1
|
Saravana PS, Ummat V, Bourke P, Tiwari BK. Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review. Crit Rev Biotechnol 2023; 43:904-919. [PMID: 35786238 DOI: 10.1080/07388551.2022.2089869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
Abstract
In the modern era, macro-microalgae attract a strong interest across scientific disciplines, owing to the wide application of these cost-effective valuable bioresources in food, fuel, nutraceuticals, and pharmaceuticals etc. The practice of eco-friendly extraction techniques has led scientists to create alternative processes to the conventional methods, to enhance the extraction of the key valuable compounds from macro-microalgae. This review narrates the possible use of novel cell disruption techniques, including use of ionic liquid, deep eutectic solvent, surfactant, switchable solvents, high voltage electrical discharge, explosive decompression, compressional-puffing, plasma, and ozonation, which can enable the recovery of value added substances from macro-microalgae, complying with the principles of green chemistry and sustainability. The above-mentioned innovative techniques are reviewed with respect to their working principles, benefits, and possible applications for macro-microalgae bioactive compound recovery and biofuel. The benefits of these techniques compared to conventional extraction methods include shorter extraction time, improved yield, and reduced cost. Furthermore, various combinations of these innovative technologies are used for the extraction of thermolabile bioactive compounds. The challenges and prospects of the innovative extraction processes for the forthcoming improvement of environmentally and cost-effective macro-microalgal biorefineries are also explained in this review.
Collapse
Affiliation(s)
- Periaswamy Sivagnanam Saravana
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Viruja Ummat
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
2
|
Tounsi L, Ben Hlima H, Hentati F, Hentati O, Derbel H, Michaud P, Abdelkafi S. Microalgae: A Promising Source of Bioactive Phycobiliproteins. Mar Drugs 2023; 21:440. [PMID: 37623721 PMCID: PMC10456337 DOI: 10.3390/md21080440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined.
Collapse
Affiliation(s)
- Latifa Tounsi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Hajer Ben Hlima
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Faiez Hentati
- INRAE, Animal Research Unit and Functionalities of Animal Products (UR AFPA), University of Lorraine, USC 340, F-54000 Nancy, France;
| | - Ons Hentati
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Hana Derbel
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| |
Collapse
|
3
|
Sun Y, Cui Y, Wang R, Ma J, Sun H, Cheng L, Yang R. The Hydrolysis of Pigment-Protein Phycoerythrin by Bromelain Enhances the Color Stability. Foods 2023; 12:2574. [PMID: 37444311 DOI: 10.3390/foods12132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Phycoerythrin (PE) is a natural protein-pigment complex with a strong pink color, but it is sensitive to thermal and light variations. In this study, PE was extracted from Porphyra haitanensis in a yield of 0.2% (w/w). The phycoerythrin hydrolysates (PEH) (3-10 kDa) were prepared by enzymatic hydrolysis of PE with bromelain (8000 U/g) at 47 °C for 30 min, with a degree of hydrolysis (DH) of 11.57 ± 0.39% and a color degradation rate of 7.98 ± 0.39%. The physicochemical properties of PEH were evaluated. The UV and fluorescence spectra indicated that bromelain changed the microenvironment around phycoerythrobilin (PEB). The infrared spectrum revealed that the bromelain hydrolysis increased the α-helix content of PEH. The scanning electron microscope showed that bromelain destroyed the dense and smooth structure of PE, resulting in irregular porous structures. The radical scavenging activities of DPPH and ABTS of PEH were increased relative to that of PE (p < 0.05). The thermal (50-80 °C)-, UV (0.5-3 h)-, visible light irradiation (2-8 h)-, and metal ion exposing stabilities of PEH were significantly improved (p < 0.05). This study provides a potential scheme for overcoming the sensitivity of PE to thermal and light variations and facilitates PEH as a natural colorant ingredient in food and pigment applications.
