1
|
Sharma G, Verma Y, Lai CW, Naushad M, Iqbal J, Kumar A, Dhiman P. Biochar and biosorbents derived from biomass for arsenic remediation. Heliyon 2024; 10:e36288. [PMID: 39263124 PMCID: PMC11388741 DOI: 10.1016/j.heliyon.2024.e36288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Global groundwater contamination by Arsenic (As) presents a grave danger to the health of living beings and wildlife, demanding comprehensive remediation strategies. This review delves into the complex landscape of arsenic remediation, encompassing its chemical forms, occurrences, sources, and associated health risks. Advanced techniques, notably biomass-derived adsorbents, emerge as promising and cost-effective solutions. The exploration spans preparing and modifying biomass-derived adsorbents, unraveling their adsorption capacity, influencing factors, isotherms, kinetics, and thermodynamics. Noteworthy attention is given to plant-agricultural waste, algal-fungal-bacterial, and iron-modified biomass-derived adsorbents. The comprehensive discussion of the adsorption mechanism highlights the efficacy of low-cost biomass, particularly from plant, animal, and agricultural residues, offering a sustainable remedy for arsenic removal. This insightful review contributes to the understanding of evolving technologies essential for addressing arsenic contamination in wastewater, emphasizing the potential of renewable biomaterials in advancing efficient remediation practices.
Collapse
Affiliation(s)
- Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jibran Iqbal
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| |
Collapse
|
2
|
Kalami S, Diakina E, Noorbakhsh R, Sheidaei S, Rezania S, Vasseghian Y, Kamyab H, Mohammadi AA. Metformin-modified polyethersulfone magnetic microbeads for effective arsenic removal from apatite soil leachate water. ENVIRONMENTAL RESEARCH 2024; 241:117627. [PMID: 37967700 DOI: 10.1016/j.envres.2023.117627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Arsenic is the hazardous species and still is the global challenge in water treatment. Apatite soil is highly rich in arsenic species, and its mining presents various environmental issues. In this study, novel magnetic microbeads as adsorbent were developed for the elimination of hazardous arsenic ions from apatite soil's aqueous leachate before discharging into environment. The microbeads were fabricated with metformin polyether sulfone after being doped with zero-valent iron (Met-PES/ZVI). The microbeads were characterized using various techniques, including FTIR, XRD, SEM-EDX, VSM, and zeta potential analysis. The developed adsorbent demonstrated a significant elimination in arsenic in aqueous leachate, achieving 82.39% removal after 30 min of contact time, which further increased to 90% after 180 min of shaking. The kinetic analysis revealed that the pseudo-second-order model best represented the adsorption process. The intra-particle diffusion model indicated that the adsorption occurred in two steps. The Langmuir model (R2 = 0.991), with a maximum adsorption capacity of 188.679 mg g-1, was discovered to be the best fit for the experimental data as compared Freundlich model (R2 = 0.981). According to the thermodynamic outcome (ΔG < -20 kJ/mol), the adsorption process was spontaneous and involved physisorption. These findings demonstrate the potential of magnetic Met-PES/ZVI microbeads as an efficient adsorbent for the removal of arsenic from apatite soil aqueous leachate.
Collapse
Affiliation(s)
- Shakila Kalami
- Department of Chemical Engineering and Petroleum, Chemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Ekaterina Diakina
- Department of Mechanical Engineering, Bauman Moscow State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Roya Noorbakhsh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), PO Box 31745-139, Karaj, Iran.
