1
|
Zhang H, Zhou M, Jin H, Jia W, Li C, Pan F, Shi H. Enzyme activity test paper with high wet strength and anion adsorption properties fabricated from whole cationized softwood chemical fiber. Int J Biol Macromol 2024; 273:132769. [PMID: 38823745 DOI: 10.1016/j.ijbiomac.2024.132769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Paper-based test film material is widely used in a variety of test instruments for different applications. The enzyme activity test paper sheet is one of the most popularly used test papers. Here we present a novel fabrication of paper-based enzyme activity test paper without cationic resin added in. The chemical pulping fibers were first beaten to different degrees (from 14.6 to 41.5°SR) with a PFI beater. After that, the fibers were modified with a cationic agent (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) under the system of alkali and water solution. Finally, the test papers were made with the modified fiber by a regular paper former in lab. The results showed that beating is beneficial for the improvement of the cationization reaction which is indicated by the Zeta potential, FTIR and EDS. The main mechanisms involved are the destruction of crystalline zone, increase of free hydroxyl group and defibrillation. This hypothesis was supported by the SEM, XRD and fiber analyzer. Beating under the optimized condition, the wet strength and liquid absorbability of test paper can meet the application requirement, and the test results of enzyme activity are quite close to those of commercial test papers.
Collapse
Affiliation(s)
- He Zhang
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Miaofang Zhou
- Zhejiang Hanghua New Materials Sci.&Tech. Co., Ltd., Hangzhou, Zhejiang 310000, PR China
| | - Huiqi Jin
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Wenchao Jia
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Changgeng Li
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Feng Pan
- Takara Biotechnology(Dalian) Co., Ltd., Dalian, Liaoning 116000, PR China
| | - Haiqiang Shi
- Liaoning Key Lab of Lignocellulose chemistry and Biomaterials, The Liaoning Province Key Laboratory of Paper and Pulp Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China.
| |
Collapse
|
2
|
Hua F, Zhang Z, Zhao Z, Hou X, Qu J, Lv C, Hu Q. The performance of quaternary-ammonium chitosan in wastewater treatment: The overlooked role of solubility. Int J Biol Macromol 2024; 272:132933. [PMID: 38862322 DOI: 10.1016/j.ijbiomac.2024.132933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Quaternary-ammonium chitosan (CT-CTA) is a popular water treatment agent, and its electropositivity and cation strength are improved compared with chitosan. The use of CT-CTA is widely advocated to remove suspended particles and organic matter from wastewater. However, the solubility of CT-CTA is an important factor affecting the performance of CT-CTA, which is a neglected problem in previous studies. In the study, CT-CTA with different solubilities were prepared by adjusting pH from 2 to 7 in preparation, and their applications were explored in wastewater. When the pH was 2, 2.5, or 3, the obtained CT-CTA was a dissolved state. The turbidity and color removal were 95 % - 98 % and 60 % - 74 %, respectively. When the pH was 4, 5, 6, or 7, the obtained CT-CTA was a solid state. The turbidity and color removal were 30 % - 63 % and 90 % - 97 %, respectively. For domestic-wastewater treatment, CT-CTA in a dissolved state removed 92 % of turbidity and 50 % of chemical oxygen demand (COD). CT-CTA in a solid state removed 86 % of turbidity and 64 % of COD with poly aluminum chloride (PAC). The results illustrated the performance of CT-CTA with different solubilities, which can broaden its application in wastewater treatment.
Collapse
Affiliation(s)
- Fangcong Hua
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Zonghui Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Zhibo Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, PR China.
