ATR, AFM, TGA, and zeta potential. Results indicated that incorporation of GO/TiO2 into the membrane structure enhanced porosity, surface roughness, and macrovoid formation along the cross-section of the sublayer and permeability of the membrane. The TFC membranes were applied to remove mononitrotoluene (MNT) and dinitrotoluene (DNT) as the basic intermediates of toluene diisocyanate (TDI). The membranes demonstrated high efficiency (> 90%) for the removal of MNT and DNT according to the charge exclusion mechanism and Donnan effect. Application of the TFC membrane for treatment of wastewater in the TDI plant showed that the removal of pollutants is variable in the range of 45-65% and 53-69% for the membrane with the highest flux and highest rejection in different transmembrane pressure, respectively.
Collapse
Affiliation(s)
- Hanieh Gharehbakhsh
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Toosi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| | - Amir Hessam Hassani
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elham Moniri
- Department of Chemistry, Varamin (Pishva) Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
45
|
Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NHH, Saad B, Rozaini MNH, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A. A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers (Basel) 2020; 12:E2648. [PMID: 33182825 PMCID: PMC7698011 DOI: 10.3390/polym12112648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Water-borne emerging pollutants are among the greatest concern of our modern society. Many of these pollutants are categorized as endocrine disruptors due to their environmental toxicities. They are harmful to humans, aquatic animals, and plants, to the larger extent, destroying the ecosystem. Thus, effective environmental remediations of these pollutants became necessary. Among the various remediation techniques, adsorption and photocatalytic degradation have been single out as the most promising. This review is devoted to the compilations and analysis of the role of metal-organic frameworks (MOFs) and their composites as potential materials for such applications. Emerging organic pollutants, like dyes, herbicides, pesticides, pharmaceutical products, phenols, polycyclic aromatic hydrocarbons, and perfluorinated alkyl substances, have been extensively studied. Important parameters that affect these processes, such as surface area, bandgap, percentage removal, equilibrium time, adsorption capacity, and recyclability, are documented. Finally, we paint the current scenario and challenges that need to be addressed for MOFs and their composites to be exploited for commercial applications.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
- Chemistry Department, Al-Qalam University Katsina, Katsina 2137, Nigeria
| | - Khairulazhar Jumbri
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia;
| | - Anita Ramli
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | | | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Muhammad Nur’ Hafiz Rozaini
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Hamza Ahmad Isiyaka
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.R.); (B.S.); (M.N.H.R.); (H.A.I.)
| | - Ahmad Hussaini Jagaba
- Civil Engineering Department, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Osamah Aldaghri
- Physics Department, College of Science, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abduaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
46
|
Peña-Velasco G, Hinojosa-Reyes L, Escamilla-Coronado M, Turnes-Palomino G, Palomino-Cabello C, Guzmán-Mar JL. Iron metal-organic framework supported in a polymeric membrane for solid-phase extraction of anti-inflammatory drugs. Anal Chim Acta 2020; 1136:157-167. [PMID: 33081940 DOI: 10.1016/j.aca.2020.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023]
Abstract
A solid-phase extraction methodology using a MIL-101(Fe)/PVDF membrane was proposed as a useful alternative for the simultaneous determination of naproxen, diclofenac, and ibuprofen, three anti-inflammatory drugs (NSAIDs), in wastewater samples by HPLC-CCD analysis. The MIL-101(Fe) was prepared by a rapid microwave-assisted method and supported in a polymeric PVDF membrane. The prepared material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FT-IR). The factors that affect the extraction of the NSAIDs using the MIL-101(Fe)/PVDF membrane as the sample volume, the solution pH and the elution solvent were studied in detail. The selected conditions were 50 mL of sample solution at pH 3 and 5 mL of methanol: acetone (30:70, v v-1) acidified with formic acid at 2% as elution solvent. The analytical method was linear with determination coefficients (r2 ≥ 0.998) in the calibration ranges from 2 to 100 ng mL-1 for naproxen, 20-200 ng mL-1 for diclofenac, and 100-300 ng mL-1 for ibuprofen. The intra and inter-day precision (repeatability and reproducibility, respectively) of the method (RSD%, n = 5) were lower than 4.8% and 7.1%, respectively. The accuracy reported as recovery percentages ranged from 82 to 118%, and the limits of detection were between 1.8 and 32.3 ng mL-1. Moreover, MIL-101(Fe)/PVDF membrane exhibited improved adsorption efficiency compared to that of its analog MIL-101(Cr)/PVDF and the pristine PVDF membranes, obtaining in an easy and rapid (60 min) way a low-cost and low-toxic adsorbent with excellent stability, reusability, mechanic resistance, and simple operation which shows excellent performance.
