1
|
Guan Y, Liu M, Liu Y, Yue J, Liu S, Gao W, Liang J. Improved desalination performance of flow-electrode capacitive deionisation by a novel drop-shape channel. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 38753489 DOI: 10.1080/09593330.2024.2354124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
As an emerging desalination technology, flow-electrode capacitive deionisation (FCDI) has the advantages of theoretically infinite adsorption capacity and applicability to high-concentration brine. However, during the operation of FCDI, the flow electrode in the S-shape channel is prone to sedimentation and clogging the channel. This undesirable phenomenon brings low efficiency and security issues. Therefore, a drop-shape channel was designed for FCDI to improve the flow regime of the flow electrode. The flow simulation of the drop-shape channel was performed to select the appropriate geometry to avoid the formation of the vortex and low-velocity region. The simulation results showed that the streamlined design of the drop-shape channel has insignificant velocity gradients. It significantly reduces the low-velocity region and improves the phenomenon of particle sedimentation. The desalination performance with varieties of electrode flow rate, AC content, and voltage was used to investigate the advantage between S-shape and drop-shape channels. It was found that under the conditions of low flow rate, high AC content, and high voltage, the drop-shape channel FCDI system could still obtain better ASRR and CE.
Collapse
Affiliation(s)
- Yinyan Guan
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Mingxi Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Yutong Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Jinyu Yue
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Shiyue Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Weichun Gao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| | - Jiyan Liang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Zhang W, Xue W, Zhang C, Xiao K. Towards long-term operation of flow-electrode capacitive deionization (FCDI): Optimization of operating parameters and regeneration of flow-electrode. Heliyon 2024; 10:e24940. [PMID: 38312617 PMCID: PMC10834994 DOI: 10.1016/j.heliyon.2024.e24940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
This study systematically optimized the key operating parameters and interpreted their effecting mechanisms in a flow-electrode capacitive deionization (FCDI) system. The optimal voltage, activated carbon electrode content, electrolyte concentration, feedwater flowrate, and electrode flowrate for desalinating low salinity feedwater (1.0 g L-1 NaCl) were determined to be 1.8 V, 2.0 wt%, 10.0 g L-1, 80 mL min-1, and 60 mL min-1, respectively. The variations of the above parameters can affect the system conductivity, the thickness and stability of the electric double layers, and/or the degree of concentration polarization, thereby influencing the desalination performance. Moreover, a sensitivity analysis identified the operating voltage as the dominant parameter with the most significant influence on the FCDI system. Subsequently, a long-term operation was carried out under single-pass mode. The results showed that the lab-scale FCDI system was able to constantly maintain the desalination efficiency of 1.0 g L-1 feedwater (NaCl) at 40-60 % for multiple operating cycles. Over 99.8 % of electrode material regeneration and desalination efficiency recovery was able to be obtained during a 60-h operation, demonstrating that the FCDI system showed strong stability and long-term operation potential.
Collapse
Affiliation(s)
- Wanni Zhang
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Wenchao Xue
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Sun H, Zhang X, Cui M, Liu G, Liu H, Huang S, Ghasimi DSM, Liu H. Separation of nutrients and acetate from sewage sludge fermentation liquid in flow-electrode capacitive deionization system: Competitive mechanisms of ions and influence of activated carbon. BIORESOURCE TECHNOLOGY 2023; 390:129864. [PMID: 37839646 DOI: 10.1016/j.biortech.2023.129864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Effective separation of volatile fatty acids (VFAs), ammonia (NH4+-N) and reactive phosphorous (RP) generated from anaerobic fermentation liquid is critically important for efficient resource recovery. Flow-electrode capacitive deionization (FCDI) is proven to be capable of efficient removal of ions, environmentally friendly and cost-effective in operation. The performances of FCDI system in the separation of NH4+-N, RP, and acetate and mechanism of pHs and activated carbon on their performances were investigated. Results showed that a pH of 5.0 promoted the removal of NH4+-N (53.1 %) and RP (39.5 %), and 72.0 % of acetate was retained in the solution, which revealed that removal of NH4+-N and RP, and retention of acetate were evidently affected by speciation of ions. Furthermore, the recovery of NH4+-N and RP was undermined by the adsorption of ions on activated carbon. This study provides a novel insight of ion selective mechanism during the operation of the FCDI system.
