1
|
Chen Q, Xiao Z, Deng M, Li D. Comparative study on direct and indirect methods for wet desulphurisation and denitrification based on micro-nano bubbles. ENVIRONMENTAL TECHNOLOGY 2024; 45:40-49. [PMID: 35793811 DOI: 10.1080/09593330.2022.2099308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The wet desulphurisation and denitrification technique based on micro-nano bubbles, which is available by either D-method or I-method, is a promising novel process. By employing piped water, Na2SO3 aqueous solution and HA-Na aqueous solution as the absorption liquids, a comparative study was conducted in this article on D-method and I-method to analyze their performance, advantages and disadvantages. It was accompanied by an investigation of how initial pH and initial temperature values of the absorption liquids affected the removal efficiency. The results suggested a positive correlation between NO/SO2 removal efficiencies and pH values but a little improvement in the removal efficiency under alkaline conditions. Furthermore, heating the absorption liquids inhibited the removal of NO and SO2. When manipulated in the same experimental environment, D-method and I-method did not present a significant difference in the SO2 removal efficiency, while the former was remarkably more effective than the latter in removing NO. To put together, D-method had higher removal efficiency, but required a large-scale micro-nano bubble generator to process a large quantity of flue gas as the micro-nano bubble generator was subject to a limited inlet flow rate. Consequently, an increase in investment and operating costs was incurred, while this issue could be avoided by I-method.
Collapse
Affiliation(s)
- Qin Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, People's Republic of China
| | - Zhengguo Xiao
- Energy Conservation and Environmental Protection Center, Shanghai Textile Research Institute Co. Ltd, Shanghai, People's Republic of China
| | - Mingqiang Deng
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Dengxin Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Deng M, Xiao Z, Li D, Zhu Q, Chen Q, Wu S. Simultaneous removal of NO, SO 2 and Hg 0 with the WDRMRS. ENVIRONMENTAL TECHNOLOGY 2023; 44:659-669. [PMID: 34657577 DOI: 10.1080/09593330.2021.1980831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Micro-nanobubbles can spontaneously generate hydroxyl free radicals (OH). Urea is a cheap reductant and can react with NOx species, and their products are nontoxic and harmless N2, CO2 and H2O. In this study, a Wet Direct Recycling Micro-nanobubble Flue Gas Multi-pollutants Removal System (WDRMRS) was developed for the simultaneous removal of NO, SO2 and Hg0. In this system, a micro-nanobubble generator (MNBG) was used to produce a micro-nanobubble gas-liquid dispersion system (MNBGLS) through recycling the urea solution from the reactor and the simulated flue gas composed of N2, NO, SO2 and Hg0. The MNBGLS, which has a large gas-liquid dispersion interface, was recycled continuously from the MNBG to the reactor, thus achieving cyclic absorption of various pollutants. All of the investigated parameters, including the initial pH and temperature of the absorbent as well as the concentrations of urea, NO and SO2 had significant effects on the NO removal efficiency but did not significantly affect the SO2 removal efficiency, whereas only the initial solution pH and NO concentration affected the Hg0 removal efficiency. The analysis results of the reaction mechanism showed that ·OH played a critical role in the removal of various pollutants. After the treatment by this system, the main removal products were Hg0 sediment, SO42- and NH4+ which could be easily recycled. The use of this system (MNBGLS) for the simultaneous removal of NO, SO2 and Hg0 is a new technology application and research. Recycling process based on MNBGLS succeeded in simultaneously removing NO, SO2 and Hg0. The system (MNBGLS) can provide a reference for commercial applications. The removal products are relatively simple and beneficial to recycling, which can reduce the cost of waste gas treatment.
