1
|
Malki M, Mitiche L, Sahmoune A, Fontàs C. New Insights on Y, La, Nd, and Sm Extraction with Bifunctional Ionic Liquid Cyphos IL 104 Incorporated in a Polymer Inclusion Membrane. MEMBRANES 2024; 14:182. [PMID: 39330523 PMCID: PMC11433663 DOI: 10.3390/membranes14090182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
In this study, an ionic liquid-based polymer inclusion membrane (IL-PIM) made of (50% polymer-50% CyphosIL104) was used to extract and separate the rare earth elements (REEs) Y, La, Nd, and Sm in chloride solutions. The effect of extraction time and pH was studied to optimize the extraction and separation conditions. The four REEs were effectively extracted at pH 4-5 from both single and mixed metals solutions. However, at pH 2, only Y was extracted. The recovery of the extracted REEs from the loaded PIM was achieved using HNO3 and H2SO4. In the case of La, it was quantitatively back-extracted with H2SO4 after a contact time of 1 h, while up to 4 h was necessary to recover 70% of the extracted Y, Sm, and Nd. Extraction isotherms were studied, and the Freundlich isotherm model was the most adequate to describe the interaction between the PIM and the REEs. Finally, the developed PIM was investigated for the extraction of REEs from mixtures containing other metals, which showed great selectivity for the REEs.
Collapse
Affiliation(s)
- Mohamed Malki
- Laboratory of Physics and Materials Chemistry (LPCM), University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lynda Mitiche
- Laboratory of Physics and Materials Chemistry (LPCM), University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
| | - Amar Sahmoune
- Laboratory of Physics and Materials Chemistry (LPCM), University Mouloud Mammeri of Tizi Ouzou, Tizi Ouzou 15000, Algeria
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
2
|
Jia YG, Yan Z, Shang L, Chen J. Environmental risk of ion-absorbed rare earth ores: concentration of leaching agent and fractionation of Pb. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6425-6436. [PMID: 38151558 DOI: 10.1007/s11356-023-31516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Rare earth (RE) is an important strategic resource; however, there has been a growing concern about the environmental problems caused by RE mining, such as ammonia nitrogen pollution and heavy metal pollution. There is a limited research about the behavior of leaching agents and the fractionation of RE and heavy metal during the mining process for ion adsorption of rare earth ore (IRE-ore) in the previously available papers. In this study, (NH4)2SO4 solution, which commonly used in the production of mining IRE-ore, was used as a leaching agent. The adsorption behavior of ore soils on ammonium ions was explored by batch experiments. The adsorption process of IRE-ore on ammonium ions followed a pseudo-second-order equation and was controlled by the kinetics of surface adsorption and intra-particle diffusion; the ammonium ion adsorption isotherm conformed to the Freundlich isotherm equilibrium equation, and the higher concentration advantage made the ore soils possess a higher adsorption capacity of ammonium ion. In addition, the fractionation characteristics of lanthanum (La), cerium (Ce), and lead (Pb) in the ore soil during the leaching process were simulated based on the batch and column leaching experiments. The results demonstrated that the exchangeable states of La and Ce in IRE-ore were high, and the exchangeable, carbonate-bound La and Ce were almost all leached out by (NH4)2SO4 leaching agent, while the most of exchangeable Pb flowed out along with leaching agent, and a small amount of leached Pb in the ore soil was converted to iron and manganese oxide-bound Pb and enriched in the direction of migration of the leaching solution, and when the environment (e.g., pH and Eh) changed, this part of Pb may be re-activated. Our research might serve as crucial baseline knowledge for the adsorption of ammonium ions by ore soils, and provide a data reference for reducing the use of leaching agents and developing sustainable technologies for green mining of ion-adsorption RE ores.
Collapse
Affiliation(s)
- Ying Gang Jia
- China University of Geosciences, Beijing, 100083, China
| | - Zhenli Yan
- China University of Geosciences, Beijing, 100083, China
| | - Liannan Shang
- China University of Geosciences, Beijing, 100083, China.
