1
|
Ghodsi A, Fashandi H. Influence of photothermal nanomaterials localization within the electrospun membrane structure on purification of saline oily wastewater based on photothermal vacuum membrane distillation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121866. [PMID: 39018852 DOI: 10.1016/j.jenvman.2024.121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Today, synergistic combination of special nanomaterials (NMs) and electrospinning technique has emerged as a promising strategy to address both water scarcity and energy concerns through the development of photothermal membranes for wastewater purification and desalination. This work was organized to provide a new perspective on membrane design for photothermal vacuum membrane distillation (PVMD) through optimizing membrane performance by varying the localization of photothermal NMs. Poly(vinylidene fluoride) omniphobic photothermal membranes were prepared by localizing graphene oxide nanosheets (GO NSh) (1) on the surface (0.2 wt%), (2) within the nanofibers structure (10 wt%) or (3) in both positions. Considering the case 1, after 7 min exposure to the 1 sun intensity light, the highest temperature (∼93.5 °C) was recorded, which is assigned to the accessibility of GO NSh upon light exposure. The case 3 yielded to a small reduction in surface temperature (∼90.4 °C) compared to the case 1, indicating no need to localize NMs within the nanofibers structure when they are localized on the surface. The other extreme belonged to the case 2 with the lowest temperature of ∼71.3 °C, which is consistent with the less accessibility of GO NSh during irradiation. It was demonstrated that the accessibility of photothermal NMs plays more pronounced role in the membrane surface temperature compared to the light trapping. However, benefiting from higher surface temperature during PVMD due to enhanced accessibility of photothermal NMs is balanced out by decrease in the permeate flux (case 1: 1.51 kg/m2 h and case 2: 1.83 kg/m2 h) due to blocking some membrane surface pores by the binder. A trend similar to that for flux was also followed by the efficiency. Additionally, no change in rejection was observed for different GO NSh localizations.
Collapse
Affiliation(s)
- Ali Ghodsi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
2
|
Sanoja-López KA, Quiroz-Suárez KA, Dueñas-Rivadeneira AA, Maddela NR, Montenegro MCBSM, Luque R, Rodríguez-Díaz JM. Polymeric membranes functionalized with nanomaterials (MP@NMs): A review of advances in pesticide removal. ENVIRONMENTAL RESEARCH 2023; 217:114776. [PMID: 36403656 DOI: 10.1016/j.envres.2022.114776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The excessive contamination of drinking water sources by pesticides has a pernicious impact on human health and the environment since only 0.1% of pesticides is utilized effectively to control the and the rest is deposited in the environment. Filtration by polymeric membranes has become a promising technique to deal with this problem; however, the scientific community, in the need to find better pesticide retention results, has begun to meddle in the functionalization of polymeric membranes. Given the great variety of membrane, polymer, and nanomaterial synthesis methods present in the market, the possibilities of obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that this technology will represent one of the main pesticide removal strategies in the future. In this direction, this review focused on, - the main characteristics of the nanomaterials and their impact on pristine polymeric membranes; - the removal performance of functionalized membranes; and - the main mechanisms by which membranes can retain pesticides. Based on these insights, the functionalized polymeric membranes can be considered as a promising technology in the removal of pesticides since the removal performance of this technology against pesticide showed a significant increase. Obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that functionalized membrane technology will represent one of the main pesticide removal strategies in the future.
