1
|
Zhou C, Wan L, Lou Z, Wu S, Baig SA, Xu X. Comparative Sb(V) removal efficacy of different iron oxides from textile wastewater: effects of co-existing anions and dye compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120030-120043. [PMID: 37934409 DOI: 10.1007/s11356-023-30771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Elevated Sb(V) concentration in textile wastewater is a growing environmental concern worldwide and has received wider attention in recent years. Iron oxides possess appealing characteristics as efficient and cost-effective adsorbents in large-scale applications. In the present study, Sb(V) adsorption capacity of α-Fe2O3, γ-Fe2O3, and Fe3O4 was compared under experimental conditions close to the practical textile wastewater treatment. Results demonstrated that α-Fe2O3 performed better under different pH values, reaction times, dye compounds, and co-existing ions as compared to γ-Fe2O3 and Fe3O4, and the adsorption equilibrium was achieved within 8 h. Sb(V) adsorption is found to be highly pH dependent, and higher removal was achieved in lower pH, indicating the involvement of electrostatic interactions. The pHpzc value of α-Fe2O3 was 7.15, which favored Sb(V) adsorption in practical wastewater having neutral pH value (pH ~ 7). Pseudo-first- and pseudo-second-order described the data and the simulated values of qe fitted well with the experimental values, indicating that pseudo-second-order model described the adsorption kinetics better with R2 (> 0.95) higher than of pseudo-first-order plots. The Langmuir and Freundlich models both described well the sorption data of all the adsorbents, where the R2 values were > 0.90 with a better fit in the Freundlich model for α-Fe2O3, suggesting that the adsorbent has heterogeneous surface characteristics. Similarly, characterizations revealed that the specific surface area, pore volume, and hydroxyl group content in α-Fe2O3 were higher than others, making it easier for contaminants to bind on to the active sites. Furthermore, the effect of dyes and co-existing anions on Sb(V) adsorption was negligible, except for SO42-, CO32-, and PO43- by the formation of inner-sphere complexes with iron oxides through competitive adsorption with [Sb(OH)6]-. Findings from the present study suggested that α-Fe2O3 effectively reduced Sb(V) in textile wastewater and could be a promising alternative for practical textile wastewater treatment.
Collapse
Affiliation(s)
- Chuchen Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Wan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zimo Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shuang Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
2
|
Gan Y, Ding C, Xu B, Liu Z, Zhang S, Cui Y, Wu B, Huang W, Song X. Antimony (Sb) pollution control by coagulation and membrane filtration in water/wastewater treatment: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130072. [PMID: 36303342 DOI: 10.1016/j.jhazmat.2022.130072] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Antimony (Sb) pollution in the water environment caused by the large-scale mining of Sb ore and the wide use of Sb-containing products seriously endangers human health and poses a great threat to the ecological environment. Coagulation is one of the most cost-effective technologies for Sb pollution control in water/wastewater treatment and has been widely used. However, a comprehensive understanding of Sb pollution control by coagulation, from fundamental research to practical applications, is lacking. In this work, based on the current status of Sb pollution in the water environment, a critical review of the Sb removal performance and mechanism by coagulation and related combined processes was carried out. The influencing factors of Sb removal performance by coagulation are introduced in detail. The internal mechanisms and improvement strategies of Sb removal by oxidation/reduction-coagulation and coagulation-membrane filtration technologies are emphasized. Moreover, given the development of Sb-removing coagulants and the resource utilization of Sb-containing sludge, future perspectives of coagulation for Sb removal are discussed. As the first review in this field, this work will illuminate avenues of basic research and practical applications for Sb and Sb-like pollution control in water/wastewater treatment.
Collapse
Affiliation(s)
- Yonghai Gan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhuang Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215002, China.
| | - Wenguang Huang
- South China Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510535, China
| | - Xiaojie Song
- SINOPEC Yangzi Petrochemical Co., Ltd., Nanjing 210048, China
| |
Collapse
|
3
|
Lou J, Fu Q, Yu L, Yuan H, Zhao J, Wang L, Shi D, Mo C, Luo J. Highly effective removal of Pb2+ from wastewater by nickel-based metal organic framework. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
5
|
Fu Q, Lou J, Peng L, Zhang R, Zhou S, Wu P, Yan W, Mo C, Luo J. Iron based metal organic framework for efficient removal of Pb2+ from wastewater. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Zeng J, Qi P, Wang Y, Liu Y, Sui K. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124633. [PMID: 33243653 DOI: 10.1016/j.jhazmat.2020.124633] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
There is a growing demand for heavy metal removal by membrane technology in real applications. However, few studies were reported concerning antimony (Sb) removal by membrane technology. Herein, a novel thin film nanocomposite (TFN) membrane comprising an alginate (SA) selective layer and a polyether sulfone (PSF) support membrane incorporating chitosan functionalized iron nanocomposite has been firstly developed for Sb removal via electrostatic self-assembly. The support matrix membrane contained iron nanocomposite (denoted as CIM) retained high water flux and porosity, and it reached a maximum removal capacity of 16.5 and 13.6 mg/g for Sb(III) and Sb(V) with nanofiller loading rate of 20% during static experiments, respectively. The coated SA top layer endowed the hybrid membrane (denoted as SA-CIM) to have a lower membrane flux, and have stronger retention abilities for Sb species than that by CIM during dynamic filtration experiments. The SA-CIM membranes also possess tolerable reversibility towards Sb removal. Benefiting from the negatively-charged dense selective layer and high adsorption capacity of the iron nanocomposites, the SA-CIM membranes demonstrated an enhanced removal capacity for Sb species via steric hindrance effect, electrostatic repulsion and adsorption. Our study offers a simple method to remove Sb by a novel polysaccharide functionalized hybrid membrane.
Collapse
Affiliation(s)
- Jianqiang Zeng
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China
| | - Pengfei Qi
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yahui Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, PR China.
| |
Collapse
|