Collapse
Affiliation(s)
- Yifei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuanmeng Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haili Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Fatima I, Munir M, Qureshi R, Hanif U, Gulzar N, Sheikh AA. Advanced methods of algal pigments extraction: A review. Crit Rev Food Sci Nutr 2023; 64:9771-9788. [PMID: 37233148 DOI: 10.1080/10408398.2023.2216782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Algae are exclusively aquatic photosynthetic organisms that are microscopic or macroscopic, unicellular or multicellular and distributed across the globe. They are a potential source of food, feed, medicine and natural pigments. A variety of natural pigments are available from algae including chlorophyll a, b, c d, phycobiliproteins, carotenes and xanthophylls. The xanthophylls include acyloxyfucoxanthin, alloxanthin, astaxanthin, crocoxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, loroxanthin, monadoxanthin, neoxanthin, nostoxanthin, perdinin, Prasinoxanthin, siphonaxanthin, vaucheriaxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, while carotenes include echinenone, α-carotene, β-carotene, γ-carotene, lycopene, phytoene, phytofluene. These pigments have applications as pharmaceuticals and nutraceuticals and in the food industry for beverages and animal feed production. The conventional methods for the extraction of pigments are solid-liquid extraction, liquid-liquid extraction and soxhlet extraction. All these methods are less efficient, time-consuming and have higher solvent consumption. For a standardized extraction of natural pigments from algal biomass advanced procedures are in practice which includes Supercritical fluid extraction, Pressurized liquid extraction, Microwave-assisted extraction, Pulsed electric field, Moderate electric field, Ultrahigh pressure extraction, Ultrasound-assisted extraction, Subcritical dimethyl ether extraction, Enzyme assisted extraction and Natural deep eutectic solvents. In the present review, these methods for pigment extraction from algae are discussed in detail.
Collapse
Affiliation(s)
- Ishrat Fatima
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Nabila Gulzar
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Ji L, Qiu S, Wang Z, Zhao C, Tang B, Gao Z, Fan J. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Res Int 2023; 167:112737. [PMID: 37087221 DOI: 10.1016/j.foodres.2023.112737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Phycobiliproteins are light-harvesting complexes found mainly in cyanobacteria and red algae, playing a key role in photosynthesis. They are extensively applied in food, cosmetics, and biomedical industry due to bright color, unique fluorescence characteristics and diverse physiological activities. They have received much attention in the past few decades because of their green and sustainable production, safe application, and functional diversity. This work aimed to provide a comprehensive summary of parameters affecting the whole bioprocess with a special focus on the extraction and purification, which directly determines the application of phycobiliproteins. Food grade phycobiliproteins are easy to prepare, whereas analytical grade phycobiliproteins are extremely complex and costly to produce. Most phycobiliproteins are denatured and inactivated at high temperatures, severely limiting their application. Inspired by recent advances, future perspectives are put forward, including (1) the mutagenesis and screening of algal strains for higher phycobiliprotein productivity, (2) the application of omics and genetic engineering for stronger phycobiliprotein stability, and (3) the utilization of synthetic biology and heterologous expression systems for easier phycobiliprotein isolation. This review will give a reference for exploring more phycobiliproteins for food and health application development.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sheng Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhiheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chenni Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bo Tang
- Nantong Focusee Biotechnology Company Ltd., Nantong, Jiangsu 226133, PR China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
6
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
7
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Ma J, Hu J, Sha X, Meng D, Yang R. Phycobiliproteins, the pigment-protein complex form of natural food colorants and bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:2999-3017. [PMID: 36193900 DOI: 10.1080/10408398.2022.2128714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Currently, the use of synthetic pigments in foods is restricted since synthetic pigments are proven and suspected to be harmful to human health. Phycobiliproteins (PBPs), existed in phycobilisomes (PBSs) of algae, are a kind of pigment-proteins with intense color. The specific color of PBPs (red and blue) is given by the water-soluble open-chained tetrapyrrole chromophore (phycobilin) that covalently attaches to the apo-protein via thioether linkages to cysteine residues. According to the spectral characteristics of PBPs, they can be categorized as phycoerythrins (PEs), phycocyanins (PCs), allophycocyanins (APCs), and phycoerythrocyanins (PECs). PBPs can be used as natural food colorants, fluorescent substances, and bioactive ingredients in food applications owing to their color characteristics and physiological activities. This paper mainly summarizes the extraction and purification methods of the PBPs and reviews their characteristics and applications. Moreover, the use of several strategies such as additives, microencapsulation, electrospray, and cross-linking to improve the stability and bioavailability of PBPs as well as the future outlooks of PBPs as natural colorants in food commercialization are elucidated.