- Center of Xi'an Mineral Resources Survey, CGS, Xi'an, 710100, China.
| | - Jian Chen
- China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
3
|
Pineda-Vásquez T, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. From E-Waste to High-Value Materials: Sustainable Synthesis of Metal, Metal Oxide, and MOF Nanoparticles from Waste Printed Circuit Boards. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:69. [PMID: 38202524 PMCID: PMC10780742 DOI: 10.3390/nano14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The exponential growth of electronic waste (e-waste) has raised significant environmental concerns, with projections indicating a surge to 74.7 million metric tons of e-waste generated by 2030. Waste printed circuit boards (WPCBs), constituting approximately 10% of all e-waste, are particularly intriguing due to their high content of valuable metals and rare earth elements. However, the presence of hazardous elements necessitates sustainable recycling strategies. This review explores innovative approaches to sustainable metal nanoparticle synthesis from WPCBs. Efficient metal recovery from WPCBs begins with disassembly and the utilization of advanced equipment for optimal separation. Various pretreatment techniques, including selective leaching and magnetic separation, enhance metal recovery efficiency. Green recovery systems such as biohydrometallurgy offer eco-friendly alternatives, with high selectivity. Converting metal ions into nanoparticles involves concentration and transformation methods like chemical precipitation, electrowinning, and dialysis. These methods are vital for transforming recovered metal ions into valuable nanoparticles, promoting sustainable resource utilization and eco-friendly e-waste recycling. Sustainable green synthesis methods utilizing natural sources, including microorganisms and plants, are discussed, with a focus on their applications in producing well-defined nanoparticles. Nanoparticles derived from WPCBs find valuable applications in drug delivery, microelectronics, antimicrobial materials, environmental remediation, diagnostics, catalysis, agriculture, etc. They contribute to eco-friendly wastewater treatment, photocatalysis, protective coatings, and biomedicine. The important implications of this review lie in its identification of sustainable metal nanoparticle synthesis from WPCBs as a pivotal solution to e-waste environmental concerns, paving the way for eco-friendly recycling practices and the supply of valuable materials for diverse industrial applications.
Collapse
Affiliation(s)
- Tatiana Pineda-Vásquez
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia;
| | - Leidy Rendón-Castrillón
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Program, Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Circular 1ª No 70-01, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
4
|
Zhang H, Gao Y. Polymeric Materials for Rare Earth Elements Recovery. Gels 2023; 9:775. [PMID: 37888349 PMCID: PMC10606271 DOI: 10.3390/gels9100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Rare earth elements (REEs) play indispensable roles in various advanced technologies, from electronics to renewable energy. However, the heavy global REEs supply and the environmental impact of traditional mining practices have spurred the search for sustainable REEs recovery methods. Polymeric materials have emerged as promising candidates due to their selective adsorption capabilities, versatility, scalability, and regenerability. This paper provides an extensive overview of polymeric materials for REEs recovery, including polymeric resins, polymer membranes, cross-linked polymer networks, and nanocomposite polymers. Each category is examined for its advantages, challenges, and notable developments. Furthermore, we highlight the potential of polymeric materials to contribute to eco-friendly and efficient REEs recovery, while acknowledging the need to address challenges such as selectivity, stability, and scalability. The research in this field actively seeks innovative solutions to reduce reliance on hazardous chemicals and minimize waste generation. As the demand for REEs continues to rise, the development of sustainable REEs recovery technologies remains a critical area of investigation, with the collaboration between researchers and industry experts driving progress in this evolving field.
Collapse
Affiliation(s)
- Hongtao Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China;
| | - Yongfeng Gao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
5
|
Loza S, Loza N, Kovalchuk N, Romanyuk N, Loza J. Comparative Study of Different Ion-Exchange Membrane Types in Diffusion Dialysis for the Separation of Sulfuric Acid and Nickel Sulfate. MEMBRANES 2023; 13:396. [PMID: 37103823 PMCID: PMC10145838 DOI: 10.3390/membranes13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The possibility of using various types of ion-exchange membranes in diffusion dialysis for the separation of sulfuric acid and nickel sulfate has been evaluated. The process of the dialysis separation of a real waste solution from an electroplating facility containing 252.3 g/L of sulfuric acid, 20.9 g/L of nickel ions and small amounts of zinc, iron, copper ions, etc. has been studied. Heterogeneous cation-exchange membrane containing sulfonic groups and heterogeneous anion-exchange membranes with different thicknesses (from 145 μm to 550 μm) and types of fixed groups (four samples with quaternary ammonium base and one sample with secondary and tertiary amines) have been used. The diffusion fluxes of sulfuric acid, nickel sulfate, and the total and osmotic fluxes of the solvent have been determined. The use of a cation-exchange membrane does not allow the separation of the components, since the fluxes of both components are low and comparable in magnitude. The use of anion-exchange membranes makes it possible to efficiently separate sulfuric acid and nickel sulfate. Anion-exchange membranes with quaternary ammonium groups are more effective in the diffusion dialysis process, while the thin membrane turns out to be the most effective.