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China.
| |
Collapse
|
3
|
Gao Z, Ju B, Tang B, Ma W, Niu W, Zhang S. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38297996 DOI: 10.1021/acs.langmuir.3c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Flocculants are crucial agents in wastewater treatment because they can remove oppositely charged impurities effectively and swiftly. However, flocculation also inevitably causes secondary contamination due to the residual properties, nonreusability, and nondegradability of traditional flocculant molecules. Herein, an ecofriendly starch-based flocculant, i.e., 2,4-bis(dimethylamino)-[1,3,5]-triazine-6-starch, was synthesized via a preactivation-etherification strategy. The large molecular weight property of the flocculant produced by this method enhances the intermolecular hydrophobic association, achieving complete phase separation of all flocculant molecules from water and residue-free flocculation for the first time. Importantly, a large molecular weight tertiary amine starch-based flocculant (LMTS) exhibits a remarkable flocculation capacity of over 1800 mg·g-1 for dye wastewater, which is significantly higher than that of traditional polyacrylamide and polyaluminum chloride flocculants. Furthermore, the LMTS flocculant could be recycled by pH adjustment, and its structural stability ensured sustained reusability. This high-performance residue-free biomass-based flocculant offers a green advance for wastewater treatment.
Collapse
Affiliation(s)
- Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
5
|
Smirnov MA, Vorobiov VK, Fedotova VS, Sokolova MP, Bobrova NV, Smirnov NN, Borisov OV. A Polyelectrolyte Colloidal Brush Based on Cellulose: Perspectives for Future Applications. Polymers (Basel) 2023; 15:4526. [PMID: 38231953 PMCID: PMC10708233 DOI: 10.3390/polym15234526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
This feature article is devoted to the evaluation of different techniques for producing colloidal polyelectrolyte brushes (CPEBs) based on cellulose nanofibers modified with grafted polyacrylates. The paper also reviews the potential applications of these CPEBs in designing electrode materials and as reinforcing additives. Additionally, we discuss our own perspectives on investigating composites with CPEBs. Herein, polyacrylic acid (PAA) was grafted onto the surface of cellulose nanofibers (CNFs) employing a "grafting from" approach. The effect of the PAA shell on the morphological structure of a composite with polypyrrole (PPy) was investigated. The performance of as-obtained CNF-PAA/PPy as organic electrode material for supercapacitors was examined. Furthermore, this research highlights the ability of CNF-PAA filler to act as an additional crosslinker forming a physical sub-network due to the hydrogen bond interaction inside chemically crosslinked polyacrylamide (PAAm) hydrogels. The enhancement of the mechanical properties of the material with a concomitant decrease in its swelling ratio compared to a pristine PAAm hydrogel was observed. The findings were compared with the recent theoretical foundation pertaining to other similar materials.
Collapse
Affiliation(s)
- Michael A. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Vitaly K. Vorobiov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Veronika S. Fedotova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Maria P. Sokolova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Natalya V. Bobrova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Nikolay N. Smirnov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, V.O. Bolshoi Pr. 31, 199004 St. Petersburg, Russia; (V.K.V.); (V.S.F.); (M.P.S.); (N.V.B.); (N.N.S.)
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254 CNRS/UPPA, 64053 Pau, France
| |
Collapse
|
6
|
Shyichuk A, Ziółkowska D, Szulc J. Coagulation of Hydrophobic Ionic Associates of Cetyltrimethylammonium Bromide and Carrageenan. Molecules 2023; 28:7584. [PMID: 38005305 PMCID: PMC10673590 DOI: 10.3390/molecules28227584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
In aqueous solutions, cetyltrimethylammonium cations bind to carrageenan polyanions, and the resulting ionic associates form macroscopic aggregates due to hydrophobic interaction. At certain ratios of cetyltrimethylammonium to carrageenan, the resulting colloidal particles auto-flocculate. According to visual observations, the ratio ranges from 1 to 3 mmol/g; otherwise the suspensions are stable. By measuring the sedimentation rate and particle size distribution, the most extensive flocculation was found to be from 1.7 to 2.3 mmol/g. The ratio corresponding to the fastest auto-flocculation was precisely determined by titrating the reagents with small increments and recording the turbidity. The turbidimetric titration plots contain distinct break points corresponding to the most extensive flocculation. These break points occur at the same ratio of carrageenan to cetyltrimethylammonium over a wide range of reagent concentrations. The precise values of the critical ratio were found to be 1.78 and 1.53 mmol/g, respectively, during the titration of cetyltrimethylammonium with carrageenan and vice versa. The number of anionic sulfate groups in carrageenan was measured by ICP OES and found to be 1.35 mmol/g. This value is consistent with the critical ratio of the auto-flocculation.