Collapse
Affiliation(s)
- Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
9
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Sarkarat R, Mohamadnia S, Tavakoli O. Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Freeze–thaw-, enzyme-, ultrasound- and pulsed electric field-assisted extractions of C-phycocyanin from Spirulina platensis dry biomass. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Tolpeznikaite E, Bartkevics V, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Zavistanaviciute P, Zokaityte E, Ruibys R, Bartkiene E. Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods 2021; 10:2226. [PMID: 34574335 PMCID: PMC8471643 DOI: 10.3390/foods10092226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the characteristics of macroalgae (Cladophora rupestris, Furcellaria lumbricalis, Ulva intestinalis) and microalgae (Arthrospira platensis (Sp1, Sp2), Chlorella vulgaris) extracts, including micro- and macroelement transition to extract, antioxidant, antimicrobial properties, the concentrations of chlorophyll (-a, -b), and the total carotenoid concentration (TCC). In macroalgae, the highest TCC and chlorophyll content were found in C. rupestris. In microalgae, the TCC was 10.1-times higher in C. vulgaris than in Sp1, Sp2; however, the chlorophyll contents in C. vulgaris samples were lower. A moderate negative correlation was found between the chlorophyll-a and TCC contents (r = -0.4644). In macroalgae extract samples, C. rupestris and F. lumbricalis showed the highest total phenolic compound content (TPCC). DPPH antioxidant activity and TPCC in microalgae was related to the TCC (r = 0.6191, r = 0.6439, respectively). Sp2 extracts inhibited Staphylococcus haemolyticus; C. rupestris, F. lumbricalis, U. intestinalis, and Sp2 extracts inhibited Bacillus subtilis; and U. intestinalis extracts inhibited Streptococcus mutans strains. This study showed that extraction is a suitable technology for toxic metal decontamination in algae; however, some of the desirable microelements are reduced during the extraction, and only the final products, could be applied in food, feed, and others.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes iela 3, Zemgales priekšpilsēta, LV-1076 Riga, Latvia;
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Faculty of Veterinary, Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Renata Pilkaityte
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipėda, Lithuania;
| | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Babtai, Lithuania; (P.V.); (D.U.)
| | - Paulina Zavistanaviciute
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Egle Zokaityte
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, K. Donelaicio Str. 58, LT-44244 Kaunas, Lithuania;
| | - Elena Bartkiene
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (E.T.); (P.Z.); (E.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
13
|
Extraction of Pigments from Microalgae and Cyanobacteria—A Review on Current Methodologies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pigments from microalgae and cyanobacteria have attracted great interest for industrial applications due to their bioactive potential and their natural product attributes. These pigments are usually sold as extracts, to overcome purification costs. The extraction of these compounds is based on cell disruption methodologies and chemical solubility of compounds. Different cell disruption methodologies have been used for pigment extraction, such as sonication, homogenization, high-pressure, CO2 supercritical fluid extraction, enzymatic extraction, and some other promising extraction methodologies such as ohmic heating and electric pulse technologies. The biggest constrain on pigment bioprocessing comes from the installation and operation costs; thus, fundamental and applied research are still needed to overcome such constrains and give the microalgae and cyanobacteria industry an opportunity in the world market. In this review, the main extraction methodologies will be discussed, taking into account the advantages and disadvantages for each kind of pigment, type of organism, cost, and final market.