Collapse
|
6
|
Xie C, Xiao Y, He C, Liu WS, Tang YT, Wang S, van der Ent A, Morel JL, Simonnot MO, Qiu RL. Selective recovery of rare earth elements and value-added chemicals from the Dicranopteris linearis bio-ore produced by agromining using green fractionation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130253. [PMID: 36327843 DOI: 10.1016/j.jhazmat.2022.130253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The increasing demand for Rare Earth Elements (REEs) and the depletion of mineral resources motivate sustainable strategies for REE recovery from alternative unconventional sources, such as REE hyperaccumulator. The greatest impediment to REE agromining is the difficulty in the separation of REEs and other elements from the harvested biomass (bio-ore). Here, we develop a sulfuric acid assisted ethanol fractionation method for processing D. linearis bio-ore to produce the pure REE compounds and value-added chemicals. The results show that 94.5% of REEs and 87.4% of Ca remained in the solid phase, and most of the impurities (Al, Fe, Mg, and Mn) transferred to the liquid phase. Density functional theory calculations show that the water-cation bonds of REEs and Ca cations were broken more easily than the bonds of the cations of key impurities, causing lower solubility of REEs and Ca compounds. Subsequent separation and purification led to a REE-oxide (REO) product with a purity of 97.1% and a final recovery of 88.9%. In addition, lignin and phenols were obtained during organosolv fractionation coupled with a fast pyrolysis process. This new approach opens up the possibility for simultaneous selective recovery of REEs and to produce value-added chemicals from REE bio-ore refining.
Collapse
Affiliation(s)
- Candie Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Wen-Shen Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ye-Tao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | | | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Zhou H, Ju P, Hu S, Shi L, Yuan W, Chen D, Wang Y, Shi S. Separation of Hydrochloric Acid and Oxalic Acid from Rare Earth Oxalic Acid Precipitation Mother Liquor by Electrodialysis. MEMBRANES 2023; 13:162. [PMID: 36837666 PMCID: PMC9964671 DOI: 10.3390/membranes13020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the hydrochloric acid from rare earth oxalic acid precipitation mother liquor was separated by electrodialysis (ED) with different anion exchange membranes, including selective anion exchange membrane (SAEM), polymer alloy anion exchange membrane (PAAEM), and homogenous anion exchange membrane (HAEM). In addition to actual wastewater, nine types of simulated solutions with different concentrations of hydrochloric acid and oxalic acid were used in the experiments. The results indicated that the hydrochloric acid could be separated effectively by electrodialysis with SAEM from simulated and real rare earth oxalic acid precipitation mother liquor under the operating voltage 15 V and ampere 2.2 A, in which the hydrochloric acid obtained in the concentrate chamber of ED is of higher purity (>91.5%) generally. It was found that the separation effect of the two acids was related to the concentrations and molar ratios of hydrochloric acid and oxalic acid contained in their mixtures. The SEM images and ESD-mapping analyses indicated that membrane fouling appeared on the surface of ACS and CSE at the diluted side of the ED membrane stack when electrodialysis was used to treat the real rare earth oxalic acid precipitation mother liquor. Fe, Yb, Al, and Dy were found in the CSE membrane section, and organic compounds containing carbon and sulfur were attached to the surface of the ACS. The results also indicated that the real rare earth precipitation mother liquor needed to be pretreated before the separation of hydrochloric acid and oxalic acid by electrodialysis.