| | - Sina Sheidaei
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| |
Collapse
|
3
|
Sun Y, Wu Q, Li X, Sun W, Zhou J, Shah KJ. Preparation of composite coagulant for the removal of microplastics in water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10969. [PMID: 38148739 DOI: 10.1002/wer.10969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
In this work, a composite flocculant (polyferric titanium sulfate-polydimethyldiallylammonium chloride [PFTS-PDMDAAC]) with a rich spatial network structure was prepared for the treatment of simulated wastewater containing polystyrene (PS) micro-nanoparticles. Characterization results showed that the surface of the PFTS-PDMDAAC was a three-dimensional network polymer of chain molecules that exhibited good thermal stability and formed an amorphous polymer containing multiply hydroxyl-bridged titanium and iron. When n(OH- ) : n(Fe) = 1:2, n(PO4 3- ) : n(Fe) = 0.35, n(Ti) : n(Fe) = 1:8, n(DMDAAC) : n(Fe) = 5:100, and the polymerization temperature is 60°C, the prepared composite flocculant has the best effect. The effects of dosage, pH, and agitation intensity on the flocculation properties of PFTS-PDMDAAC were also studied. The optimal removal rates of PS-μm and haze by PFTS-PDMDAAC were 85.60% and 90.10%, respectively, at a stirring intensity of 200 rpm, a pH of 9.0, and a PFTS-PDMDAAC dosage of 20 mg/L. The flocs produced by the PFTS-PDMDAAC flocculation were large and compact in structure, and the flocculation mechanism was mainly based on adsorption bridging. Kaolin played a promoting role in the process of PS-μm removal by PFTS-PDMDAAC floc and accelerated the formation of large and dense flocs. This study provided a reference for the coagulation method to remove micro-nanopollutants in the actual water treatment process. PRACTITIONER POINTS: A composite flocculant with rich spatial network structure (PFTS-PDMDAAC) was prepared. PFTS-PDMDAAC can effectively remove micro-nano polystyrene (PS) in wastewater. The floc produced by PFTS-PDMDAAC is large and compact in structure. The flocculation mechanism of PFTS-PDMDAAC is mainly adsorption bridging.
Collapse
Affiliation(s)
- Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Qu Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Li
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Wenquan Sun
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| | - Kinjal J Shah
- College of Urban Construction, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Sun P, Wang X, Liang J, Zhou L. Isolation and characterisation of Fe(II)-oxidising bacteria and their application in the removal of arsenic in an aqueous solution. ENVIRONMENTAL TECHNOLOGY 2023; 44:4136-4146. [PMID: 35615906 DOI: 10.1080/09593330.2022.2082322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a toxic metalloid disseminated in water, soil, and air. Arsenic contamination is currently a major public health concern. This study investigated arsenic removal by Fe(II)-oxidising bacteria in an aqueous solution. A bacterial strain, Z1, isolated from concentrated sludge, was identified as Sphaerotilus natans based on microscopic morphology, culture characteristics, and 16s rRNA gene sequences. After arsenic-resistant acclimation, Sphaerotilus natans Z1 successfully survived and propagated in high arsenic conditions (100 mg·L-1 As(V) or As(III)). To a certain extent, the isolated strain could decrease the concentration of As(III)/As(V) by biosorption under organic substance supply. Partial As(V) could be reduced to As(III) due to cytoplasmic arsenic reduction of bacteria. In addition, ferrihydrite, one of the iron oxides, was formed by the mediation of Sphaerotilus natans in the Winogradsky medium. Most of As(III)/As(V) could be effectively removed by sorbing onto the resultant ferrihydrite mineral. Thus, iron oxide minerals facilitated by Sphaerotilus natans may be an alternative remediation strategy for scavenging arsenic in the water environment.
Collapse
Affiliation(s)
- Pingping Sun
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Velarde L, Nabavi MS, Escalera E, Antti ML, Akhtar F. Adsorption of heavy metals on natural zeolites: A review. CHEMOSPHERE 2023; 328:138508. [PMID: 36972873 DOI: 10.1016/j.chemosphere.2023.138508] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Water pollution has jeopardized human health, and a safe supply of drinking water has been recognized as a worldwide issue. The increase in the accumulation of heavy metals in water from different sources has led to the search for efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites are promising materials for removing heavy metals from different sources contaminating the water. It is important to know the structure, chemistry, and performance of the removal of heavy metals from water, of the natural zeolites to design water treatment processes. This review focuses on critical analyses of the application of distinct natural zeolites for the adsorption of heavy metals from water, specifically, arsenic (As(III), As(V)), cadmium (Cd(II)), chromium (Cr(III), Cr(VI)), lead (Pb(II)), mercury(Hg(II)) and nickel (Ni(II)). The reported results of heavy-metal removal by natural zeolites are summarized, and the chemical modification of natural zeolites by acid/base/salt reagent, surfactants, and metallic reagents has been analyzed, compared, and described. Furthermore, the adsorption/desorption capacity, systems, operating parameters, isotherms, and kinetics for natural zeolites were described and compared. According to the analysis, clinoptilolite is the most applied natural zeolite to remove heavy metals. It is effective in removing As, Cd, Cr, Pb, Hg, and Ni. Additionally, an interesting fact is a variation between the natural zeolites from different geological origins regarding the sorption properties and capacities for heavy metals suggesting that natural zeolites from different regions of the world are unique.