Collapse
Affiliation(s)
- Mingqiang Deng
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Zhengguo Xiao
- Shanghai Textile Research Institute Co. Ltd, Shanghai, People's Republic of China
| | - Dengxin Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Qiaoling Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Qin Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| | - Sicheng Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Meng Z, Zhu G, Li H, Li S, Yan K, Yang Y. A novel gas removal method for the removal of C2H2 in calcium carbide slag slurry by fine bubbles combined with air purging: performance, mechanism, and in situ bubble imaging analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Yang J, Song L, Deng C, Sui H, Dionysiou DD, Han Z, Xu M, Pan X. A new multi-component marine exhaust cleaning method using combined hydrodynamic cavitation and chlorine dioxide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Yang M, Sun N, Luo Y, Lai X, Li P, Zhang Z. Emergence of debubblers in microfluidics: A critical review. BIOMICROFLUIDICS 2022; 16:031503. [PMID: 35757146 PMCID: PMC9217167 DOI: 10.1063/5.0088551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/31/2022] [Indexed: 05/10/2023]
Abstract
Bubbles in microfluidics-even those that appear to be negligibly small-are pervasive and responsible for the failure of many biological and chemical experiments. For instance, they block current conduction, damage cell membranes, and interfere with detection results. To overcome this unavoidable and intractable problem, researchers have developed various methods for capturing and removing bubbles from microfluidics. Such methods are multifarious and their working principles are very different from each other. In this review, bubble-removing methods are divided into two broad categories: active debubblers (that require external auxiliary equipment) and passive debubblers (driven by natural processes). In each category, three main types of methods are discussed along with their advantages and disadvantages. Among the active debubblers, those assisted by lasers, acoustic generators, and negative pressure pumps are discussed. Among the passive debubblers, those driven by buoyancy, the characteristics of gas-liquid interfaces, and the hydrophilic and hydrophobic properties of materials are discussed. Finally, the challenges and prospects of the bubble-removal technologies are reviewed to refer researchers to microfluidics and inspire further investigations in this field.
Collapse
Affiliation(s)
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | | | | | - Peiru Li
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenyu Zhang
- School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Zhang R, Hou W, Wang H, Hu E, Lei Z, Hu F, Zhou W, Wang Q. Oxidative leaching of sandstone uranium ore assisted by ozone micro-nano bubbles. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yuan P, Ma H, Shen B, Ji Z. Abatement of NO/SO 2/Hg 0 from flue gas by advanced oxidation processes (AOPs): Tech-category, status quo and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150958. [PMID: 34656565 DOI: 10.1016/j.scitotenv.2021.150958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article provides a state-of-art insight into the removal of NO, SO2 and elemental mercury (Hg0) from flue gas by using advanced oxidation processes (AOPs) method. Firstly, the main flue gas purification strategies based on AOPs would be classified as gas-gas, gas-liquid and gas-solid systems preliminarily, and the primary chemistry/mechanism of the above homogeneous/heterogeneous reaction systems were presented as the oxidation of NO, SO2 and Hg0 by the oxidative free radicals (OH, O2 and SO4-etc.). Secondly, the research progress and reaction pathways for separately or simultaneously removing NO, SO2 and Hg0 from flue gas by AOPs has been reviewed elaborated and analyzed in more details. Notably, the wet/dry oxidation coupled with efficient absorption process would be a promising method of efficient removal of above gaseous pollutants. Subsequently, four types of assumed layout modes were described graphically. The application prospects of AOPs for the purification of flue gas from coal-fired boiler or industrial furnace were evaluated and found that the operation cost and utilization of oxidants must be reduced and improved respectively. Finally, the limitations in the current removal technologies based on AOPs are highlighted, meanwhile the future research directions are suggested, such as cut down the cost of oxidants and catalysts, improve the yield and valid utilization of highly reactive radicals and enhance the reactivity, resistance and stability of catalysts. Significantly, it is also envisaged that the review could enrich the knowledge repository to function as a scientific reference for the sustainable development of economical, effective and environment-friendly technologies for the abatement of a wide variety of emissions from flue gas, and further improve the feasibility and reliability of the strategies for moving from laboratory studies to large-scale development and industrial application.
Collapse
Affiliation(s)
- Peng Yuan
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China; Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Haofei Ma
- Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Boxiong Shen
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China; Tianjin Key Laboratory of Clean Energy Utilization and Pollutants Control, School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Zhiyong Ji
- School of Chemical Engineering & Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
8
|
Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK. Micro-nano-bubble technology and its applications in food industry: A critical review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shaomeng Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lina Cheng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
9
|
Haoyu L, Karimi R. Investigating a promising iron-doped graphene sensor for SO2 gas: DFT calculations and QTAIM analysis. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Examination of a promising iron-doped graphene (FG) sensor for the sulfur oxide (SO2) toxic gas was done in this work at the molecular and atomic scales of density functional theory (DFT). The models were stabilized by performing optimization calculations and their electronic features were evaluated. Two models were obtained by relaxing each of the O or S atoms towards the Fe-doped region of surface. Energy values indicated higher strength for formation of the O@FG model in comparison with the S@FG model. The evaluated quantities and qualities of electronic molecular orbitals indicated the effects of occurrence of adsorption processes on the electronic conductivity property of FG as a required feature of a sensor material. As a consequence, the idea of proposing the investigated FG as a promising sensor of the hazardous SO2 gas was affirmed in this work based on the obtained structural and electronic features.