Collapse
Affiliation(s)
| | - Dorota Ziółkowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.S.); (J.S.)
| | | |
Collapse
|
7
|
Grządka E, Godek E, Maciołek U, Słowik G, Kwiatkowski M, Terebun P, Zarzeczny D, Pawłat J. Processes occurring in the NaCMC/glauconite suspension under the cold plasma treatment. Influence of plasma on adsorptive and stabilizing properties of the system. Carbohydr Polym 2023; 319:121158. [PMID: 37567687 DOI: 10.1016/j.carbpol.2023.121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2023]
Abstract
The paper presents the studies on the processes at the interface of the colloidal suspensions composed of clay mineral - glauconite (GT) and polysaccharide - sodium carboxymethyl cellulose (NaCMC) with the cold plasma treatment (CPT). The surface composition and chemical binding in NaCMC and GT changes are determined by means of FTIR and XPS (both methods detected the incorporation of oxygen-related functional groups). Moreover, the additional information about both the textural properties and morphological changes on the surfaces before and after CPT are studied using the BET, CHN, SEM HRTEM and STEM-EDS methods. The elemental mapping and scanning electron microscope imaging confirmed the NaCMC adsorption on GT (carbon mapping) and proved the GT surface lost its "house of card structure" after the CPT. As follows the CPT causes the protonation of NaCMC and the polymer cross-linking whereas the GT sample is more oxidized. Moreover, it was found that a significant improvement in the GT/NaCMC system stability and the NaCMC adsorption on the GT surface were a result of the CPT. The obtained data could be used for the colloidal stability of polymer/solid suspensions, thus providing new opportunities for the chemical industry; particularly for preparation of new functionalized materials.
Collapse
Affiliation(s)
- E Grządka
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, M. Skłodowskiej Curie 3 Sq., 20-031 Lublin, Poland.
| | - E Godek
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, M. Skłodowskiej Curie 3 Sq., 20-031 Lublin, Poland.
| | - U Maciołek
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, M. Skłodowskiej Curie 3 Sq., 20-031 Lublin, Poland.
| | - G Słowik
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, M. Skłodowskiej Curie 3 Sq., 20-031 Lublin, Poland.
| | - M Kwiatkowski
- Institute of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland.
| | - P Terebun
- Institute of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland.
| | - D Zarzeczny
- Institute of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland.
| | - J Pawłat
- Institute of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a, 20-618 Lublin, Poland.
| |
Collapse
|
8
|
Dendrimer modified composite magnetic nano-flocculant for efficient removal of graphene oxide. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Assessment of the Performance of Cationic Cellulose Derivatives as Calcium Carbonate Flocculant for Papermaking. Polymers (Basel) 2022; 14:polym14163309. [PMID: 36015566 PMCID: PMC9414915 DOI: 10.3390/polym14163309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Cationic polyacrylamides (CPAMs) are usually used as filler retention agents in papermaking formulations. However, increasing environmental restrictions and their non-renewable origin have driven research into bio-based alternatives. In this context, cationic lignocellulosic derivatives have been attracting considerable research interest as a potential substitute. In this work, distinct cationic celluloses with degrees of substitution of between 0.02 and 1.06 and with distinct morphological properties were synthesized via the cationization of bleached eucalyptus kraft pulp, using a direct cationization with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) or a two-step cationization, where the cellulose was first oxidized to form dialdehyde cellulose and was then made to react with Girard’s reagent T (GT). Fibrillated samples were produced by subjecting some samples to a high-pressure homogenization treatment. The obtained samples were evaluated regarding their potential to flocculate and retain precipitated calcium carbonate (PCC), and their performance was compared to that of a commercial CPAM. The cationic fibrillated celluloses, with a degree of substitution of ca. 0.13–0.16, exhibited the highest flocculation performance of all the cationic celluloses and were able to increase the filler retention from 43% (with no retention agent) to ca. 61–62% (with the addition of 20 mg/g of PCC). Although it was not possible to achieve the performance of CPAM (filler retention of 73% with an addition of 1 mg/g of PCC), the results demonstrated the potential of cationic cellulose derivatives for use as bio-based retention agents.