Collapse
Affiliation(s)
- Lisbania Velarde
- Department of Chemistry, Faculty of Science and Technology, San Simon University, UMSS, Cochabamba, Bolivia; Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Mohammad Sadegh Nabavi
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Edwin Escalera
- Department of Chemistry, Faculty of Science and Technology, San Simon University, UMSS, Cochabamba, Bolivia
| | - Marta-Lena Antti
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Farid Akhtar
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
6
|
Xu X, Guo J, Yang R, Gao Y, Xue Y, Wang L, Zhang L, Zhang Q, Peng M, Liu X. Construction of titanium-aluminum xerogel composite coagulant for removal of tetracycline in water: synergy effects and improvement mechanisms insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18285-18295. [PMID: 36208375 DOI: 10.1007/s11356-022-23448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Titanium xerogel coagulant (TXC) is a new type of coagulant that has attracted much attention in recent years. However, the tetracycline removal performance of TXC was not satisfactory because low isoelectric point (pHiep) inhibited the electrical neutralization efficiency of TXC in an alkaline environment. To overcome this shortcoming, a composite xerogel coagulant (titanium-aluminum xerogel composite coagulant) was prepared. The removal of tetracycline and turbidity was used as evaluation indexes. It was proved that the combination of aluminum (III) and titanium (IV) enhanced the resistance of TXC to pH. The synthesized titanium-aluminum xerogel composite coagulant (TXAC) has an excellent removal ability of tetracycline in a wide pH range (pH = 5-10). At pH 8.8, the dosage required to remove 80% tetracycline from water decreased from 93 (TXC) to 35 mg/L (TXAC). The reason for this improvement could be attributed to (i) aluminum (III) enhanced the electric neutralization of TXC to negatively charged pollutants in an alkaline environment; (ii) the complexing ability of organic matter and aluminum (III) was enhanced. This work provides a feasible scheme for the pretreatment of tetracycline in water to meet the pretreatment requirements of special water.
Collapse
Affiliation(s)
- Xia Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Jun Guo
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Ruoying Yang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Yu Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Yingang Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China.
| | - Liping Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Ling Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Qiuya Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Mingguo Peng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| | - Xuefeng Liu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
7
|
Fan X, Ma L, Liu S, Xie Y, Lu S, Tan Z, Ji J, Fu ML, Yuan B, Hu YB. Facile synthesis of lattice-defective and recyclable zirconium hydroxide coated nanoscale zero-valent iron for robust arsenite removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
El Ouardi M, El Aouni A, Ait Ahsaine H, Zbair M, BaQais A, Saadi M. ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. CHEMOSPHERE 2022; 308:136483. [PMID: 36152836 DOI: 10.1016/j.chemosphere.2022.136483] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
In the past decade, extensive research has been devoted to synthesis of ZIF-8 materials for catalytic applications. As physico-chemical properties are synthesis-dependent, this review explores different synthesis strategies based the solvent and solvent-free synthesis of zeolitic imidazole framework. Accordingly, the effect of several parameters on the ZIF-8 synthesis were discussed including solvent, deprotonating agents, precursors ratio is delivered. Additionally, the advantages and disadvantages of each synthesis have been discussed and assessed. ZIF-8 textural and structural properties justify its wide use as a stable high surface area MOF in aqueous catalytic reactions. This review includes the applicatios of ZIF-8 materials in photocatalytic hydrogen evolution reaction (HER). The efficiency of the reviewed materials was fairly assessed. Finally, Limitations, drawbacks and future challenges were fully debated to ensure the industrial viability of the ZIFs.