Collapse
Affiliation(s)
- Huimin Sun
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuedong Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Minhua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Guoshuai Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Hongbo Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Shengjie Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Dara S M Ghasimi
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 66833, Saudi Arabia
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011, China.
| |
Collapse
|
4
|
Shi C, Wang H, Li A, Zhu G, Zhao X, Wu F. Process model for flow-electrode capacitive deionization for energy consumption estimation and system optimization. WATER RESEARCH 2023; 230:119517. [PMID: 36608524 DOI: 10.1016/j.watres.2022.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is a new technology for ion removal that delivers sustainable deionization performance. However, FCDI consumes relatively high amounts of energy compared with other conventional desalination technologies, which hinders the industrial application of FCDI. In this study, the energy consumption of each FCDI component was simulated using a steady-state FCDI model to investigate and optimize the main components of energy consumption. Overall, the established process model can be used for theoretical investigation and enhancing our fundamental understanding of the energy consumption of each FCDI component, and provides the design and optimization of FCDI systems. The results showed that the energy consumption of the flow electrodes dominated under most conditions. Changing the operating parameters could obviously affect energy consumption and the energy consumption structure. However, increasing the flow rate and activated carbon (AC) content of the flow-electrode could decrease the energy consumption of the electrode, and the energy consumed by the ion-exchange membranes (IEMs) and desalination chamber was the greatest. These two parts of energy consumption could not be significantly reduced by changing operational parameters. Thus, to further reduce the energy consumption, optimization of the FCDI equipment was carried out by adding titanium mesh to the flow electrodes and the desalination chamber of the FCDI cell. The results showed that the energy consumption of optimized FCDI decreased by 51.9% compared with the original FCDI. The long-term experiment using optimized FCDI showed good stability and repeatability.
Collapse
Affiliation(s)
- Chufeng Shi
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ao Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Sun H, Zhang X, Zheng Z, Cui M, Liu H, Wu P, Liu H. Effective mitigation of ammonia in sewage-sludge-derived fermentation liquid using flow-electrode capacitive deionization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116630. [PMID: 36419295 DOI: 10.1016/j.jenvman.2022.116630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Due to the high toxicity of ammonia to organisms and its contribution to eutrophication in surface water, the risk of emission of ammonia and other nitrogenous ions to the environment and ecosystems has aroused wide concerns. Therefore, the discharge criterion on nitrogen in effluent from conventional wastewater treatment plants (WWTP) is very stringent. Furthermore, during the conventional denitrification processes, the relatively costly external carbon source is usually required. Nowadays production of volatile fatty acids (VFAs) from sewage sludge by alkaline anaerobic fermentation has regarded as an attractive carbon source. However, usually ammonia is quite abundant in the fermentation liquid and thus effective mitigation of ammonia in the fermentation liquid is also a significant step for its further utilization. In the present study, the flow electrode capacitive deionization (FCDI) was applied to remove ammonia in the fermentation liquid of sewage sludge. Firstly, response surface method (RSM) was employed to optimize parameters and then the performance of the FCDI in ammonia removal were examined. Results showed that optimal flow rates, carbon content and ammonia concentration were 8.0 mL min-1, 4.0 wt% and 110 mg N·L-1 and the ammonia removal efficiency (ARE) reached 42.7%, while treating the alkaline fermentation liquid. Seemingly the presence of Na+ and polypeptides in the liquid with their average RE of 53.3% and 11.1% substantially compromised ammonia removal probably due to the competition of adsorption sites. This present study serves as a proven concept for the feasibility of the application of the FCDI system in ammonia separation from the VFAs, which could realize economic and ecological benefits.
Collapse
Affiliation(s)
- Huimin Sun
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xuedong Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
| | - Zhiyong Zheng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China
| | - Minhua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China
| | - Hongbo Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China
| | - Ping Wu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215011, China.
| |
Collapse
|
6
|
Pelarti MM, Mirbagheri SA, Dehghan K, Alam M. Nickel removal from aqueous solutions using flow-electrode capacitive deionization (Optimization by Response Surface Methodology (RSM)). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1299-1307. [PMID: 36178807 DOI: 10.2166/wst.2022.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nowadays, wastewater and water treatment with an efficient system for the removal of heavy metals is a serious challenge. Nickel is one of the main heavy metal pollutants that exist in the wastewater of various industries. Several technologies have been developed for removal of nickel, including the new electrochemical processes. In this experimental study, nickel removal by flow-electrode capacitative deionization (FCDI) in batch-mode is investigated. FCDI experiments with water-fed nickel concentrations of 10, 25, and 40 mg/l, input water pH of 5, 6, and 7, and sodium chloride content of 0, 0.1, and 0.2 M in the flow electrode was investigated to achieve the highest nickel removal rate. Finally, the data were analyzed by response surface methodology (RSM). Accordingly, the best nickel removal performance of the system was achieved at pH of about 6.2, electrolyte NaCl concentration of 0.13 M, and input nickel concentration of 10 mg/l.