Collapse
Affiliation(s)
- Gabriela Peña-Velasco
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico.
| | - Maricela Escamilla-Coronado
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico
| | - Gemma Turnes-Palomino
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain
| | - Carlos Palomino-Cabello
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain
| | - Jorge Luis Guzmán-Mar
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Cd. Universitaria, Pedro de Alba S/n, C.P. 66455, San Nicolás de Los Garza, Nuevo León, Mexico.
| |
Collapse
|
47
|
An Overview and Evaluation of Highly Porous Adsorbent Materials for Polycyclic Aromatic Hydrocarbons and Phenols Removal from Wastewater. WATER 2020. [DOI: 10.3390/w12102921] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds had been widely recognized as priority organic pollutants in wastewater with toxic effects on both plants and animals. Thus, the remediation of these pollutants has been an active area of research in the field of environmental science and engineering. This review highlighted the advantage of adsorption technology in the removal of PAHs and phenols in wastewater. The literature presented on the applications of various porous carbon materials such as biochar, activated carbon (AC), carbon nanotubes (CNTs), and graphene as potential adsorbents for these pollutants has been critically reviewed and analyzed. Under similar conditions, the use of porous polymers such as Chitosan and molecularly imprinted polymers (MIPs) have been well presented. The high adsorption capacities of advanced porous materials such as mesoporous silica and metal-organic frameworks have been considered and evaluated. The preference of these materials, higher adsorption efficiencies, mechanism of adsorptions, and possible challenges have been discussed. Recommendations have been proposed for commercialization, pilot, and industrial-scale applications of the studied adsorbents towards persistent organic pollutants (POPs) removal from wastewater.
Collapse
|
48
|
Zeitoun Z, El-Shazly AH, Nosier S, Elmarghany MR, Salem MS, Taha MM. Performance Evaluation and Kinetic Analysis of Photocatalytic Membrane Reactor in Wastewater Treatment. MEMBRANES 2020; 10:membranes10100276. [PMID: 33049928 PMCID: PMC7601555 DOI: 10.3390/membranes10100276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
The objectives of the current study are to assess and compare the performance of a developed photocatalytic membrane reactor (PMR) in treating industrial waste (e.g., organic dye waste) against membrane distillation. The current PMR is composed of a feed tank, which is a continuous stirred photocatalytic reactor containing slurry Titanium dioxide (TiO2) particles that are activated by using ultraviolet lamp irradiation at a wavelength of 365 nm, and a poly-vinylidene flouride (PVDF) membrane cell. The experimental setup was designed in a flexible way to enable both separate and integrated investigations of the photocatalytic reactor and the membrane, separately and simultaneously. The experimental work was divided into two phases. Firstly, the PVDF membrane was fabricated and characterized to examine its morphology, surface charge, and hydrophobicity by using a scanning electron microscope, surface zeta potential, and contact angle tests, respectively. Secondly, the effects of using different concentrations of the TiO2 photocatalyst and feed (e.g., dye concentration) were examined. It is found that the PMR can achieve almost 100% dye removal and pure permeate is obtained at certain conditions. Additionally, a kinetic analysis was performed and revealed that the photocatalytic degradation of dye follows a pseudo-first-order reaction.
Collapse
Affiliation(s)
- Zeyad Zeitoun
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
| | - Ahmed H. El-Shazly
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-Just), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Shaaban Nosier
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
| | - Mohamed R. Elmarghany
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
- Mansoura University Nanotechnology Center, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (M.R.E.); (M.M.T.)
| | - Mohamed S. Salem
- Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
- Mansoura University Nanotechnology Center, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud M. Taha
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 11432, Egypt; (Z.Z.); (A.H.E.-S.); (S.N.)
- Environmental Engineering Department, University of Science and Technology, Zewail City of Science and Technology, October Gardens, Giza 12578, Egypt
- Correspondence: (M.R.E.); (M.M.T.)
| |
Collapse
|
49
|
Dana F, Soleimannejad J, Moghzi F, Taherzade SD, Janczak J. A new stable and reusable nanoscale Cu(II) coordination polymer as an efficient dye adsorbent. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
A double-layered neutral cadmium-organic framework for selective adsorption of cationic organic dyes through electrostatic affinity. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|