Collapse
Affiliation(s)
- M El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Université de Toulon, CNRS, IM2NP, CS 60584, Toulon Cedex 9, F- 83041, France
| | - Aicha El Aouni
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - M Zbair
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, f-68100 Mulhouse, France; Université de Strasbourg, 67081, Strasbourg, France
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
9
|
Elaouni A, El Ouardi M, Zbair M, BaQais A, Saadi M, Ait Ahsaine H. ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC Adv 2022; 12:31801-31817. [PMID: 36380941 PMCID: PMC9639128 DOI: 10.1039/d2ra05717d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Metal organic frameworks (MOFs) are attracting significant attention for applications including adsorption, chemical sensing, gas separation, photocatalysis, electrocatalysis and catalysis. In particular, zeolitic imidazolate framework 8 (ZIF-8), which is composed of zinc ions and imidazolate ligands, have been applied in different areas of catalysis due to its outstanding structural and textural properties. It possesses a highly porous structure and chemical and thermal stability under varying reaction conditions. When used alone in the reaction medium, the ZIF-8 particles tend to agglomerate, which inhibits their removal efficiency and selectivity. This results in their mediocre reusability and separation from aqueous conditions. Thus, to overcome these drawbacks, several well-designed ZIF-8 structures have emerged by forming composites and heterostructures and doping. This review focuses on the recent advances on the use of ZIF-8 structures (doping, composites, heterostructures, etc.) in the removal and photodegradation of persistent organic pollutants. We focus on the adsorption and photocatalysis of three main organic pollutants (methylene blue, rhodamine B, and malachite green). Finally, the key challenges, prospects and future directions are outlined to give insights into game-changing breakthroughs in this area.
Collapse
Affiliation(s)
- Aicha Elaouni
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - M El Ouardi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
- Université de Toulon, AMU, CNRS, IM2NP CS 60584, Toulon Cedex 9 F-83041 France
| | - M Zbair
- Université de Haute-Alsace, CNRS IS2M UMR 7361 F-68100 Mulhouse France
- Université de Strasbourg 67081 Strasbourg France
| | - A BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - M Saadi
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| | - H Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat Morocco
| |
Collapse
|
10
|
Che J, Zhang W, Ma B, Chen Y, Wang L, Wang C. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157063. [PMID: 35780900 DOI: 10.1016/j.scitotenv.2022.157063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Recovering harmful elements (As, Pb) and metals (Cu, Bi, Zn) from copper smelting flue dust (CSFD) is a critical subject and task for arsenic contamination control and resource sustainability. In this work, a two-step pyrometallurgical process was developed to preferentially separate arsenic and recover metals from CSFD. During the low-temperature roasting, arsenic-bearing waste acid (AWA) from copper industry was used as an additive and effective removal of arsenic (97.8 %) was obtained at 350 °C, which follows the idea of "treating waste with waste". Subsequently, the recovery and separation of metals were well-achieved based on the affinity between metals and sulfur in the second stage of roasting, by which 91.28 % of Pb and 95.65 % of Bi were recovered as an alloy (Pb 86.48 %, Bi 13.21 %), while 82.62 % of Cu was enriched in the matte. The migration rules of metal elements and phase transformation in the whole process were studied in-depth from theory and experiments. This process can realize the efficient removal of arsenic as well as effective recovery of metals via cooperative disposal of CSFD and AWA, and minimize the environmental impacts.
Collapse
Affiliation(s)
- Jianyong Che
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjuan Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Baozhong Ma
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Chen
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ling Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengyan Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Guo K, Wang Z, Pan J, Liu B, Wang Y, Yue Q, Gao Y, Gao B. Highly efficient Al-Ti gel as a coagulant for surface water treatment: Insights into the hydrolysate transformation and coagulation mechanism. WATER RESEARCH 2022; 221:118826. [PMID: 35834971 DOI: 10.1016/j.watres.2022.118826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In view of the insufficient coagulation efficiency of traditional inorganic coagulants, a series of Al-Ti gels with different Ti/triethanolamine (TEA), Ti/H2O, and Ti/Al molar ratios were prepared by sol-gel process in this study. Fourier transform infrared (FTIR) spectra of the Al-Ti gels preliminarily confirmed the interaction between Al and Ti by detecting the appearance of the Al-O-Ti bond. The peak shift of the chemical bonds in X-ray photoelectron spectra (XPS) and the transformation of the hydrolysate species in the Al-Ti gels were analyzed to further explore the interaction mechanism between Al and Ti. It was found that moderate TEA could inhibit the hydrolysis of Ti precursors by taking up the coordination sites of H2O to form a CO-Ti bond. Density functional theory (DFT) calculation results showed that Ti could be incorporated into the framework of aluminum hydrolysates to form an Al-O-Ti bond, and [Al2Ti2(OH)x(TEA)y(H2O)8-x-y]14-x was the most possible copolymerization hydrolysate. Based on the above research results, the most efficient Al-Ti gel was selected and applied to the actual lake water treatment. The highest UV254 removal efficiency with the addition of Al-Ti gel was > 60%, nearly 25% higher than that of Ti gel. The hydrolysates of Al-Ti gel, such as TiO(OH)2(am), Al(OH)3(am), and [Al2Ti2(OH)x(TEA)y(H2O)8-x-y]14-x, could remove organic matters through the incorporation of charge neutralization, adsorption, complexation, and sweeping effects. These results provide a new idea for studying the interaction mechanism between Al and Ti in composite coagulants, and have theoretical guiding significance to actual water treatment.