Collapse
Affiliation(s)
- Hengcheng Zhou
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Peihai Ju
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Shaowei Hu
- Technology Center of Angang Steel Co., Ltd., Anshan 114009, China
| | - Lili Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Dongdong Chen
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
| | - Yujie Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaoyuan Shi
- College of Resources and Environment, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Bendová H, Dušek L. Treatment of Spent Pickling Solutions by Diffusion Dialysis Using Anion-Exchange Membrane Neosepta-AFN. MEMBRANES 2022; 13:membranes13010009. [PMID: 36676816 PMCID: PMC9864578 DOI: 10.3390/membranes13010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
This article presents the possibility of using diffusion dialysis for processing spent pickling solution from pickling stainless steels with a mixture of nitric acid and hydrofluoric acid. A counter-current two-compartment dialyzer equipped with an anion-exchange membrane Neosepta-AFN was used to study and compare the diffusion dialysis of model mixture of hydrofluoric acid and ferric nitrate and a real spent pickling solution. The separation efficiency was characterized by the acid recovery yield, the rejection coefficient of the metals, the permeability coefficient of the membrane, and the separation factor. These characteristics were calculated from the data obtained at steady state. For the real spent pickling solution tested, the permeability values of nitrates 1.7 × 10-6 m s-1, fluorides 0.4 × 10-6 m s-1, and ferric ions 1.1 × 10-7 m s-1 were achieved. The separation factor for nitrates/ferric ions was 15.7 and 3.6 for fluorides/ferric ions. Furthermore, the dependencies of recovery yield and rejection for different concentrations of hydrofluoric acid and ferric nitrate were determined.
Collapse
|
9
|
Kaczorowska MA. The Use of Polymer Inclusion Membranes for the Removal of Metal Ions from Aqueous Solutions-The Latest Achievements and Potential Industrial Applications: A Review. MEMBRANES 2022; 12:1135. [PMID: 36422127 PMCID: PMC9695490 DOI: 10.3390/membranes12111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/12/2023]
Abstract
The growing demand for environmentally friendly and economical methods of removing toxic metal ions from polluted waters and for the recovery of valuable noble metal ions from various types of waste, which are often treated as their secondary source, has resulted in increased interest in techniques based on the utilization of polymer inclusion membranes (PIMs). PIMs are characterized by many advantages (e.g., the possibility of simultaneous extraction and back extraction, excellent stability and high reusability), and can be adapted to the properties of the removed target analyte by appropriate selection of carriers, polymers and plasticizers used for their formulation. However, the selectivity and efficiency of the membrane process depends on many factors (e.g., membrane composition, nature of removed metal ions, composition of aqueous feed solution, etc.), and new membranes are systematically designed to improve these parameters. Numerous studies aimed at improving PIM technology may contribute to the wider use of these methods in the future on an industrial scale, e.g., in wastewater treatment. This review describes the latest achievements related to the removal of various metal ions by PIMs over the past 3 years, with particular emphasis on solutions with potential industrial application.
Collapse
Affiliation(s)
- Małgorzata A Kaczorowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85326 Bydgoszcz, Poland
| |
Collapse
|
10
|
Fan B, Li F, Cheng Y, Wang Z, Zhang N, Wu Q, Bai L, Zhang X. Rare-Earth Separations Enhanced by Magnetic Field. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
New Low-Cost Ceramic Microfiltration Membranes for Bacteria Removal. MEMBRANES 2022; 12:membranes12050490. [PMID: 35629816 PMCID: PMC9143507 DOI: 10.3390/membranes12050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Safe water provision in low-income countries is constrained by limited financial resources, and the problem is worsened during natural disasters. Thus, there is a need to develop efficient low-cost technologies for point-of-use water treatment. This work reports on the development of new ceramic microfiltration membranes made from mixtures of inexpensive raw materials available locally (kaolin, bentonite and limestone) and their efficiency in rejecting bacteria such as Escherichia coli and Staphylococcus aureus. Thermogravimetric analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, X-ray diffraction, mercury intrusion porosimetry, flexural strength and water uptake were used to characterize the raw materials and membranes. The addition of limestone in the membrane fabrication increased the pore size, the porosity and, thus, the permeability of the membranes but at the expense of the rejection performance. Among the different compositions studied, the membrane made of 83% kaolin, 10% bentonite and 7% limestone showed the best performance compromise with water permeability of 566 L·h−1·m−2·bar−1 and 100% rejection of both Escherichia coli and Staphylococcus aureus. These new low-cost microfiltration membranes are expected to have potential applications in water treatment and household applications.