Collapse
|
10
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
11
|
Pedrosa JFS, Rasteiro MG, Neto CP, Ferreira PJT. Effect of cationization pretreatment on the properties of cationic Eucalyptus micro/nanofibrillated cellulose. Int J Biol Macromol 2022; 201:468-479. [PMID: 35051499 DOI: 10.1016/j.ijbiomac.2022.01.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022]
Abstract
Micro/nanofibrillated celluloses (M/NFCs) have attracted considerable research interest over the past few decades, with various pretreatments being used to reduce energy consumption and/or increase fibrillation. To date, few studies have considered cationization as a pretreatment for their preparation. In this work, quaternary ammonium groups were attached to cellulose fibers by a direct reaction with 2,3-epoxypropyltrimethylammonium chloride or by a two-step method (periodate oxidation + Girard's reagent T). The cationic fibers with degrees of substitution (DS) between 0.02 and 0.36, were subjected to homogenization treatment. The morphological properties, chemical composition, and rheological behavior were evaluated to assess the effect of DS and the effect of the cationization method (for samples with similar DS). The two-step cationization resulted in significant degradation of the cellulose structure, leading to the formation of short fibrils and solubilization of the material, ranging from 6% to almost complete solubilization at a DS of 0.36. Direct cationization resulted in longer fibrils with an average diameter of 1 μm, and no significant cellulose degradation was observed, leading to a more cohesive gel-like material (at 1 wt%). These observations clearly show the strong influence of the cationization method on the final properties of the cationic cellulosic materials.
Collapse
Affiliation(s)
- Jorge F S Pedrosa
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal.
| | - Maria G Rasteiro
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Carlos P Neto
- RAIZ - Forest and Paper Research Institute, Quinta de São Francisco - Apartado 15, 3801-501 Eixo, Portugal
| | - Paulo J T Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II - R. Silvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
12
|
Evaluation of flocculation performance of polysaccharide-protamine complex flocculant by flocculation model. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Wu Y, Jiang J, Sun Q, An Y, Zhao R, Zheng H, Li H. Efficient removal of both positively and negatively charged colloidal contaminants using amphoteric starch-based flocculants synthesized by low-pressure UV initiation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Sabaghi S, Alipoormazandarani N, Gao W, Fatehi P. Dual lignin-derived polymeric systems for hazardous ion removals. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125970. [PMID: 33975163 DOI: 10.1016/j.jhazmat.2021.125970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The functionalization of lignin derivatives for ion removals is a promising method to expedite their use in treating industrial wastewater. In this work, kraft lignin (KL) was polymerized with [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM) or acrylic acid (AA) in an acidic aqueous suspension system to produce cationic and anionic water-soluble lignin polymers with high molecular weights. Then, the interaction of soluble ions and KL-METAM and KL-AA was investigated using a Quartz crystal microbalance (QCM) and a vertical scan analyzer (VSA). The QCM, X-ray photoelectron spectroscopy (XPS) and contact angle measurement results showed that the adsorption efficiency of KL-AA was better than KL-METAM for ions due to the stronger electrostatic interaction, cationic π-interaction, and chelation between ions and KL-AA. Based on adsorption, sedimentation, and aggregate size analyses, the dual polymer systems of KL-AA/KL-METAM were more effective than KL-METAM/KL-AA in removing ions. Among Zn2+, Cu2+, and K+; Zn2+ interacted more effectively with polymers in all scenarios because it has higher reactivity for interacting with other elements. As the efficiency of ion removals was more remarkable than past reported findings, the system of KL-AA/KL-METAM may be a promising alternative for the removal of dissolved ions from solutions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Niloofar Alipoormazandarani
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Weijue Gao
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1.