Collapse
|
14
|
Pagels F, Vasconcelos V, Guedes AC. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules 2021; 11:biom11050735. [PMID: 34063485 PMCID: PMC8156961 DOI: 10.3390/biom11050735] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids are tetraterpenoids molecules present in all photosynthetic organisms, responsible for better light-harvesting and energy dissipation in photosynthesis. In cyanobacteria, the biosynthetic pathway of carotenoids is well described, and apart from the more common compounds (e.g., β-carotene, zeaxanthin, and echinenone), specific carotenoids can also be found, such as myxoxanthophyll. Moreover, cyanobacteria have a protein complex called orange carotenoid protein (OCP) as a mechanism of photoprotection. Although cyanobacteria are not the organism of choice for the industrial production of carotenoids, the optimisation of their production and the evaluation of their bioactive capacity demonstrate that these organisms may indeed be a potential candidate for future pigment production in a more environmentally friendly and sustainable approach of biorefinery. Carotenoids-rich extracts are described as antioxidant, anti-inflammatory, and anti-tumoral agents and are proposed for feed and cosmetical industries. Thus, several strategies for the optimisation of a cyanobacteria-based bioprocess for the obtention of pigments were described. This review aims to give an overview of carotenoids from cyanobacteria not only in terms of their chemistry but also in terms of their biotechnological applicability and the advances and the challenges in the production of such compounds.
Collapse
Affiliation(s)
- Fernando Pagels
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (V.V.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (V.V.)
- FCUP—Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Catarina Guedes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (F.P.); (V.V.)
- Correspondence:
| |
Collapse
|
15
|
Seghiri R, Legrand J, Hsissou R, Essamri A. Comparative study of the impact of conventional and unconventional drying processes on phycobiliproteins from Arthrospira platensis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Narindri Rara Winayu B, Tung Lai K, Ta Hsueh H, Chu H. Production of phycobiliprotein and carotenoid by efficient extraction from Thermosynechococcus sp. CL-1 cultivation in swine wastewater. BIORESOURCE TECHNOLOGY 2021; 319:124125. [PMID: 32977095 DOI: 10.1016/j.biortech.2020.124125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, the performance of TCL-1 cultivation in swine wastewater was observed under various light intensity, treatment type of swine wastewater, and initial biomass concentration. Furthermore, pigments production (phycobiliprotein and carotenoid), was the main target in this study along with optimum extraction method. Under the cultivation in the anoxic treated swine wastewater (ATSW), highest biomass increment (1.001 ± 0.104 g/L) was achieved with 2 g/L initial biomass concentration and 1,000 µE/m2/s light intensity whereas cultivation in the anoxic and aerobic treated swine wastewater (AATSW) presented better performance on pigments production with the highest production in allophycocyanin which reached 12.07 ± 0.3% dwc. Extraction time and ultrasonication have significant influence on the phycobiliprotein extraction, yet different temperature and incubation time give similar extraction result for β-carotene. Carotenoids production with AATSW cultivation were two times higher than the cultivation in ATSW. However, ammonium-N degradation was performed better in the ATSW cultivation.
