1
|
Wang F, Qu T, Yang H, Yang H, Ou Y, Zhang Q, Cheng F, Hu F, Liu H, Xu Z, Gong C. Fabrication of Dual-Functional Bacterial-Cellulose-Based Composite Anion Exchange Membranes with High Dimensional Stability and Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2751-2762. [PMID: 38178809 DOI: 10.1021/acsami.3c15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Anion exchange membranes (AEMs) are increasingly becoming a popular research area due to their ability to function with nonprecious metals in electrochemical devices. Nevertheless, there is a challenge to simultaneously optimize the dimensional stability and ionic conductivity of AEMs due to the "trade-off" effect. Herein, we adopted a novel strategy of combining filling and cross-linking using functionalized bacterial cellulose (PBC) as a dual-functional porous support and brominated poly(phenylene oxide) (Br-PPO) as the cross-linking agent and filler. The PBC nanofiber framework together with cross-linking can provide a reliable mechanical support for the subsequent filled polymer, thus improving the mechanical properties and effectively limiting the size change of the final quaternized-PPO (QPPO)-filled PBC composite membrane. The composite membrane showed a very low swelling ratio of only 10.35%, even at a high water uptake (81.83% at 20 °C). Moreover, the existence of multiple -NR3+ groups in the cross-link bonds between BC and Br-PPO can provide extra OH- ion transport sites, contributing to the increase in ionic conductivity. The final membrane demonstrated a hydroxide ion conductivity of 62.58 mS cm-1, which was remarkably higher than that of the pure QPPO membrane by up to 235.93% (80 °C). The successful preparation of the PBC3/QPPO membrane provides an effective avenue to tackle the trade-off effect through a dual-functional strategy.
Collapse
Affiliation(s)
- Fei Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Qu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Huiyu Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Haiyang Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Quanyuan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Fan Cheng
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fuqiang Hu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| |
Collapse
|
2
|
Myrzakhmetov B, Akhmetova A, Bissenbay A, Karibayev M, Pan X, Wang Y, Bakenov Z, Mentbayeva A. Review: chitosan-based biopolymers for anion-exchange membrane fuel cell application. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230843. [PMID: 38026010 PMCID: PMC10645128 DOI: 10.1098/rsos.230843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Chitosan (CS)-based anion exchange membranes (AEMs) have gained significant attention in fuel cell applications owing to their numerous benefits, such as environmental friendliness, flexibility for structural alteration, and improved mechanical, thermal and chemical durability. This study aims to enhance the cell performance of CS-based AEMs by addressing key factors including mechanical stability, ionic conductivity, water absorption and expansion rate. While previous reviews have predominantly focused on CS as a proton-conducting membrane, the present mini-review highlights the advancements of CS-based AEMs. Furthermore, the study investigates the stability of cationic head groups grafted to CS through simulations. Understanding the chemical properties of CS, including the behaviour of grafted head groups, provides valuable insights into the membrane's overall stability and performance. Additionally, the study mentions the potential of modern cellulose membranes for alkaline environments as promising biopolymers. While the primary focus is on CS-based AEMs, the inclusion of cellulose membranes underscores the broader exploration of biopolymer materials for fuel cell applications.
Collapse
Affiliation(s)
- Bauyrzhan Myrzakhmetov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Aktilek Akhmetova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Aiman Bissenbay
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Mirat Karibayev
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Xuemiao Pan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Yanwei Wang
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Zhumabay Bakenov
- Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, Kazakhstan
| |
Collapse
|
3
|
Xu J, Zhong G, Li M, Zhao D, Sun Y, Hu X, Sun J, Li X, Zhu W, Li M, Zhang Z, Zhang Y, Zhao L, Zheng C, Sun X. Review on electrochemical carbon dioxide capture and transformation with bipolar membranes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|