Collapse
Affiliation(s)
- Li Haoyu
- School of Materials Science and Engineering, North China University of Science and Technology, Tangshan Province, China
| | | |
Collapse
|
10
|
Abstract
A novel method of improving the SO2 absorption performance of sodium citrate (Ci-Na) using sodium humate (HA–Na) as an additive was put forward. The influence of different Ci-Na concentration, inlet SO2 concentration and gas flow rate on desulfurization performance were studied. The synergistic mechanism of SO2 absorption by HA–Na and Ci-Na was also analyzed. The consequence shows that the efficiency of SO2 absorption by Ci-Na is above 90% and the desulfurization time added with the Ci-Na concentration rising from 0.01 to 0.1 mol/L. Both the desulfurization efficiency and time may increase with the adding of HA–Na quality in Ci-Na solution. Due to adding HA–Na, the desulfurization efficiency of Ci-Na increased from 90% to 99% and the desulfurization time increased from 40 to 55 min. Under the optimum conditions, the desulfurization time of Ci-Na can exceed 70 min because of adding HA–Na, which is nearly doubled. The growth of inlet SO2 concentration has little effect on the desulfurization efficiency. The SO2 adsorption efficiency decreases with the increase of inlet flow gas. The presence of O2 improves the SO2 removal efficiency and prolongs the desulfurization time. Therefore, HA–Na plays a key role during SO2 absorption and can dramatically enhance the SO2 adsorption performance of Ci-Na solution.
Collapse
|
11
|
Senol-Arslan D. Isotherms, kinetics and thermodynamics of pb(ii) adsorption by crosslinked chitosan/sepiolite composite. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03688-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Li D, Kang Y. Significantly promoted SO 2 uptake by the mixture of N-methylated ethylene imine polymer and 1-ethyl-3-methylimidazolium tetrazolate. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124101. [PMID: 33065455 DOI: 10.1016/j.jhazmat.2020.124101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
A novel class of hybrid solvents (mEIP:Tetz) comprising of N-methylated ethylene imine polymer (mEIP) and 1-ethyl-3-methylimidazolium tetrazolate ([Emim][Tetz]) were developed for the highly efficient and reversible capture of SO2. The synergistic interactions rather than simple mixing between mEIP and [Emim][Tetz] were confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and density functional theory (DFT) calculations. Besides, it was experimentally demonstrated that mEIP:Tetz mixtures exhibited improved kinetics for SO2 absorption, and the production of viscous solids were completely eliminated, compared with using mEIP alone. More significantly, an exceedingly high solubility of 0.308 g SO2·g-1 absorbent in 2mEIP:8Tetz was received for trapping SO2 from simulated flue gas containing 2000 ppm SO2, which was much higher than most of the results reported in previous literatures under the same conditions. Finally, the absorption and desorption mechanisms were proposed according to the results of FTIR and 1H NMR analysis.
Collapse
Affiliation(s)
- Dan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
13
|
Dou J, Zhao Y, Duan X, Chai H, Li L, Yu J. Desulfurization Performance and Kinetics of Potassium Hydroxide-Impregnated Char Sorbents for SO 2 Removal from Simulated Flue Gas. ACS OMEGA 2020; 5:19194-19201. [PMID: 32775922 PMCID: PMC7409254 DOI: 10.1021/acsomega.0c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/07/2020] [Indexed: 05/05/2023]
Abstract
Potassium hydroxide-impregnated char sorbents (KOH/char) prepared via an ultrasonic-assisted method were used for SO2 removal from flue gas. The desulfurization experiment was analyzed using a fixed-bed reactor under 40-150 °C temperature range, using simulated flue gas. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) were used to analyze both the chemical and physical characteristics of the sorbents. The analyzed results exposed that the complete elimination of SO2 from flue gas was achieved when using the char/KOH sorbent with a mass ratio of char to KOH of 11:1. It was noted that temperature had a substantial influence on the desulfurization performance with sulfur capacity maximized at 100 °C. Experimental results also revealed that a small amount of O2 present in the solvent could improve the SO2 removal efficiency of the sorbent. The analyzed XRD patterns showed that K2SO4 was the main desulfurization product, which was consistent with the SEM/EDS analysis. The experimental results were well-described with the Lagergren first-order adsorption kinetics model with the activation energy (E a) of the SO2 adsorption by KOH/char sorbent of 20.25 kJ/mol.