Collapse
Affiliation(s)
- Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Jingwen Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China.
| |
Collapse
|
12
|
Liu B, Gao Y, Pan J, Feng Q, Yue Q, Guo K, Gao B. Coagulation behavior of polyaluminum-titanium chloride composite coagulant with humic acid: A mechanism analysis. WATER RESEARCH 2022; 220:118633. [PMID: 35613484 DOI: 10.1016/j.watres.2022.118633] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The hydrolysate species of metal-based coagulants and the binding sites of humic acid (HA) are highly dependent on the pH conditions. Exploring the binding sites and modes between coagulant hydrolysates and HA molecules is critical to understanding the coagulation mechanism. In this paper, the binding behavior between HA molecules and the hydrolysates of a polyaluminum-titanium chloride composite coagulant (PATC) was investigated under different pH conditions by semi-quantitative FTIR and XPS. It was found that oligomeric and mesopolymeric hydrolysates were the dominant species under acid conditions, which could complex with the hydroxyl and carboxyl groups of HA by forming COAl/Ti coordinate bonds. However, large amounts of H+ could compete with Al3+ and weaken the removal efficiency of HA. With the increase of pH, the hydrolysis process of the PATC and the deprotonation of HA were simultaneously underway. Under weakly acid conditions, the complexation of the aluminum hydrolysates with carboxyl groups was improved due to the gradually diminishing competition of H+ and the enhanced charge neutralization of the further polymerized hydrolysates. Consequently, the maximum UV254 removal by adding PATC was observed at pH 6. Under alkaline conditions, the sweeping effect of amorphous hydroxide dominated the HA removals, which was accompanied by the surface complexation of Al/Ti nuclear with carboxyl groups as well as the hydrogen bonds between hydroxyl and hydroxide. This study provides a new clue for the interaction mechanisms between the hydrolysates of composite coagulants and the dominant functional groups of HA at various pH conditions.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Jingwen Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qiyun Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 26600, PR China.
| |
Collapse
|
13
|
Aljubran MA, Ali Z, Wang Y, Alonso E, Puspasari T, Cherviakouski K, Pinnau I. Highly efficient size-sieving-based removal of arsenic(III) via defect-free interfacially-polymerized polyamide thin-film composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Liu B, Gao B, Guo K, Pan J, Yue Q. The interactions between Al (III) and Ti (IV) in the composite coagulant polyaluminum-titanium chloride. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
|
16
|
Xu M, Luo Y, Wang X, Zhou L. Coagulation-ultrafiltration efficiency of polymeric Al-, Fe-, and Ti- coagulant with or without polyacrylamide composition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Gan Y, Zhang L, Zhang S. The suitability of titanium salts in coagulation removal of micropollutants and in alleviation of membrane fouling. WATER RESEARCH 2021; 205:117692. [PMID: 34600229 DOI: 10.1016/j.watres.2021.117692] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Coagulation is a conventional method in water treatment. In recent decades, with the rapid development of membrane filtration, the use of coagulation is facing some new challenges. How to minimize the membrane fouling became a leading-edge topic in the study of coagulation. Here, the performances of three types of titanium coagulants were evaluated in terms of both the coagulation removal of toxic micropollutants and the alleviation of membrane fouling. Three oxysalts and two antibiotics were taken as representatives of inorganic and organic micropollutants. As compared with titanium tetrachloride (TiCl4) and polytitanium chloride (PTC), titanium xerogel (TXC) with a higher polymerization degree showed much better performances in direct coagulation removal of oxysalts and antibiotics and in pre-coagulation for mitigating membrane fouling in both coagulation-sedimentation-ultrafiltration (CSUF) and in-line coagulation-ultrafiltration (CUF) processes. In the CSUF system, the membrane permeate flux with TXC pre-coagulation (89.5%) was much higher than those of TiCl4 (56.1%) and PTC (57.4%). After a 5 day continuous operation, the transmembrane pressure in the CUF system with TXC coagulation was increased only to 4.9 kPa, while those of PTC and TiCl4 were 12.2 and 18.5 kPa, respectively. The results here demonstrate that TXC is a promising coagulant for pollutant removal and membrane fouling alleviation, due to the following merits: better floc properties, weaker pH-dependence, and higher resistance to coordination with organic pollutants. The observation shed new lights on the fabrication and application of coagulants in a wide variety of scenarios.