Collapse
Affiliation(s)
- Mahdieh Mohammadi Pelarti
- Department of Civil and Environmental Engineering, K.N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran
| | - Seyed Ahmad Mirbagheri
- Department of Civil and Environmental Engineering, K.N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran
| | - Khadijeh Dehghan
- Department of Civil and Environmental Engineering, K.N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran
| | - Mahdi Alam
- Department of Civil Engineering, Yazd University, University Blvd, Safayieh, Yazd, Iran E-mail:
| |
Collapse
|
7
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Xu L, Peng S, Wu K, Tang L, Wu M, Zong Y, Mao Y, Wu D. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field. WATER RESEARCH 2022; 222:118963. [PMID: 35970008 DOI: 10.1016/j.watres.2022.118963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Magnetic field is a simple and powerful means that enables controlled the transport of electrode particles in flow electrode capacitive deionization (FCDI). However, the magnetic particles are easily stripped from hybrid suspension electrodes and the precise manipulation of the charge percolation network remains challenging. In this study, a programmable magnetic field was introduced into the FCDI system to enhance the desalination performance and operational stability of magnetic FCDI, with core-shell magnetic carbon (MC) used as an alternative electrode additive. The results showed that the pulsed magnetic field (PMF) was more effective in enhancing the average salt removal rate (ASRR) compared to the constant magnetic field (CMF), with 51.6% and 67.7% enhancement, respectively, compared to the magnetic field-free condition. The outstanding advantage of the PMF lies in the enhancement in the trapping and mediating effects in the switching magnetic field, which keeps the concentration of the electrode particles near the current collector at a high level and greatly facilitates electron transport. In long-term operation (20,000 cycles), the pulsed magnetic FCDI achieved a stable desalinating rate of 0.4-0.68 μmol min-1 cm-2 and a charge efficiency of >96%. In brief, our study introduces a new approach for the precise manipulation of charge percolation networks of the suspension electrodes and provides insight into the charging mechanism of the magnetic FCDI.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Ke Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Pan Z, An J, Wang P, Fan X, Shen T, Xu R, Song Y, Song C. Novel strategy to enhance the desalination performance of flow-electrode capacitive deionization process via the assistance of electro-catalytic water splitting. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021; 203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Flow electrode capacitive deionization (FCDI) is a promising electrochemical technique for brackish water desalination; however, there are challenges in estimating the distribution of resistance and energy consumption inside a FCDI system, which hinders the optimization of the rate-limiting compartment. In this study, energy consumption of each FCDI component (e.g., flow electrodes, membranes and desalination chamber) was firstly described by using in situ potential measurement (ISPM). Results of this study showed that the energy consumption (EC) of the flow electrodes dominated under most conditions. While an increase in the carbon black content in the flow electrodes could improve the energy efficiency of the electrode component, consideration should be given to the contribution of ion exchange membranes (IEMs) and the desalination chamber to the EC. Based on the above analysis, system optimization was carried out by introducing IEMs with relatively low resistance and/or packing the desalination chamber with titanium meshes. Results showed that the voltage-driven desalination capability was increased by 39.3% with the EC reduced by 17.5% compared to the control, which overcame the tradeoff between the kinetic and energetic efficiencies. Overall, the present work facilitates our understanding of the potential drops across an FCDI system and provides insight to the optimization of system design and operation.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Zixin Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China..
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Yu S, Qin Y, Zhao Q, Li M, Yu H, Kang G, Cao Y. Nafion-PTFE hollow fiber composite membranes for ammonia removal and recovery using an aqueous-organic membrane contactor. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, Liang P. Flow-electrode capacitive deionization: A review and new perspectives. WATER RESEARCH 2021; 200:117222. [PMID: 34029869 DOI: 10.1016/j.watres.2021.117222] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Flow-electrode capacitive deionization (FCDI), as a novel electro-driven desalination technology, has attracted growing exploration towards brackish water treatment, hypersaline water treatment, and selective resource recovery in recent years. As a flow-electrode-based electrochemical technology, FCDI has similarities with several other electrochemical technologies such as electrochemical flow capacitors and semi-solid fuel cells, whose performance are closely coupled with the characteristics of the flow-electrodes. In this review, we sort out the potentially parallel mechanisms of electrosorption and electrodialysis in the FCDI desalination process, and make clear the importance of the flowable capacitive electrodes. We then adopt an equivalent circuit model to distinguish the resistances to ion transport and electron transport within the electrodes, and clarify the importance of electronic conductivity on the system performance based on a series of electrochemical tests. Furthermore, we discuss the effects of electrode selection and flow circulation patterns on system performance (energy consumption, salt removal rate), review the current treatment targets and system performance, and then provide an outlook on the research directions in the field to support further applications of FCDI.
Collapse
Affiliation(s)
- Fan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yunfei He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Leon Rosentsvit
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Matthew E Suss
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Faculty of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Xiaori Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tie Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|