Collapse
Affiliation(s)
- Jinxiao Dou
- Key
Laboratory of Advanced Coal and Coking Technology of Liaoning Province,
School of Chemical Engineering, University
of Science and Technology Liaoning, Anshan 114051, China
| | - Yongqi Zhao
- Key
Laboratory of Advanced Coal and Coking Technology of Liaoning Province,
School of Chemical Engineering, University
of Science and Technology Liaoning, Anshan 114051, China
| | - Xiaoxu Duan
- Key
Laboratory of Advanced Coal and Coking Technology of Liaoning Province,
School of Chemical Engineering, University
of Science and Technology Liaoning, Anshan 114051, China
| | - Hongning Chai
- Key
Laboratory of Advanced Coal and Coking Technology of Liaoning Province,
School of Chemical Engineering, University
of Science and Technology Liaoning, Anshan 114051, China
| | - Lichun Li
- College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Jianglong Yu
- Key
Laboratory of Advanced Coal and Coking Technology of Liaoning Province,
School of Chemical Engineering, University
of Science and Technology Liaoning, Anshan 114051, China
- Chemical
Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
- . Phone: +61 240333902
| |
Collapse
|
14
|
Sun H, Li D. Recyclable MFe 2O 4 (M = Mn, Zn, Cu, Ni, Co) coupled micro-nano bubbles for simultaneous catalytic oxidation to remove NO x and SO 2 in flue gas. RSC Adv 2020; 10:25155-25164. [PMID: 35517432 PMCID: PMC9055229 DOI: 10.1039/d0ra04392c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 11/21/2022] Open
Abstract
NO x can be efficiently removed by micro-nano bubbles coupling with Fe3+ and Mn2+, but the catalyst cannot be reused and the adsorption wastewater should be treated. This work developed a new technology that uses micro-nano bubbles and recyclable MFe2O4 to simultaneously remove NO x and SO2 from flue gas, and clarified the effectiveness and reaction mechanism. MFe2O4 (M = Mn, Zn, Cu, Ni and Co) prepared by a hydrothermal method was characterized. The results show that MFe2O4 can be activated to produce ˙OH which can accelerate the oxidation absorption of NO x . Compared with no catalyst, the NO x conversion rate increased from 32.85% to 83.88% in the NO x -SO2-MFe2O4-micro-nano bubble system, while the removal rate of SO2 can reach 100% at room temperature. The catalytic activities of MFe2O4 showed the following trend: CuFe2O4 > ZnFe2O4 > MnFe2O4 > CoFe2O4 > NiFe2O4. The results provide a new idea for the application of advanced oxidation processes in flue gas treatment.
Collapse
Affiliation(s)
- Hongrui Sun
- School of Environmental Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China +86 21 67792522 +86 13 636641041
| | - Dengxin Li
- School of Environmental Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China +86 21 67792522 +86 13 636641041
| |
Collapse
|
15
|
An Alternative Process for Leaching Chalcopyrite Concentrate in Nitrate-Acid-Seawater Media with Oxidant Recovery. METALS 2020. [DOI: 10.3390/met10040518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An alternative copper concentrate leaching process using sodium nitrate and sulfuric acid diluted in seawater followed by gas scrubbing to recover the sodium nitrate has been evaluated. The work involved leaching test carried out under various condition by varying temperature, leaching time, particle size, and concentrations of NaNO3 and H2SO4. The amount of copper extracted from the chalcopyrite concentrate leached with seawater, 0.5 M of H2SO4 and 0.5 M of NaNO3 increased from 78% at room temperature to 91% at 45 °C in 96 h and 46 h of leaching, respectively. Gas scrubbing with the alkaline solution of NaOH was explored to recover part of the sodium nitrate. The dissolved salts were recovered by evaporation as sodium nitrate and sodium nitrite crystals.
Collapse
|