1
|
Wang S, Zhao Y, Zhang M, Feng J, Wei T, Ren Y, Ma J. Electrostatic self-assembled layered polymers form supramolecular heterojunction catalyst for photocatalytic reduction of high-stability nitrate in water. J Colloid Interface Sci 2022; 622:828-839. [PMID: 35561603 DOI: 10.1016/j.jcis.2022.04.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
Abstract
In this work, two polymers are connected by electrostatic self-assembly method to form a supramolecular heterojunction to remove pollutants. g-C3N4-Cl/PANI catalyst can be used for photocatalytic reduction of nitrate in water, and the nitrogen selectivity reaches 98.2%. Specially, charge density analysis and comparative experiments showed that the introduction of covalent chlorine increased in electron transfer conduction between layers. In addition, differential charge density and solid EPR tests reveal high electron density and electron transfer pathways for supramolecular heterostructures. The results of the work function give direct evidence for the high catalytic performance of the supramolecular heterojunction. The reasons and active species of photocatalytic reduction of nitrate by g-C3N4-Cl and g-C3N4-Cl/PANI are compared. The catalyst exhibits the performance of highly reducing nitrate to harmless nitrogen with the contribution of supramolecular heterojunction and covalent chlorine. In short, a new idea of constructing a supramolecular photocatalyst is proposed, which can be applied to efficiency reduce nitrate in water.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ying Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Band Gap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Jing Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Tong Wei
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yueming Ren
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Xu H, Peng X, Zheng J, Wang Z. Tuning nitrogen defects and doping sulfur in carbon nitride for enhanced visible light photocatalytic activity. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Dai B, Chen X, Yang X, Yang G, Li S, Zhang L, Mu F, Zhao W, Leung DY. Designing S-scheme Au/g-C3N4/BiO1.2I0.6 plasmonic heterojunction for efficient visible-light photocatalysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Li C, Gu M, Gao M, Liu K, Zhao X, Cao N, Feng J, Ren Y, Wei T, Zhang M. N-doping TiO 2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation. J Colloid Interface Sci 2021; 609:341-352. [PMID: 34896834 DOI: 10.1016/j.jcis.2021.11.180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat-1h-1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat-1h-1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat-1h-1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - MengZhen Gu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - MingMing Gao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - KeNing Liu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - XinYu Zhao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - NaiWen Cao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| | - YueMing Ren
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - MingYi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| |
Collapse
|
5
|
Plasma-Tuned nitrogen vacancy graphitic carbon nitride sphere for efficient photocatalytic H 2O 2 production. J Colloid Interface Sci 2021; 609:75-85. [PMID: 34894556 DOI: 10.1016/j.jcis.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022]
Abstract
Graphitic carbon nitride (CN) is a promising photocatalyst for sustainable energy conversion. Meanwhile, N vacancies are useful for H2O2 generation; however, they are hard to control. In this study, the N vacancy CN sphere (NVCNS) is synthesized by H2 plasma treatment to tune the NV. The as-synthesized NVCNS exhibits an efficient and stable photocatalytic H2O2 yield of 4413.1 μmol gcat-1h-1, which is 2.5 and 4.6 times higher than that of CNS (1766.4 μmol gcat-1h-1) and bulk CN (956.6 μmol gcat-1h-1), respectively, using a Xe lamp with an intensity of 100 mWcm-2. In particular, the charges recombination rate is remarkably reduced by introducing N defect state, promoting electron accumulation and O2 adsorption, through theoretical calculation and experiments. Furthermore, the NV creates abundant unsaturated sites and induces strong interlayer interactions, leading to effective electronic excitation and the promotion of charge transport.
Collapse
|
6
|
Cao N, Zhao X, Gao M, Li Z, Ding X, Li C, Liu K, Du X, Li W, Feng J, Ren Y, Wei T. Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Ren X, Zhang X, Guo R, Li X, Peng Y, Zhao X, Pu X. Hollow mesoporous g-C3N4/Ag2CrO4 photocatalysis with direct Z-scheme: Excellent degradation performance for antibiotics and dyes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|