Collapse
|
12
|
Yuksekdag A, Kose-Mutlu B, Siddiqui AF, Wiesner MR, Koyuncu I. A holistic approach for the recovery of rare earth elements and scandium from secondary sources under a circular economy framework - A review. CHEMOSPHERE 2022; 293:133620. [PMID: 35033522 DOI: 10.1016/j.chemosphere.2022.133620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Limited natural resources and a continuous increase in the demand for modern technological products, is creating a demand and supply gap for rare earth elements (REEs) and Sc. There is therefore a need to adopt the sustainable approach of the circular economy system (CE). In this review, we defined six steps required to close the loop and recover REEs, using a holistic approach. Recent statistics on REEs and Sc demand and the number of waste generations are reported and studies on more environmentally friendly, economic, and/or efficient recovery processes are summarized. Pilot-scale recovery facilities are described for several types of secondary sources. Finally, we identify obstacles to closing the REE loop in a circular economy and the reasons why secondary sources are not preferred over primary sources. Briefly, recovery from secondary sources should be environmentally and economically friendly and of an acceptable standard concerning final product quality. However, current technologies for recovery from for secondary sources are limiting and technology needs will vary depending on the source type. The quality/purity of the recovered metals should be proven so that they do not result in any adverse effects on the product quality, when they are being used as secondary raw material. In addition, for industrial-scale facilities, process improvements are required that consider environmental conditions.
Collapse
Affiliation(s)
- Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Molecular Biology and Genetics Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Azmat Fatima Siddiqui
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mark R Wiesner
- Civil and Environmental Engineering Department, Duke University, 27708, Durham, NC, USA
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
13
|
Bashiri A, Nikzad A, Maleki R, Asadnia M, Razmjou A. Rare Earth Elements Recovery Using Selective Membranes via Extraction and Rejection. MEMBRANES 2022; 12:80. [PMID: 35054606 PMCID: PMC8779715 DOI: 10.3390/membranes12010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
Recently, demands for raw materials like rare earth elements (REEs) have increased considerably due to their high potential applications in modern industry. Additionally, REEs' similar chemical and physical properties caused their separation to be difficult. Numerous strategies for REEs separation such as precipitation, adsorption and solvent extraction have been applied. However, these strategies have various disadvantages such as low selectivity and purity of desired elements, high cost, vast consumption of chemicals and creation of many pollutions due to remaining large amounts of acidic and alkaline wastes. Membrane separation technology (MST), as an environmentally friendly approach, has recently attracted much attention for the extraction of REEs. The separation of REEs by membranes usually occurs through three mechanisms: (1) complexation of REE ions with extractant that is embedded in the membrane matrix, (2) adsorption of REE ions on the surface created-active sites on the membrane and (3) the rejection of REE ions or REEs complex with organic materials from the membrane. In this review, we investigated the effect of these mechanisms on the selectivity and efficiency of the membrane separation process. Finally, potential directions for future studies were recommended at the end of the review.
Collapse
Affiliation(s)
- Atiyeh Bashiri
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran 16845-161, Iran;
| | - Arash Nikzad
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T1Z4, Canada;
| | - Reza Maleki
- Department of Physics, University of Tehran, Tehran 14395-547, Iran;
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Amir Razmjou
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Towards the Circular Economy of Rare Earth Elements: Lanthanum Leaching from Spent FCC Catalyst by Acids. Processes (Basel) 2021. [DOI: 10.3390/pr9081369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rare earth elements (REEs) are strategic materials widely used in different applications from Information and Communication Technologies (ICT) to catalysis, which are expected to grow more in the future. In order to reduce the impact of market price and reduce the environmental effect from soil extraction, recovery/purification strategies should be exploited. This paper presents a combined acid-leaching/oxalate precipitation process to recover lanthanum from spent FCC catalyst using nitric acid. Preferred to hydrochloric and sulphuric acid (preliminary assessed), HNO3 showed a good capability to completely leach lanthanum. The combination with an oxalate precipitation step allowed demonstrating that a highly pure (>98% w/w) lanthanum solid can be recovered, with a neglectable amount of poisoning metals (Ni, V) contained into the spent catalyst. This could open a reliable industrial perspective to recover and purify REE in the view of a sustainable recycling strategy.
Collapse
|
15
|
Ionic imprinted CNTs-chitosan hybrid sponge with 3D network structure for selective and effective adsorption of Gd(III). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Nkinahamira F, Alsbaiee A, Wang Y, Yang X, Chen TY, Cao M, Feng M, Sun Q, Yu CP. Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite of β-cyclodextrin and silica doped with PC88A. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|