| |
Collapse
|
15
|
Kim H, Yuk SA, Dieterly AM, Kwon S, Park J, Meng F, Gadalla HH, Cadena MJ, Lyle LT, Yeo Y. Nanosac, a Noncationic and Soft Polyphenol Nanocapsule, Enables Systemic Delivery of siRNA to Solid Tumors. ACS NANO 2021; 15:4576-4593. [PMID: 33645963 PMCID: PMC8023695 DOI: 10.1021/acsnano.0c08694] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For systemic delivery of small interfering RNA (siRNA) to solid tumors, the carrier must circulate avoiding premature degradation, extravasate and penetrate tumors, enter target cells, traffic to the intracellular destination, and release siRNA for gene silencing. However, existing siRNA carriers, which typically exhibit positive charges, fall short of these requirements by a large margin; thus, systemic delivery of siRNA to tumors remains a significant challenge. To overcome the limitations of existing approaches, we have developed a carrier of siRNA, called "Nanosac", a noncationic soft polyphenol nanocapsule. A siRNA-loaded Nanosac is produced by sequential coating of mesoporous silica nanoparticles (MSNs) with siRNA and polydopamine, followed by removal of the sacrificial MSN core. The Nanosac recruits serum albumin, co-opts caveolae-mediated endocytosis to enter tumor cells, and efficiently silences target genes. The softness of Nanosac improves extravasation and penetration into tumors compared to its hard counterpart. As a carrier of siRNA targeting PD-L1, Nanosac induces a significant attenuation of CT26 tumor growth by immune checkpoint blockade. These results support the utility of Nanosac in the systemic delivery of siRNA for solid tumor therapy.
Collapse
Affiliation(s)
- Hyungjun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Simseok A. Yuk
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Alexandra M. Dieterly
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hytham H. Gadalla
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Maria Jose Cadena
- School of Mechanical Engineering, College of Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - L. Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA
- Corresponding author: Yoon Yeo, Ph.D., Phone: 1.765.496.9608, Fax: 1.765.494.6545,
| |
Collapse
|
16
|
Yeap SP, Sum JY, Toh PY. Separation of Nano‐scaled Particles by Flocculation. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Swee Pin Yeap
- UCSI University Department of Chemical and Petroleum Engineering Faculty of Engineering, Technology and Built Environment 56000 Cheras Kuala Lumpur Malaysia
| | - Jing Yao Sum
- UCSI University Department of Chemical and Petroleum Engineering Faculty of Engineering, Technology and Built Environment 56000 Cheras Kuala Lumpur Malaysia
| | - Pey Yi Toh
- Universiti Tunku Abdul Rahman Department of Petrochemical Engineering Faculty of Engineering and Green Technology Kampar Malaysia
| |
Collapse
|
17
|
Borchert KBL, Steinbach C, Schwarz S, Schwarz D. A Comparative Study on the Flocculation of Silica and China Clay with Chitosan and Synthetic Polyelectrolytes. Mar Drugs 2021; 19:md19020102. [PMID: 33578846 PMCID: PMC7916584 DOI: 10.3390/md19020102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
Flocculation is still one of the most important and efficient processes for water treatment. However, most industrial processes, such as in water treatment plants, still use huge amounts of synthetic polyelectrolytes for the flocculation process. Here we compare the flocculation of two different suspended particles, i.e., silica particles and china clay, with the biopolymer chitosan and two common strong synthetic polyelectrolytes. As a flocculant, chitosan featured a minimum uptake rate of 0.05 mg/g for silica and 1.8 mg/g for china clay. Polydiallyldimethylammonium chloride (PDADMAC) for comparison possessed a minimum uptake rate of 0.05 mg/g for silica and 2.2 mg/g for china clay. Chitosan as an environmentally friendly biopolymer competes with the synthetic polyelectrolytes and thus represents a beneficial economic alternative to synthetic flocculants.