Collapse
Affiliation(s)
| | - Ko Tung Lai
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
17
|
Fratelli C, Burck M, Amarante MCA, Braga ARC. Antioxidant potential of nature's “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Amarante MCAD, Braga ARC, Sala L, Moraes CC, Kalil SJ. Design strategies for C-phycocyanin purification: Process influence on purity grade. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
20
|
Syrpas M, Bukauskaitė J, Ramanauskienė K, Karosienė JR, Majienė D, Bašinskienė L, Venskutonis PR. Ultrasound-Assisted Extraction and Assessment of Biological Activity of Phycobiliprotein-Rich Aqueous Extracts from Wild Cyanobacteria ( Aphanizomenon flos-aquae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1896-1909. [PMID: 31589437 DOI: 10.1021/acs.jafc.9b05483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms that are considered as an important source of bioactive metabolites, among which phycobiliproteins (PBPs) are a class of water-soluble macromolecules of cyanobacteria with a wide range of applications. Massive proliferation of cyanobacteria can lead to excessive surface water blooms, of which removal, as a management measure, should be prioritized. In this study, the utilization of wild cyanobacteria biomass (Aphanizomenon flos-aquae) for extraction of phycobiliproteins is reported. Extraction of phycobiliproteins by conventional methods, such as homogenization, freeze-thaw cycles, and solid-liquid extraction, were optimized prior to ultrasound-assisted extraction. Standardization of ultrasonication for different parameters, such as ultrasonication amplitude (38, 114, and 190 μm) and ultrasonication time (1, 5.5, and 10 min), was carried out using a central composite design and response surface methodology for each of the primary techniques. A substantial increase on the individual and total phycobiliprotein yields was observed after ultrasonic treatment. The highest total PBP yield (115.37 mg/g of dry weight) was observed with samples treated with a homogenizer (30 min, 30 °C, and 1 cycle) combined with ultrasound treatment (8.7 min at 179 μm). Moreover, in vitro antioxidant capacity was observed for the obtained extracts in the Folin-Ciocalteu and ABTS* + assays. In addition, a cytotoxic effect against C6 glioma cells was observed for A. flos-aquae PBPs. Conclusively, wild cyanobacteria could be considered as an alternative feedstock for recovery of PBPs.
Collapse
Affiliation(s)
- Michail Syrpas
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| | - Jolita Bukauskaitė
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| | | | - Ju Ratė Karosienė
- Laboratory of Algology and Microbial Ecology , Nature Research Centre , Akademijos gatvė 2 , LT-08412 Vilnius , Lithuania
| | | | - Loreta Bašinskienė
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| | - Petras Rimantas Venskutonis
- Department of Food Science & Technology , Kaunas University of Technology , Radvilėnų plentas 19 , LT-50254 Kaunas , Lithuania
| |
Collapse
|
21
|
Tavanandi HA, Raghavarao K. Ultrasound-assisted enzymatic extraction of natural food colorant C-Phycocyanin from dry biomass of Arthrospira platensis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Morsy MA, Gupta S, Nair AB, Venugopala KN, Greish K, El-Daly M. Protective Effect of Spirulina platensis Extract against Dextran-Sulfate-Sodium-Induced Ulcerative Colitis in Rats. Nutrients 2019; 11:nu11102309. [PMID: 31569451 PMCID: PMC6836255 DOI: 10.3390/nu11102309] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a multifactorial inflammatory condition. This study aimed to test the protective effects of Spirulina platensis against ulcerative colitis (UC). UC was induced in thirty-six male Wistar rats by adding dextran sulfate sodium (DSS) to their drinking water, while a control group received only drinking water. UC rats were equally-divided into six groups that received a single oral daily dose of vehicle (DSS), sulfasalazine (SSZ, 50 mg/kg/day), chloroform or the hydroalcoholic extracts of Spirulina platensis (100 or 200 mg/kg/day) for 15 days, and then blood and colon samples were harvested for determination of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), myeloperoxidase (MPO), and histopathology. At the end of the study, compared to time-matched controls, UC rats showed increased TNF-α (1.64-fold), IL-6 (5.73-fold), ESR (3.18-fold), and MPO (1.61-fold), along with loss of body weight (24.73%) and disease activity index (1.767 ± 0.216 vs. 0 ± 0), p < 0.001. These effects were prevented by SSZ treatment (p < 0.001 vs. DSS). The hydroalcoholic extract of Spirulina platensis dose-dependently modulated all DSS-induced inflammatory changes. However, the chloroform extract significantly lowered only IL-6 and ESR, but not TNF-α or MPO levels. The protective effects of the hydroalcoholic extract of Spirulina platensis against experimental UC involved mitigation of DSS-induced inflammation.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt.
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to University), Mullana, Ambala, Haryana 133203, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain.
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt.
| |
Collapse
|