Collapse
Affiliation(s)
- Kelvin Adrian Sanoja-López
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Kevin Alberto Quiroz-Suárez
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| |
Collapse
|
3
|
Hexagonal boron nitride nanosheets incorporated photocatalytic polyvinylidene fluoride mixed matrix membranes for textile wastewater treatment via vacuum-assisted distillation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Zhang T, Zhang LZ. A self-healing PVDF-ZnO/MXene membrane with universal fouling resistance for real seawater desalination. WATER RESEARCH 2022; 216:118349. [PMID: 35349921 DOI: 10.1016/j.watres.2022.118349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Seawater desalination is regarded as a possible way to overcome current shortages of fresh water, and membrane-based air humidification-dehumidification desalination (MHDD) represents a promising technique owing to its high-quality freshwater and cost-effectiveness; however, its development is restricted by membrane fouling. While a superhydrophobic membrane provides resistance to hydrophilic fouling, it remains susceptible to hydrophobic fouling. Here, a polyvinylidene fluoride-ZnO/MXene (PVDF-ZM) membrane, with a reversible conversion between superhydrophobicity and hydrophilicity was fabricated to achieve universal fouling resistance. It earned a competitive permeate flux (3.93 kg·m-2·h-1) and an excellent salt rejection (>99.5%). The membrane exhibited a strong anti-hydrophilic fouling ability, benefiting from its superhydrophobicity and rough surface. The adsorbed hydrophobic contaminants could desorb from the membrane surface under UV irradiation when transforming the surface wettability into hydrophilicity, exhibiting an anti-hydrophobic fouling ability. Subsequently, the membrane surface returned to the hydrophobic state under dark conditions. The membrane recovered 90% of the original permeation flux, while maintaining a salt rejection of >99.5%, thus realizing membrane self-healing. The PVDF-ZM membrane holds promise for sustainable desalination applications.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Li-Zhi Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Lin JL, Fitria FL, Wang YF, You SJ. Optimization of operational parameters in air-gap membrane distillation using central composite design applied in recovery of dye manufacturing wastewaters. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2075390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jeng-Lung Lin
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Firda Lutfiatul Fitria
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Ya-Fen Wang
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Sheng-Jie You
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan City, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
6
|
Ibrahim SS, Alsalhy QF. How far can membrane characteristic parameters bestow at the vacuum membrane distillation (VMD) performance: Modeling and simulation. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2021.1973498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Salah S. Ibrahim
- Chemical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | - Qusay F. Alsalhy
- Chemical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
7
|
Experimental study and numerical optimization for removal of methyl orange using polytetrafluoroethylene membranes in vacuum membrane distillation process. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Esfarjani PM, Fashandi H, Karevan M, Moheb A. Tuning poly(vinyl chloride) membrane morphology to suit vacuum membrane distillation: Focusing on membrane preparation process based on phase separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Study on vacuum membrane distillation performance of PP/POE blending membranes prepared via thermally induced phase separation using bidiluent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
A high-flux polystyrene-reinforced styrene-acrylonitrile/polyacrylonitrile nanofibrous membrane for desalination using direct contact membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Liu HB, Li B, Guo LW, Pan LM, Zhu HX, Tang ZS, Xing WH, Cai YY, Duan JA, Wang M, Xu SN, Tao XB. Current and Future Use of Membrane Technology in the Traditional Chinese Medicine Industry. SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1995875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hong-Bo Liu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, China
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bo Li
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Wei Guo
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin-Mei Pan
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Shu Tang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang, China
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wei-Hong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Yuan-Yuan Cai
- Nanjing Industrial Technology Research Institute of Membranes Co, Ltd, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Wang
- Pharmacy Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Si-Ning Xu
- Pharmacy Department, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xing-Bao Tao
- College ofPharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Prajapati PK, Mistry R, Saxena M, Nandha N, Thummar U, Kumar P, Singh PS. Increase of flow‐through pores in rationally designed
organosilica‐PVDF
nanocomposite membrane. J Appl Polym Sci 2021. [DOI: 10.1002/app.50846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pradeep K. Prajapati
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Rupal Mistry
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
| | - Mayank Saxena
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
| | - Nayan Nandha
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
| | - Utpal Thummar
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
| | - Pranay Kumar
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
| | - Puyam S. Singh
- Membrane Science and Separation Technology Division CSIR‐Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
13
|
Kim H, Yun T, Hong S, Lee S. Experimental and theoretical investigation of a high performance PTFE membrane for vacuum-membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Mat Radzi NH, Ahmad AL. Effect of ZnO nanoparticles loading in double‐layer polyvinylidene fluoride membrane for desalination via direct contact membrane distillation. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Penang 14300 Malaysia
| |
Collapse
|