Collapse
|
18
|
Encapsulation and sedimentation of nanomaterials through complex coacervation. J Colloid Interface Sci 2021; 589:500-510. [PMID: 33486285 DOI: 10.1016/j.jcis.2020.12.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS Nanoparticles removal from seawage water is a health and environmental challenge, due to the increasing use of these materials of excellent colloidal stability. Herein we hypothesize to reach this objective through complex coacervation, a straightforward, low-cost process, normally accomplished with non-toxic and biodegradable macromolecules. Highly dense polymer-rich colloidal droplets (the coacervates) obtained from a reversible charge-driven phase separation, entrap suspended nanomaterials, allowing their settling and potential recovery. EXPERIMENTS In this work we apply this process to highly stable aqueous colloidal dispersions of different surface charge, size, type and state (solid or liquid). We systematically investigate the effects of the biopolymers excess and the nanomaterials concentration and charge on the encapsulation and sedimentation efficiency and rate. This strategy is also applied to real laboratory water-based wastes. FINDINGS Long-lasting colloidal suspensions are succesfully destabilized through coacervate formation, which ensures high nanomaterials encapsulation efficiencies (~85%), payloads and highly tranparent supernatants (%T ~90%), within two hours. Lower polymer excess induces faster clearance and less sediments, while preserving effective nanomaterials removal. Preliminary experiments also validate the method for the clearance of real water residuals, making complex coacervation a promising scalable, low-cost and ecofriendly alternative to concentrate, separate or recover suspended micro/nanomaterials from aqueous sludges.
Collapse
|
19
|
Magalhães S, Alves L, Medronho B, Romano A, Rasteiro MDG. Microplastics in Ecosystems: From Current Trends to Bio-Based Removal Strategies. Molecules 2020; 25:E3954. [PMID: 32872594 PMCID: PMC7504772 DOI: 10.3390/molecules25173954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023] Open
Abstract
Plastics are widely used due to their excellent properties, inexpensiveness and versatility leading to an exponential consumption growth during the last decades. However, most plastic does not biodegrade in any meaningful sense; it can exist for hundreds of years. Only a small percentage of plastic waste is recycled, the rest being dumped in landfills, incinerated or simply not collected. Waste-water treatment plants can only minimize the problem by trapping plastic particles of larger size and some smaller ones remain within oxidation ponds or sewage sludge, but a large amount of microplastics still contaminate water streams and marine systems. Thus, it is clear that in order to tackle this potential ecological disaster, new strategies are necessary. This review aims at briefly introducing the microplastics threat and critically discusses emerging technologies, which are capable to efficiently clean aqueous media. Special focus is given to novel greener approaches based on lignocellulose flocculants and other biomaterials. In the final part of the present review, it was given a proof of concept, using a bioflocculant to remove micronized plastic from aqueous medium. The obtained results demonstrate the huge potential of these biopolymers to clean waters from the microplastics threat, using flocculants with appropriate structure.
Collapse
Affiliation(s)
- Solange Magalhães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II – R. Silvio Lima, 3030-790 Coimbra, Portugal;
| | - Luís Alves
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II – R. Silvio Lima, 3030-790 Coimbra, Portugal;
| | - Bruno Medronho
- MED–Mediterranean Institute for Agriculture, Environment and Development, Campus de Gambelas, Faculty of Sciences and Technology, University of Algarve, Ed. 8, 8005-139 Faro, Portugal; (B.M.); (A.R.)