Collapse
Affiliation(s)
- Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
18
|
Rathi BS, Kumar PS. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126299. [PMID: 34102361 DOI: 10.1016/j.jhazmat.2021.126299] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 05/10/2023]
Abstract
Arsenic liberation and accumulation in the groundwater environment are both affected by the presence of primary ions and soluble organic matter. The most important influencing role in the co-occurrence is caused by human activity, which includes logging, agricultural runoff stream, food, tobacco, and fertilizers. Furthermore, it covers a wide range of developed and emerging technologies for removing arsenic impurities from the ecosystem, including adsorption, ion exchangers, bio sorption, coagulation and flocculation, membrane technology and electrochemical methods. This review thoroughly explores various arsenic toxicity to the atmosphere and the removal methods involved with them. To begin, the analysis focuses on the general context of arsenic outbreaks in the area, health risks associated with arsenic, and measuring techniques. The utilization of innovative functional substances such as graphite oxides, metal organic structures, carbon nanotubes, and other emerging types of composite materials, as well as the ease, reduced price, and simple operating method of the adsorbent material, are better potential alternatives for arsenic removal. The aim of this article is to examine the origins of arsenic, as well as identification and treatment methods. It also addressed recent advancements in Arsenic removal using graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other novel types of usable materials. Under ideal conditions for the above methods, the arsenic removal will achieve nearly 99% in lab scale.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| |
Collapse
|
19
|
Xu M, Wang X, Zhou B, Zhou L. Pre-coagulation with cationic flocculant-composited titanium xerogel coagulant for alleviating subsequent ultrafiltration membrane fouling by algae-related pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124838. [PMID: 33352421 DOI: 10.1016/j.jhazmat.2020.124838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In-line coagulation-ultrafiltration is reliable to achieve the safe disposal of algae-laden water with alleviated membrane fouling. Poly(diallyl dimethyl ammonium chloride) (PDADMAC)-composited titanium xerogel (TXC) coagulant (abbreviated as P-T) was reported to possess better resistance to organic matter loads, and its mitigation effect on subsequent ultrafiltration efficiency towards algae-related pollutants was investigated in this study. Results showed that P-T coagulation effectively mitigated membrane fouling over pH 5.0-9.0, whereas TXC only worked better under acidic condition. Acidic environment facilitated algae and organic matter removal by pre-coagulation, thus greatly improving ultrafiltration efficiency. Under neutral and alkaline conditions, PDADMAC portion in P-T enhanced the coagulation removal towards algae and protein constituents, and simultaneously promoted the formation of flocs with unique porous structure, which jointly contributed to its high-efficient alleviation ability. Nevertheless, PDADMAC increased adhesion force between P-T coagulated flocs and membrane surface, thus slightly reducing the recovery rate of membrane flux at pH 5.0. Pearson correlation analyses implied that removing algae cells would prevent reversible fouling-induced flux decline, whereas eliminating organic matter could greatly promote ultrafiltration efficiency via mitigating irreversible fouling. Therefore, elevating removal efficiency of organic matters is still the major objective for ultrafiltration pretreatment technologies and the optimization direction towards TXC-based coagulants.
Collapse
Affiliation(s)
- Min Xu
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|