- Fibre Science and Communication Network (FSCN), Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Anabela Romano
- MED–Mediterranean Institute for Agriculture, Environment and Development, Campus de Gambelas, Faculty of Sciences and Technology, University of Algarve, Ed. 8, 8005-139 Faro, Portugal; (B.M.); (A.R.)
| | - Maria da Graça Rasteiro
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Pólo II – R. Silvio Lima, 3030-790 Coimbra, Portugal;
| |
Collapse
|
20
|
Grenda K, Gamelas JAF, Arnold J, Cayre OJ, Rasteiro MG. Evaluation of Anionic and Cationic Pulp-Based Flocculants With Diverse Lignin Contents for Application in Effluent Treatment From the Textile Industry: Flocculation Monitoring. Front Chem 2020; 8:5. [PMID: 32083051 PMCID: PMC7002540 DOI: 10.3389/fchem.2020.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
In wastewater treatment, flocculation is a widely used solid/liquid separation technique, which typically employs a charged polymer, a polyelectrolyte (PEL). Polyelectrolytes features, such as charge type, charge density and molecular weight, are essential parameters affecting the mechanism of flocculation and subsequent floc sedimentation. The effectiveness of the process is also influenced by the characteristics of the system (e.g., type, size, and available surface area of suspended particles, pH of the medium, charge of suspended particles). Thus, a good understanding of the flocculation kinetics, involved mechanisms and flocs structure is essential in identifying the most adequate treatment conditions, having also into consideration possible subsequent treatments. In this study, Eucalyptus bleached pulp and a cellulosic pulp with high lignin content (~4.5 wt%) obtained from Eucalyptus wood waste were used for bio-PELs production. Firstly, a pre-treatment with sodium periodate increased the pulps reactivity. To produce cationic cellulose the oxidation step was followed by the introduction of cationic groups in the cellulose chains, through reaction with Girard's reagent T. Applying different molar ratios (0.975 and 3.9) of Girard's reagent T to aldehyde groups led to cationic PELs with diverse charge density. On the other hand, to obtain anionic cellulose a sulfonation reaction with sodium metabisulfite was applied to the intermediate dialdehyde cellulose-based products, during 24 or 72 h, and anionic-PELs with diverse features were obtained. The developed water soluble, anionic and cationic bio-PELs were characterized and tested as flocculation agents for a textile industry effluent treatment. Initially, jar-tests were used to tune the most effective flocculation procedure (pH, flocculant dosage, etc.). Flocculation using these conditions was then monitored continuously, over time, using laser diffraction spectroscopy (LDS). Due to the small size of the dyes molecules, a dual system with an inorganic complexation agent (bentonite) was essential for effective decolouration of the effluent. Performance in the treatment was monitored first by turbidity removal evaluation (75-88% with cationic-PELs, 75-81% with anionic-PELs) and COD reduction evaluation (79-81% with cationic-PELs, 63-77% with anionic-PELs) in the jar tests. Additionally, the evolution of flocs characteristics (structure and size) during their growth and the flocculation kinetics, were studied using the LDS technique, applying the different PELs produced and for a range of PEL concentration. The results obtained through this monitoring procedure allowed to discuss the possible flocculation mechanisms involved in the process. The results obtained with the bio-PELs were compared with those obtained using synthetic PELs, commonly applied in effluents treatment, polyacrylamides. The developed bio-PELs can be competitive, eco-friendly flocculation agents for effluents treatment from several industries, when compared to traditional synthetic flocculants with a significant environmental footprint. Moreover, LDS proved to be a feasible technique to monitor flocculation processes, even when a real industrial effluent is being tested.
Collapse
Affiliation(s)
- Kinga Grenda
- Department of Chemical Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre University of Coimbra, Coimbra, Portugal
- AQUA+TECH Specialities, Chemin du Chalet-du-Bac 4, Geneva, Switzerland
| | - José A. F. Gamelas
- Department of Chemical Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre University of Coimbra, Coimbra, Portugal
| | - Julien Arnold
- AQUA+TECH Specialities, Chemin du Chalet-du-Bac 4, Geneva, Switzerland
| | - Olivier J. Cayre
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Maria G. Rasteiro
- Department of Chemical Engineering, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre University of Coimbra, Coimbra, Portugal
| |
Collapse
|